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Abstract: In this study, the optimal design of flow control fins (FCFs) for a container ship was
carried out via a machine learning approach. The conventional design practice for the FCF relied on
simulation-based performance evaluation, which demands a large amount of analysis time. Instead
of computational fluid dynamics (CFD)-based prediction, artificial neural network (ANN)-based
prediction was attempted. Prior to the machine learning process, the wake distribution data were
collected systematically via CFD. Based on the collected data, the wake distributions and resistance
performance dependent on varying the fin positions were learned using the ANN, and the optimal fin
position was selected with relevant optimization techniques. When multi-objective optimization was
employed, it was found that both wake distributions and resistance performance were improved in a
practically applicable timeframe. The current process is superior to conventional simulation-based
optimization in terms of speed. From the viewpoint of prediction accuracy, in this study, ANN-based
prediction was found to be equally accurate as CFD-based prediction. Thus, the results can provide a
novel and reliable design methodology for the optimal design of ship appendages.

Keywords: flow control fin (FCF); artificial neural network (ANN); optimal design; container ship;
wake flow distributions

1. Introduction
1.1. Importance of Flow Control Fins (FCFs) in Ship Energy Efficiency

In response to the Paris Agreement of 2015, the International Maritime Organization
(IMO) adopted an initial strategy for reducing greenhouse gas (GHG) emissions by ships in
April 2018 [1]. The goal is to reduce total annual GHG emissions by 50% by 2050 compared
to 2008, as well as to decrease carbon intensity (CI) by 40% by 2030 and by 70% by 2050, to
decarbonize the shipping industry as soon as possible within this century. Various follow-
up actions and programs to achieve the Initial Strategy are being undertaken. The Energy
Efficiency eXisting ship Index (EEXI) and the Carbon Intensity Index (CII) came into effect
as of 1 January 2023 (IMO 2021). These are significant reinforcements of the energy-saving
regulations for existing ships. Therefore, retrofitting an energy saving device (ESD) on
existing ships is drawing significant attention among ship operators and shipbuilders.

Among various ESDs, flow control fins (FCFs), alternatively known by the commercial
brand name SAVER (SAmsung Vibration and Energy Reduction) Fin, attached to the
stern are noted as an appropriate option for retrofitting. This device has a few notable
advantages, such as its small size and simple rectangular shape, which result in low
construction costs and a short payback period lasting less than a year. In addition, the
fin is also reliable and safe even when structural failure occurs, since it is fitted far away
from the propeller [2]. The two major roles of a FCF can be summarized as follows. Firstly,
it can reduce viscous resistance through deflecting bilge vortices generated via changes
in the hull cross-section area near the stern region, which slow down the upper part of
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the propeller inflow. Secondly, the FCF is one of the most efficient ways to homogenize
the wake field distribution of already designed hull forms. The flow being hindered by
bilge vortices prevents the pressure recovery of the hull surface in the stern part, thereby
augmenting non-uniformity in propeller inflow distribution. This non-uniformity in the
propeller wake acts as the main source of hull vibration due to uneven propeller loading.

Lee et al. [2] reported that a combination of the SAVER Fin and a rudder bulb led to a
7.4% power saving effect and 50% reduction in vibration for a 35k DWT bulk carrier, which
was superior to the effect of a Mewis duct. Inoue and Saito [3] investigated the combination
of fins separately set around the stern of a tanker hull with the aim of finding a target
wake pattern at the propeller plane. Their Multi-ALV Fin was found to contribute to the
reduction in the axial velocity on the propeller plane, resulting in an improvement in hull
efficiency. It was found that the Multi-ALV Fin demonstrated an energy-saving effect of
around 1% by itself. Recently, an optimization study by Park et al. [4] showed that the FCF
leads to a 4.3% reduction in the total resistance of a 6.5k DWT tanker. Furthermore, the
wake distribution was significantly improved due to the FCFs.

As shown in Figure 1, the conventional design process for a FCF is generally performed
referring to a series of case studies with computational fluid dynamics (CFD) simulations.
Depending on the experience of the designer, this process could involve many trials, and
CFD analysis could take a considerable amount of time to perform. To reduce the time
required for CFD analysis, a few studies were conducted that predicted wake distribution
using various machine learning methodologies. Hwangbo and Shin [5] predicted wake
distribution with a neural network using back-propagation from hull form information.
Kim and Moon [6] predicted wake distribution using a neuro-fuzzy technique. Furthermore,
Wie and Kim [7] applied a genetic algorithm and non-linear programming via quadratic
Lagrangian (NLPQL) to design the optimal flow control fin.

Figure 1. Process of conventional case study for flow control fin design.

Furthermore, in the hull-from design progress, optimization is attempted using a
surrogate model. Pache and Rung [8] compared the performance of data-driven surrogate
models, proper orthogonal decomposition (POD) and convolutional neural network-based
autoencoder (CNN-AE) to predict aerodynamic pressure fields and forces on the super-
structure of the container ship. Regarding the shape optimization of AUVs, Sun et al. [9]
proposed a bionic hull shape (BHS) using a surrogate model and response surface methods
(RSM). Zhang et al. [10] used a deep belt network (DBN) to reduce wave-making resistance
by finding the optimal hull parameters of a Wigley ship.

In addition to hull-form design, machine learning is applied in various fields of the
shipbuilding industry. Alexiou et al. [11] compared the performance of multiple regression
algorithms, such as artificial neural network (ANN), tree regressions (TRs), random for-
est regression (RFR), k-nearest neighbor (kNN), linear regression and adaptive boosting
(AdaBoost), in predicting the output power of the main engines (M/E) of an ocean-going
vessel. Lin et al. [12], based on deep reinforcement learning (DRL), developed an efficient
anti-rolling controller using a deep deterministic policy gradient (DDPG) algorithm.
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1.2. Contributions

The purpose of this study is to select the optimal fin position to improve propeller
inflow property and resistance performance. Here, the improved propeller inflow is
associated with a small nominal wake fraction (wN) and homogeneous wake distribution.
The study was conducted based on two strategies: machine learning based on a neural
network and optimization techniques. The neural network was used as a predictor of wake
distribution for a given design variable of FCF. Thus, this study is an extension of Hwangbo
and Shin’s [5] efforts to enable the design application of FCF. Regarding the optimization
of FCF design variables, the sequential least squares programming (SLSQP) and the non-
dominated sorting genetic algorithm II (NSGA-II) algorithms were employed for single-
and multi-objective optimization problems, respectively. A combination of the prediction
of wake distributions via machine learning with an appropriate optimization algorithm
gives rise to an efficient, automatic optimization process in which time-consuming CFD
simulation can be avoided. Furthermore, training results via neural networks can be
transferred to design cases involving different hull forms. To the best of our knowledge,
the present study is the first application of the machine learning technique to the optimal
design of the FCF.

The paper’s organization is as follows: Section 2 describes the theoretical background
of the artificial neural network (ANN) and the optimization algorithms used in this study;
Section 3 formulates a numerical procedure to build the data sets; Section 4 explains
the ANN-based prediction of wake distribution for the given design variables of FCFs
and subsequent single- and multi-objective optimization processes; Section 5 presents
the optimization results of FCF; and Section 6 discusses this study’s main conclusions
and findings.

2. Theoretical Backgrounds

This section describes the theoretical backgrounds for the two major methodologies
used in this study. (1) the feed-forward neural network used to predict the wake flow
distribution for a given combination of design variables for FCF instead of CFD simulation;
and (2) two algorithms, one for a single objective and the other for multiple objectives, used
to optimize design variables for FCF.

2.1. Artificial Neural Network (ANN)

An artificial neural network is a computing system inspired by biological neural
networks comprising animal brains [13]. This network was applied to solve problems
such as regression analysis, classification and data processing. A feed-forward neural
network, which converts input variable sets to output variable sets, can be regarded as a
non-linear mathematical function. An accurate form of conversion is managed using a set
of weights, which is determined through a process known as training [14]. In this study,
multilayer perception (MLP), which is widely used in most practical applications of ANNs,
was employed. Figure 2 illustrates a simplified expression of two-layer MLP. In this MLP,
the hidden layer zj and the output layer yk are defined as follows:

zj = g

(
d

∑
i=0

wjixi

)
(1)

yk = g̃

(
m

∑
j=0

w̃kizj

)
, yk = g̃

(
m

∑
j=0

w̃kig

(
d

∑
i=0

wjixi

))
(2)

All layers of the ANN are independent of each other and consist of varying numbers
of nodes. The nodes in the hidden layer are connected via the nodes in the preceding layer
through weighted summation. The connected input is modified by the activation function,
which can be embodied using mathematical functions, such as sigmoid, hyperbolic tangent
and rectified linear unit (ReLU).
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Figure 2. Architecture of multilayer perceptron neural network with two layers.

2.2. Optimization Algorithms
2.2.1. Sequential Least Squares Programming (SLSQP)

SLSQP minimizes a function of several variables with any combination of bounds,
equality, and inequality constraints. The method wraps the SLSQP optimization subroutine
originally implemented by Kraft [15]. Based on the iterative formulation and solution of
quadratic programming subproblems, this method obtains subproblems using a quadratic
approximation of the Lagrange function of a problem and via linearizing the constraints.
The quadratic programming problem is then solved to obtain the search direction vector.
SLSQP has advantages over linear search in terms of fast convergence and more accurate
minimization. However, the existence of a minimum value is secured only if the objective
function and constraint are concave [16]. Thus, SLSQP is ideal for mathematical problems
for which the objective function and the constraints are twice continuously differentiable.

An SLSQP algorithm can solve the following bounded minimization problem.
Minimize f (x)
subject to gj(x) = 0, j ∈ E

gu(x) ≥ 0, u ∈ I
xiL ≤ xi ≤ xiU , i = 1, . . . , n

(3)

Here, f (x) stands for the target scalar function to be minimized, with x being the
design parameter. gj(x) and gu(x) are equality and inequality constraints, respectively. E
and I are the function set corresponding to the respective constraint type. Finally, xiL and
xiU represent the lower and upper bounds of xi, respectively.

After solving the quadratic programming subproblem to obtain the search direction
vector d, the minimization vector xl+1 at (l+ 1)-th step is iteratively updated using the
following equation:

xl+1 = xl + aldl (4)

Here, dl and al represent the search direction and the iteration length at the l-th
iteration step.

2.2.2. Non-Dominated Sorting Genetic Algorithm-II (NSGA-II)

In general, it is not possible to obtain a single solution to minimize multiple objective
functions simultaneously. The solution to multiple objective functions can only be sought
in terms of a non-dominated solution, which is defined as the solution in which no one
objective function can be improved without a simultaneous detriment to at least one of the
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other objectives [17]. The solution categorized as a non-dominated solution is also called a
pareto-optimal solution, whose objective functions comprise a pareto-optimal front [18].

With a view to finding a pareto-optimal solution to the multiple objective optimization
problem, the current study employed NSGA-II, which is one of the most representative
genetic algorithms. The NSGA-II algorithm is an improved version of the NSGA algo-
rithm [19], where the complexity of non-dominated sorting is diminished. The introduction
of crowing distance led to a more efficient distribution of resources among individuals.
Furthermore, the elitism was adopted to ensure the inheritance the optimal solution of the
parent generation by the offspring generation [20].

Figure 3 presents a conceptual flow chart of NSGA-II. In the first step, the initial
population is generated based on the objective functions and constraints, and the fitness
function is then evaluated. After non-dominating sorting, the offspring population is
generated through means of three fundamental operations of the genetic algorithm—
selection, crossover and mutation. The parent and offspring population are combined, and
the individuals for the new parent population are subsequently selected based on elitism
and crowding distance. These steps are iterated until the stopping criteria is satisfied.

Figure 3. Flow chart of NSGA-II.

3. Problem Description
3.1. Geometry of Target Ship and Flow Control Fins

In this study, a 1000 TEU container ship built by Daesun Shipbuilding and Engineering
Co. Ltd. was designated as the baseline hull form. This model was chosen due to the
availability of a reliable CFD database with a high level of correlation with model test
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data. In addition, this vessel belongs to the feeder class of 1000~1999 TEU, which is the
most frequently built container ship class. A model with a scale ratio of λ = 30.56 was
considered for both numerical simulations. The principal particulars of the baseline hull
and propeller are listed in Table 1. Figure 4 illustrates 3D volumetric views of the baseline
hull form and propeller.

Figure 4. A 3D volumetric views of baseline hull and propeller: (a) baseline hull; (b) propeller
and rudder.

Table 1. Principal particulars of 1000 TEU container ship.

Designation Symbol (Unit) Full-Scale Ship

Length bet. perpendiculars LPP (m) 137.5
Breadth B (m) 23.6

Draft T (m) 7.4
Block coefficient CB 0.595

Propeller diameter D (m) 5.5

The flow control fins (FCFs) employed in this study were in the shape of a rect-
angular plate with rounded corners, as shown in Figure 5. The dimensions of the FCF
were 1.30 m (length) × 0.37 m (height) × 0.03 m (thickness) in full scale. These dimensions
correspond to 0.236 D (length) × 0.0673 D (height) × 0.00545 D (thickness) in terms of
propeller diameter, D. As shown in Figure 5, the FCFs are attached perpendicularly to the
hull surface on the stern part of the hull. Usually, the FCFs are attached in pair(s) at the
same positions on the port and starboard sides. The design variables of the FCF adopted
in this study were the longitudinal and vertical positions of the FCF and the inclination
angle. Here, the position of the FCF corresponds to the midpoint of the baseline, and the
inclination angle corresponds to the angle formed between the baseline of the FCF and the
baseline of the hull. Depending on the design variables of the FCF, the downstream flow is
affected differently in terms of spatial extent and velocity increment. In other words, the
design variables of the FCF are optimized to change the propeller inflow in the intended
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manner, i.e., to be accelerated and become more uniform. The objective function for the
optimization process will be described in detail in Section 4.2.

Figure 5. Geometry of FCF and 3D views of hull with FCFs attached.

3.2. CFD Simulation for Training Data

In order to train, validate and test the neural network, a total of 693 data sets were
obtained via the CFD analysis. Each data set corresponded to one design parameter
set, with total design parameter sets being a combination of 11 longitudinal po-
sitions (3.0 ≤ x/St ≤ 4.0, ∆x/St = 0.1 )× 21 vertical positions ( 0.135 ≤ z/T ≤ 0.405,
∆z/T = 0.0135 )× 3 inclination angles (α = 19◦, 20◦, 21◦). Here, St represents the station
length, which is 1/20 of the length between perpendicular LPP.

For the CFD analysis of the flow around a ship hull, the commercial CFD package
STAR-CCM+ v.15.06 was employed. The governing equations for the CFD analysis are
the continuity equation and Reynolds-Averaged Navier–Stokes (RANS) equation. These
equations are expressed in tensor notation as follows:

∂Ui
∂xi

= 0 (5)

∂Ui
∂t

+ ρUl
∂Ui
∂xl

= − ∂p
∂xi

+
∂

∂xl

(
µ

∂Ui
∂xl
− ρuiul

)
+ ρgi (6)

where Ui = (U, V, W) is the velocity component in the xi = (x, y, z) direction, while
p, ρ, µ,−uiul and gi are the static pressure, fluid density, fluid viscosity, Reynolds stress
and gravitational acceleration in the xi-direction, respectively.

The Reynolds stress turbulence model, which is known to be excellent in resolving
bilge vortex and capable of high-accuracy prediction of the flow around a ship hull [21],
was employed in the numerical analysis. The transport equation, derived from the RANS
equation, is given as follows:

∂u′i u
′
j

∂t
= Dij + Gij −

2
3

δijε + PS (7)

where δij is the Kronecker delta and Dij, Gij and PS correspond to the diffusion, production
and pressure strain terms, respectively, which are defined as follows:

Dij =
∂

∂xl

(
Ck

k2

ε

∂uiuj

∂xl
+ ν

∂uiuj

∂xl

)
(8)

Gij = −
(

uiul
∂Uj

∂xl
+ ujul

∂Uj

∂xl

)
(9)
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PS = −C1
ε

k

(
uiuj −

2
3

δijk
)
− C2

(
Gij −

2
3

δijGk

)
(10)

Here, Ck, C1 and C2 are turbulent model constants. In addition, k and ε stand for the
turbulent kinetic energy and dissipation rate, respectively.

Figure 6 illustrates the computational domain, which is a rectangle occupying the range
of −2.5 LPP < x < LPP, 0 < y < 1.5 LPP and −1.5 LPP < z < 0. Due to the symmetry
about the centerplane (y = 0), only half of the domain was considered. Furthermore,
double-body simulation, in which the underwater hull is mirrored about the free surface
(z = 0), was carried out for all simulation cases. Through completing this step, wave
generation due to the ship hull and consequent wave-making resistance was neglected.
However, this process does not cause any complications in analyzing the effect of varying
the FCF design on the flow field because the deep submergence of FCFs prevents them from
affecting the free surface. Through omitting the time-consuming free surface calculations,
the double-body simulation can significantly shorten the analysis time, which is crucial as
this study involves numerous test cases. The boundary conditions for the surfaces of the
computational domain in Figure 6 are summarized in Table 2.

Figure 6. Computational domain for double-body simulation.

Table 2. Boundary conditions for Figure 6.

Boundary Surface Type

Inlet Velocity inlet
Outlet Pressure outlet

Top, bottom, side, centerplane Symmetry
Ship Wall

It is worthwhile to mention that automation in pre-processing steps, such as geometry
modeling and mesh generation, is of profound importance for the sake of overall computa-
tional efficiency for the entire 693 simulation cases. Processes such as 3D modeling of the
hull form with varying FCF, mesh generation, and creation of CFD settings for each case
were performed with professional hull form design S/W of OptHull® (Cadas Co., Ltd.,
Changwon, Republic of Korea) The subsequent processes involved in the configuration
of STAR-CCM+ and analysis automation were controlled via an in-house JavaScript code.
Using a Message Passing Interface (MPI) parallel computing cluster consisting of 140 CPU
cores (Intel Xeon 2.6 GHz), it took approximately 323 h to complete the 693 simulations
required for the preparation of data.
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4. Methodologies
4.1. ANN-Based Prediction of Wake Distribution

Before training the neural network, the flow field data obtained from the CFD analysis
were pre-processed. A harmonic analysis was performed to find Fourier series coefficients
for the axial velocity distribution in the form of a 73× 8 polar array, as shown in Figure 7.
To be more specific, for eight radial positions in the range 0.3R < r < 1.0R (∆r = 0.1R), the
circumferential distribution of axial velocity Vx(ϕ) was represented as the Fourier series up
to 10th harmonic as follows:

Vx(ϕ) = A(0) +
10

∑
i=1
{A(i) cos(iϕ) + B(i) sin(iϕ)} (11)

Figure 7. Pre-processing of output data for neural network: (a) division on propeller disc; (b) process
of harmonic analysis.

The symmetry of wake flow distribution precludes the sine coefficients B(i); thus, the
resulting 11× 8 Fourier series coefficients were used as the output of the neural network.
We noted that the ANN in this study was primarily used to predict the axial velocity
distribution in the propeller plane from given designs of FCFs. Therefore, the design
variables [x/St, z/T, AoA] were used as the inputs of the ANN, while the flow distribution
was supposed to used as the output. Here, the angle of attack AoA was defined as the
difference between the angle of local streamline for the baseline hull without the FCF and
the FCF inclination angle α. For the sake of training efficiency, it was imperative to match
the dimensions of the inputs and output of the neural network as closely as possible insofar
as this did not hinder the detailed representation of velocity distribution. In a preliminary
study, this harmonic analysis pre-processing turned out to improve the training efficiency
compared to the case without pre-processing.

Based on the inputs and outputs from CFD analysis, the neural network was trained to
predict the Fourier coefficients corresponding to given design variables [x/St, z/T, AoA].
The wake flow distribution was subsequently reconstructed via Equation (11). The 693
data sets were divided into 415 training sets, 139 validation sets and 139 test sets. Training
usually failed when the magnitude of individual data sets differed significantly from one
another. In order to avoid this issue, all data were normalized via Min–Max scaler to have
a magnitude between 0 and 1. The structure of the ANN used in this study is shown in
Figure 8. ReLU was employed as the activation function, and an Adam optimizer was used.
The hyperparameters of the ANN are listed in Table 3.
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Figure 8. Structure of ANN for prediction of wake distribution.

Table 3. Hyperparameters of the ANN.

Item Value

# of Nodes of Hidden layer—1 11
# of Nodes of Hidden layer—2 22
# of Nodes of Hidden layer—3 44
# of Nodes of Hidden layer—4 66
# of Nodes of Hidden layer—5 89

4.2. Selection of the Optimal Fin Position

The final goal of this study was to optimize the design variables of FCFs depending
on the specific choice of the objective function. The optimization process was initiated
via a random guess for the design variables [x/St, z/T, AoA]. The two different kinds of
optimization were carried out with respective objective functions defined as below.

4.2.1. Single-Objective Optimization Using SLSQP

For single-objective optimization, the design variables of FCFs were optimized to
improve only the quality of the propeller inflow, i.e., the wake flow distribution. Here, the
neural network was trained to predict the wake flow distribution, as shown in Figure 8.
The selection of an objective function depended on how to quantify the quality of the wake
flow. Two parameters were chosen for this purpose. Firstly, the nominal wake fraction
wN , which was the ratio of average deceleration of propeller inflow due to the ship hull,
was used. A smaller value of wN was preferred. Secondly, Vpeak, i.e., the axial velocity at
the top dead center (ϕ = 0◦) in the reference radial position of 0.7R, was maximized to
suppress cavitation. Combining these two parameters, the following objective function and
constraints were set for this optimization. It is notable that the constraints here were set
for wider ranges of x/St and z/T than those of the training sets described in Section 3.2.
In other words, the design variables were allowed to exceed the range of training data
when necessary. 

Minimize F(x/St, z/T, AoA) = − 1
wN

Vpeak
subject to 3.0 ≤ x/St ≤ 7.0

0.1 ≤ z/T ≤ 0.5
(12)

4.2.2. Multi-Objective Optimization Using NSGA-II

In this optimization, not only was the quality of wake flow distribution improved, but
so was the resistance performance. Consequently, the viscous resistance coefficient CVM
was added to the objective function as follows:

Minimize F(x/St, z/T, AoA) = Min
(
− 1

wN
Vpeak, CVM

)
(13)
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The position constraints in Equation (12) remained unchanged. In addition, CVM was
also included in the output of the ANN, which became capable of predicting the wake flow
distribution and the viscous resistance. We noted that the viscous resistance coefficient CVM
was the resistance component that was devoid of the wave-making resistance contribution
arising from the free surface. Since the CFD simulations for the data sets were all carried out
without the free surface, this value is the relevant resistance coefficient that we minimized.

5. Results
5.1. Validation of CFD Analysis

Prior to analyzing the ANN-based prediction results, it is worth confirming the ac-
curacy of the CFD simulation. Since the entire process of this study originates from the
CFD data sets, its reliability rests on the accuracy of the CFD simulation. As mentioned
in Section 3, the container ship was chosen as the target ship owing to the presence of
high-fidelity CFD results, which are demonstrated in Table 4. Here, the CFD results for the
total resistance coefficient CTM and the residuary resistance coefficient CR = CTM − CFM
from the prior research of the authors are compared with the experimental results from
the model test in a towing tank. For the sake of comparison with the towing tank, the total
resistance in the presence of free surface was analyzed via CFD simulation in that previous
research. As seen in Table 4, the CFD prediction of CTM is in excellent agreement with the
experimental data, differing by only 0.15% at the design speed of 18.0 knots. In addition,
the agreement with experimental results at other speeds is also satisfactory. These results
are support the reliability of the current CFD simulation.

Table 4. Comparison of CFD resistance analysis results with model test results.

Vs [kn]
CTM×103 CR×103

EXP CFD Difference EXP CFD Difference

17.0 3.929 3.870 −1.50% 0.741 0.678 −0.06

18.0 3.999 3.993 −0.15% 0.843 0.834 −0.01

19.0 4.199 4.178 −0.50% 1.073 1.049 −0.02

5.2. The ANN-Based Prediction

To reduce training time and data loss, a mini-batch was applied in the training process
of the ANN, and approximately 28,000 iterations were performed. The prediction accuracies
of learning models are quantified in terms of the mean square error (MSE), which are shown
to be approximately 0.0047 in Figure 9. The peaks in the loss are generally encountered in
the case of mini-batch training with segmented data.

The learning level of the neural network was verified by evaluating prediction accuracy
for test data that were not used for training. Figure 10 provides the predictions for a couple
of cases by comparing the predicted results with the target data, thus providing the answer
for the prediction obtained via CFD analysis. The target wake distribution is given in
the left contour, and the predicted wake distribution is given on the right contour. In the
circumferential distributions of the axial velocity component, the target data are drawn in
black dotted lines, while the predicted data are shown as red symbols and solid lines. A
brief inspection of Figure 10 shows that the target and prediction are in excellent agreement.

Both the wake distribution and the viscous resistance can be predicted very accurately.
Figure 11 plots the results for the two aforementioned test cases. The average error in the
predicted viscous resistance coefficient of model CVM amounts to 0.0003× 10−3, which is
less than 0.01% of the target value.
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Figure 9. Loss for learning models.

Figure 10. Evaluation of prediction accuracy via harmonic wake distribution and axial wake distribu-
tion: (a) test data No. 1; (b) test data No. 2.
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Figure 11. Evaluation of prediction accuracy for viscous resistance coefficient.

Considering the above results, it can be stated that the present ANN is capable of
recognizing the design variables of FCFs and associating them with the wake distributions
and the resistance coefficient with high accuracy. It is remarkable that it took only 39 s for the
neural network to be trained for 500 epochs, and the ANN-based prediction gave the wake
distributions and resistance coefficient almost instantly. The conventional optimization
techniques based on CFD simulation would require CPU time proportional to the number
of iterative evaluations, which of course becomes prohibitively large in the case of multi-
objective, multi-parameter optimization. On the contrary, the ANN-based optimization
process will scarcely consume time overhead once the database is established.

5.3. Optimization of the Design Variables of FCFs
5.3.1. Single-Objective Optimization Results

In this first optimization subtask, the design variables of FCFs are optimized under
the single-objective function of Equation (12). The iterative optimization process was
converged to the minimum at the eighth iteration. Figure 12 presents the evolutionary
results obtained during this optimization process, with the result for the initial, arbitrary
user input of design variable plotted in Figure 12a. On top of each wake distribution
contour in Figure 12, the design variable [x/St, z/T, AoA] corresponding to it is visible.
In addition, the nominal wake fraction wN for each case is given in the figure caption. A
closer inspection of Figure 12a–i reveals that the optimization advanced toward minimizing
wN, as well as diminishing the low-velocity region near the top dead center. In all wake
distributions to follow, a dashed circle is drawn to mark the representative radius r = 0.7R.

Generally speaking, the installation of FCFs may lead to the additional benefit of
resistance reduction. Although it was not optimized intentionally, the present optimal FCF
for wake distribution would also be beneficial in terms of CVM. A comparison between the
bare hull without FCF and the optimal fin is made in Table 5. It was found, however, that
the optimal fin led to an increase in CVM, which is contrary to the above expectation. This
result occurred mainly because the target ship had a slender hull form with good resistance
performance. It is also noteworthy that resistance performance was not considered in
this study’s single-objective optimization and associated neural network. Thus, a more
sophisticated approach is required to improve resistance performance. As a matter of
fact, this shortcoming was the motivation for multi-objective optimization described in the
next section.
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Figure 12. Evolutionary results during process of single-objective optimization: (a) initial: wN = 0.247;
(b) step 1: wN = 0.249; (c) step 2: wN = 0.242; (d) step 3: wN = 0.225; (e) step 4: wN = 0.225; (f) step
5: wN = 0.240; (g) step 6: wN = 0.236; (h) step 7: wN = 0.226; (i) step 8: wN = 0.225.

Table 5. Comparison of viscous resistance via single-objective method.

Bare Hull Optimal Fin

CVM × 103 3.206 3.207
RVM [N] 52.37 52.41

5.3.2. Multi-Objective Optimization Results

The second optimization subtask is involved in improving both the wake flow distri-
bution and the resistance performance. In the genetic algorithm of NSGA-II, the population
of each generation was set as 100, and the optimization proceeded down to the 200th
generation. The whole calculation of optimization by means of ANN-based prediction took
only 4 min and 30 s. If it had not been for the ANN-based prediction, the CFD-based genetic
algorithm would have required 200 generations × 100 individuals = 20,000 simulations,
which would amount to 10,000 h. This dramatic saving of time justifies the initial simulation
overhead required for the 693 data sets used for training and validation.

The pareto fronts in terms of two objective functions are plotted in Figure 13. Each
individual comprising the pareto front, which is marked in grey circles, corresponds to the
FCF design variable. The initial design is marked with a black triangle. Along the pareto
front, the values of the two objective functions are in negative correlation, which follows
the general trend of the pareto fronts. It is also observed that the pareto fronts are located to
the left of the initial design, implying that the two objectives are both reduced as a whole.

Figure 13. Best pareto front discovered via NSGA-II.
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Among the pareto front, one particular individual, which is marked with a black
circle, was selected as optimal because this achieved the same level of improvement in the
wake distribution as the single-objective optimization. Figure 14 and Table 6 compare the
multi-objective optimal with the initial case in terms of wake distribution and resistance
performance, respectively. Contrary to the single-objective optimization discussed in the
previous section, both wake distribution and viscous resistance were found to be improved.

Figure 14. Best pareto front discovered via NSGA-II: (a) initial: wN = 0.247; (b) optimal: wN = 0.225.

Table 6. Comparison of viscous resistance via multi-objective method.

Bare Hull Optimal Fin

CVM × 103 3.206 3.203
RVM [N] 52.37 52.34

The results presented in Figure 14 and Table 6 are identical to those predicted using
the ANN. Consequently, they need to be validated against the CFD simulation results
with corresponding FCF design variables. Figure 15 shows the validation of the initial
design [3.519, 0.186, 12.58]. The ANN-predicted initial wake distribution in Figure 15b is
very similar to that of the CFD simulation in Figure 15a, except for the lowest speed part
near the top dead center of the propeller tip (r = 1.0 R, ϕ = 0◦). Moreover, the nominal
wake fractions are almost the same for the two cases. The agreement between the CFD
simulation and the ANN prediction for the optimal design [3.170, 0.330, 11.50], which is
shown in Figure 16, is even more remarkable. The wake distributions are almost identical,
and the nominal wake fractions differ from each other by only 0.001, which signifies that
the difference in average inflow velocity is less than 0.13%.

Figure 15. Comparison of wake distributions for initial design: (a) CFD: wN = 0.248; (b) ANN
prediction: wN = 0.247.
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Figure 16. Comparison of wake distributions for optimal design: (a) CFD: wN = 0.226; (b) ANN
prediction: wN = 0.225.

In order to assess how much the present optimization process gave rise to the addi-
tional improvement in wake distribution over the training cases, the comparison presented
in Figure 17 was made. Here, the wake distributions for the best case among 693 data sets
in Figure 17b are compared to the optimal design in Figure 17c. If the optimization simply
chose the best candidate among the existing data, the optimal design would have hardly
been better than the best candidate, and the effectiveness of the optimization would be
questionable. It is, however, obvious that the wake distribution in Figure 17c is superior to
that in Figure 17b. As the final result of the present study, the hull in the case of optimal
configuration is shown in Figure 18. Figure 19 compares the pressure distribution and
streamline for the baseline hull without FCF and those values associated with the optimal
configuration. It is clearly demonstrated that the streamlines are deflected upward by the
presence of FCF, thereby providing larger momentum in the upper part of the propeller
plane. It is worthwhile to mention that the change in the nominal wake is subject to a scale
effect in the full-scale extrapolation. Recent studies by Farkas et al. [22,23] and Dogrul [24]
can enlighten this issue.

Figure 17. Comparison between optimal wake and best case among collected data: (a) bare hull:
wN = 0.275; (b) best case among 693 data: wN = 0.232; (c) optimal FCF: wN = 0.225.

Figure 18. A 3D volumetric view for optimized FCF.
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Figure 19. Comparison of pressure distribution and streamline: (a) bare hull; (b) the optimized FCF.

In summary, the optimization algorithm used in this study, when combined with the
ANN, proved its adequacy in the optimal design process for FCFs. The current process
is much superior to the conventional simulation-based optimization process in terms of
speed and practical applicability. From the viewpoint of prediction accuracy, the present
ANN-based prediction was found to be just as accurate as the CFD-based prediction.

6. Conclusions

In this study, a novel methodology based on the ANN-based prediction of wake distri-
bution and resistance performance, combined with single/multi-objective optimization
techniques, was proposed to optimize design variables of flow control fins (FCFs) for a
1000 TEU container ship. The major contribution of this study lies in the application of
an artificial neural network (ANN) to replace time-consuming CFD simulations, thereby
enabling multi-objective optimization in a practically meaningful timeframe. Another
novelty of the current study is enhancing the training efficiency of the neural network
by representing wake distributions through means of Fourier coefficients. The resulting
ANN-based prediction was found to be accurate within 0.13% and 0.01%, respectively, in
terms of the nominal wake fraction (wN) and viscous resistance coefficient (CVM).

The optimal fin design was sought using two optimization techniques. Firstly, single-
objective optimization for wake distributions only was carried out via SLSQP. Secondly,
multi-objective optimization for wake quality improvement and resistance reduction was
performed with the genetic algorithm NSGA-II. For the single-objective optimization
study, resistance performance was not improved using the optimal FCF design, which
necessitated the multi-objective optimization study. Using NSGA-II, the best pareto front
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in terms of two objective functions was formed, and the multi-objective optimal design
was selected. The optimal design was found to improve both wake flow distributions and
resistance performance. It is noteworthy that NSGA-II, which demands a large number
of performance evaluations, would have been impractical without using the ANN-based
prediction capability introduced in this study. In this regard, the current study offers an
exemplary procedure in which a machine learning technique can contribute to advancing
computational design technology. The present ANN-based prediction capability is not
necessarily limited to the design in this particular case study. Through adopting the strategy
of transfer learning, it could be extended to the design of other ship types, which will be
the topic of a future study.
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23. Farkas, A.; Degiuli, N.; Martić, I.; Dejhalla, R. Numerical and experimental assessment of nominal wake for a bulk carrier. J. Mar.

Sci. Technol. 2019, 24, 1092–1104. [CrossRef]
24. Dogrul, A. Numerical prediction of scale effects on the propulsion performance of Joubert BB2 submarine. Brodogr. Teor. Praksa

Brodogr. Pomor. Teh. 2022, 73, 17–42. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.opengrey.eu/item/display/10068/
https://doi.org/10.1016/B978-0-12-821126-7.00009-7
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.oceaneng.2018.03.002
https://doi.org/10.1007/s00773-018-0609-4
https://doi.org/10.21278/brod73202

	Introduction 
	Importance of Flow Control Fins (FCFs) in Ship Energy Efficiency 
	Contributions 

	Theoretical Backgrounds 
	Artificial Neural Network (ANN) 
	Optimization Algorithms 
	Sequential Least Squares Programming (SLSQP) 
	Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) 


	Problem Description 
	Geometry of Target Ship and Flow Control Fins 
	CFD Simulation for Training Data 

	Methodologies 
	ANN-Based Prediction of Wake Distribution 
	Selection of the Optimal Fin Position 
	Single-Objective Optimization Using SLSQP 
	Multi-Objective Optimization Using NSGA-II 


	Results 
	Validation of CFD Analysis 
	The ANN-Based Prediction 
	Optimization of the Design Variables of FCFs 
	Single-Objective Optimization Results 
	Multi-Objective Optimization Results 


	Conclusions 
	References

