
Citation: Besiou, E.; Kontakiotis, G.;

Vasiliev, I.; Moissette, P.; Cornée, J.-J.;

Antonarakou, A. Evolutionary

Palaeoecological and Morphological

Response of Globorotalia menardii to

Environmental Stress Conditions

Preceding the Tortonian–Messinian

Boundary in the Mediterranean

Basin. J. Mar. Sci. Eng. 2023, 11, 1228.

https://doi.org/10.3390/jmse11061228

Academic Editor: Agata Di Stefano

Received: 23 May 2023

Revised: 8 June 2023

Accepted: 13 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Evolutionary Palaeoecological and Morphological Response of
Globorotalia menardii to Environmental Stress Conditions
Preceding the Tortonian–Messinian Boundary in the
Mediterranean Basin
Evangelia Besiou 1,*, George Kontakiotis 1 , Iuliana Vasiliev 2, Pierre Moissette 1 , Jean-Jacques Cornée 3

and Assimina Antonarakou 1,*

1 Department of Historical Geology-Paleontology, Faculty of Geology and Geoenvironment, School of Earth
Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou,
15784 Athens, Greece; gkontak@geol.uoa.gr (G.K.); pmoissette@geol.uoa.gr (P.M.)

2 Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25,
D-60325 Frankfurt am Main, Germany; iuliana.vasiliev-popa@senckenberg.de

3 Géosciences Montpellier, Université des Antilles-Université de Montpellier-CNRS (Centre National de la
Recherche Scientifique), Pointe à Pitre (FWI), 34095 Montpellier, France; jean-jacques.cornee@umontpellier.fr

* Correspondence: wwweua@hotmail.com (E.B.); aantonar@geol.uoa.gr (A.A.)

Abstract: The Tortonian–Messinian transition is associated with important climatic and oceano-
graphic changes in the Mediterranean Basin, which have shaped both the biotic and abiotic nature
of this setting. The morphological variability of the planktonic foraminifera Globorotalia menardii, a
species that is highly sensitive to water column structure, has been investigated from the sedimen-
tary archive of three Cretan sections across a west–east transect covering the Tortonian–Messinian
Boundary. The present work explicitly focuses on test-size and coiling direction changes occurring
during the 7.36–7.24 Ma time slice. On such a short timescale, the most important morphological dif-
ferentiation accounts for the average size of G. menardii, which is mostly associated with evolutionary
adaptation to new ecological niches during the latest Tortonian as a response to the environmental
perturbations and ecological stress conditions preceding the Tortonian–Messinian Boundary. A
combined thermal and/or salinity-driven stratification and thermocline development hypothesis has
been suggested to explain the observed size variability. To ameliorate the accuracy of the proposed
model and further determine which environmental parameter reflects the optimum conditions of
the analysed species, additional sea surface temperature and salinity data derived from the same
sampling intervals of the studied or additional Mediterranean sites are needed. The coiling direction
of this species within the study time interval remained constant and not environmentally controlled.

Keywords: planktonic foraminifera; upper Miocene; Mediterranean Basin; size distribution; temperature;
salinity; stratification; primary productivity; thermocline development; habitat tracking

1. Introduction

The morphological variability of any organism, both through time and within its
paleobiogeographic range, is currently receiving much attention, opening novel fields for
biometric investigations. Morphological evolution and speciation in calcareous plankton
from selected time slices and key sites in the world oceans is currently one of the most chal-
lenging issues in stratigraphy and palaeoceanography. Such an approach, initially labelled
by Knappertsbusch [1] as “evolutionary prospection”, requires suitable taxa for mapping
the variations in morphological parameters (e.g., size, shape, and coiling direction) reflect-
ing environmental and/or evolutionary changes due to abiotic (e.g., temperature, salinity,
water depth, soil acidity, and stratification [2]) and biotic (e.g., competition, predation,
mutualisms, and symbiosis [2,3]) drivers, respectively.
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Due to the high level of completeness of the deep-sea records [4], the planktonic
foraminifera are widely distributed and highly abundant in the world oceans [5] and well
preserved in the deep-sea sedimentary records [6,7], with excellent diversification across
time and space [8,9], making them ideal for this purpose. As a ubiquitous part of ma-
rine life since their evolution from benthic foraminifera in the Jurassic [10,11], planktonic
foraminifera have been exposed to a wide range of environmental perturbations to which
they successfully adapted, by subtly, but continuously changing their shell morphologies
within a species’ capability of genetic constraints. This group also presents an enviable
species level record with ~450 identified fossil species, with an at least 81% chance of
detection in the Cenozoic Era [12]. The Cenozoic planktonic foraminifera are the best
candidates for mapping the biogeographic dynamics of evolution because of their occupa-
tion and evolutionary adaptation to new ecological niches emerging during the Cenozoic
cooling [13] and due to the rearrangement of oceanic gateways [14]. The mean planktonic
foraminiferal shell size has increased [14] during the last 12 Ma, with its long-term size
evolution (macro-evolution) being controlled by changing patterns of niche richness related
to water column stratification [15], while minor short-term size variations (micro-evolution)
are attributed to sudden changes in the environmental conditions [16].

Generally, in an optimal species-specific environment, individuals exhibit a greater
maximum test size, while their size decreases the more unfavourable the environment
becomes [17]. Such size variability, sometimes combined with additional tenuous mor-
phological differences (i.e., spiral height, keel area), is even more pronounced during a
drastic improvement or deterioration of environmental conditions in response to chang-
ing water column characteristics (e.g., temperature, salinity, stratification, productivity).
However, the relationship between planktonic foraminiferal size and seawater parameters
varies among the oceanic basins because of local adaptations in different bioprovinces [18].
Moreover, most of the studies that have tracked this kind of morphological variability have
been conducted on Late Quaternary (modern/Holocene [14,19–21] or Pleistocene [22–24])
planktonic foraminiferal populations rather than on ancient forms [25–27].

An interesting case of such short-term morphological changes was observed for the
first time in the Late Miocene size evolution of Globorotalia menardii in three Cretan sections
named Potamida, Kapariana, and Faneromeni, respectively. No attempt has yet been
made to describe the size variations of this species during the Latest Tortonian in the
marginal Mediterranean Basin and further assess their controlling factors during the pre-
evaporitic Messinian Salinity Crisis interval. In the present study, we focus on the time
interval between the First Occurrence (FO) of G. menardii form 5 and its replacement by the
representatives of the Globorotalia conomiozea group at the Tortonian/Messinian boundary,
thus covering the 7.36–7.24 Ma time interval. The size measurements of G. menardii were
further compared to the oxygen (δ18O) and carbon (δ13C) isotopic ratios measured on
the surface dweller Globigerinoides obliquus picked from the same samples to examine the
paleoclimatic significance of the observed morphological variability.

2. Geological Setting

Crete Island occupies a forearc position above the northward-dipping subduction
zone of the Hellenic Arc along which the African plate is subducted beneath the southern
edge of the Eurasian plate. The overall architecture of the island is characterised by a pile of
thrust nappes, which are subdivided into a lower member consisting of high pressure and
low temperature metamorphic rocks and an upper member with no metamorphic rocks,
separated by a major shear zone [28]. The pre-Miocene basement rocks were tectonically
fragmented into numerous parts because of the uplift and exhumation of the nappe pile,
causing the development of Neogene–Quaternary sedimentary basins in large-scale graben
or semi-graben systems [29,30]. The complex interplay of tectonics and sedimentation
resulted in the deposition of a large variety of sediments such as clastics, carbonates, and
evaporites of Middle Miocene to Pliocene age [31]. These deposits were initially assigned
to six lithostratigraphic groups by Meulenkamp et al. [32] and particularly for the central
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Crete updated by Zachariasse et al. [31], with each one of them being characterised by
a unique combination of lithology, depositional environment, and stratigraphic position.
Because of recent tectonic movements, such Neogene deposits are well exposed along the
entire island [31,33–36] (Figure 1). However, most of the research concerned particularly
with Late Miocene marine deposits has been focused on Chania [34,37,38], Messara [39–41],
and Sitia [34,42,43] sub-basins due to the absence of complete sedimentary records of
outcropping in other areas.
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Figure 1. Geological sketch map of Crete Island, with red asterisks showing the positions of the three
analysed sections across the west–east transect.

3. Scientific Context
3.1. Sampling Strategy for Menardellids Preceding the Tortonian–Messinian Boundary

In morphometric studies, when investigating microevolutionary dynamics, the focus
tends to be on short-term population dynamics and how species can respond to profound
environmental perturbations. Such an approach relies on the premise that conspecific
individual differences are not significant or minimised to be ecologically important [44], and
that responses to environmental perturbations will be independent of individual variability.
Working on that assumption, the mean-based approach of 10 G. menardii specimens was
used here with the prime study target of measuring traits (e.g., maximum length) that are
more variable between individuals rather than within the selected species lineage.

One way to circumnavigate the time-consuming nature of trait collection is to focus
on measuring traits that are functionally important. Such functional traits define the role of
an organism in an ecosystem [45] at an individual level [46] and vary through time and
space [47]. Given that the functional traits capture how an organism interacts with the
environment, they dictate its fate during environmental perturbations [12,48]. For past
environments, where we do not have the ability of direct observations for identifying them
as for modern ecosystems, this can only be achieved with body-size-related measurements.
For instance, the maximum length distribution is one of the most common applicable
proxies in marine plankton evolutionary patterns [14] because they are: (i) easily measured,
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(ii) readily preserved in fossils, (iii) ecologically significant, (iv) extremely variable in time
and space, and (v) reflect changes in the growth rate and maturation of shells.

We specifically targeted the subset of genus Globorotalia [49] named menardellid
globorotalids. This group of globorotalids radiated during the Late Miocene through to
the Pliocene, when several forms lived during short time intervals, thus being important
stratigraphic markers. Among them, the most known representative is G. menardii because
of its ubiquitous occurrence in (sub)tropical sediments. Except for its distinct tropical
nature [50], its large size ranges, strong resistance against carbonate dissolution [51], and
morphology (lenticular biconvex shells surrounded by a blunt keel [52]) are advantages
making this species an ideal candidate for morphometric studies. In particular, its low
trochospiral tests (compared to other architectures such as the globigerinids) can be easily
measured and quantified.

Extant G. menardii is a symbiont-bearing species [53] dwelling within the seasonal ther-
mocline [54], with the capability to adapt its depth habitat depending on temperature [55],
productivity [56] and/or oxygen concentration [57]. It becomes a relatively larger percent-
age of sedimentary assemblages when thermocline shoals in the photic zone (i.e., middle
to upper thermocline), at depths where a relatively strong nutricline [58] and moderately
low oxygen concentrations (~50–100 µmol kg−1) appear. Changes in the shape and size of
G. menardii have been noted by several authors and attributed to such changing water mass
characteristics (e.g., [26,59]) within the upper water column.

3.2. Targeted Setting: Tortonian–Messinian Transition in the Eastern Mediterranean

For further assessing the plausible relationship between the observed size variabil-
ity with palaeoceanographic/palaeoclimatic parameters, the present study investigates
the environmental conditions preceding the Tortonian–Messinian boundary as those
reflected by deep-sea hemipelagic sediments of Potamida, Kapariana, and Faneromeni
sections. The Late Miocene climate and palaeoceanographic conditions have become
better-known based on integrated geochemical and micropaleontological studies around
the Mediterranean [40–42,60–63]. Very warm and salty tropical conditions, even higher
(up to 30 ◦C and 40 ◦C, respectively) than those documented today, prevailed during the
pre-evaporitic Messinian Salinity Crisis (pre-MSC) interval. During the latest Tortonian,
the eastern Mediterranean was characterised by enhanced thermally and/or salinity-
driven upper water column stratification, leading to ongoing environmental stress [42]
exerting more pressure on shell size growth than in the more eutrophic, fresher, and
less stratified western Mediterranean. Overall, the juxtaposition between the palaeo-
ceanographic patterns initiated by increasing Mediterranean–Atlantic restriction and
the observed size divergence in the plexus of G. menardii allow us to disentangle the
environmental processes influencing test-size evolution during latest Tortonian in such
a subtropical setting.

4. Material and Methods

The material used in this study comprises a collection of uppermost Tortonian
(7.36–7.28 Ma) samples derived from three Cretan sections (from west to east: Potamida,
Kapariana, and Faneromeni) and collected during the 2017 expedition for the Thalis
project (MIS 375405). The location of these sections in different Neogene basins of Crete
(Chania, Heraklion, and Sitia, respectively) through this longitudinal transect (Figure 1)
offers a biogeographic (although regional) pattern in terms of size variability and evolu-
tionary processes. The litho-chrono-stratigraphic framework of all sections is illustrated
in Figure 2. For additional information regarding the scientific expedition, including
fieldwork observations, chronostratigraphic framework, and sampling resolution, we
refer to the previously published works of Agiadi et al. [37], Moissette et al. [35], and
Kontakiotis et al. [42].
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Figure 2. Litho-chrono-stratigraphic columns of Potamida, Kapariana, and Faneromeni sections. At
the right of each litho-stratigraphic column, the sampling intervals and biostratigraphic events are
depicted. The black line corresponds to the Tortonian–Messinian boundary. The pink outlined area
represents the part studied in this work.



J. Mar. Sci. Eng. 2023, 11, 1228 6 of 20

4.1. Micropaleontological Analyses

In total, 40 samples (31 from Potamida, 4 from Kapariana, and 5 from Faneromeni
section, respectively) were processed following standard micropaleontological proce-
dures [21]. The differential number of analysed samples among the studied sections is
highly dependent on the outcropping conditions and the sampling resolution chosen
during the Thalis 2017 fieldwork. For the abundance distribution pattern determination,
all samples were split in aliquots containing at least 300 individuals, which were picked,
identified, counted, and finally converted into percentages based on the extrapolation of
a counted split. For size analysis, approximately 10 specimens of G. menardii form 5 were
handpicked from the >250 µm size fraction split per sample for the 7.36–7.24 Ma time in-
terval in all sections, while their coiling direction was also checked. Upon identification,
all G. menardii picked specimens placed in separate cells on different microslides (per
sample) for archiving. Foraminiferal shells were positioned to capture the maximum sil-
houette area of each individual in the umbilical side. The material was photographed for
size analysis through the maximum diameter of the shells. Images were acquired using
a LEICA MZ16 stereo-zoom microscope supplemented by a digital camera connected to
a computer via GRYPHAX v2.2.0 software (Figure 3). For testing the potential relation-
ship to environmental perturbations, the subsequent size results were also correlated to
regional past hydrographic regime, in terms of temperature–salinity and productivity
variations of the upper water column as those reflected by oxygen (δ18O) and carbon
(δ13C) isotope data for each analysed section, respectively.
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Figure 3. Images of G. menardii specimens picked from (a) Potamida section (7.266 Ma), (b) Kapariana
section (7.363 Ma), and (c) Faneromeni section (7.280 Ma).

4.2. Isotopic Analyses

For stable isotope analysis, we used the published data derived from the same samples
of the Faneromeni section [42], while we further performed isotopes for the Potamida and
Kapariana sections, regarding the study time slice, in the present work. For consistency,
we used the same species for isotopic analyses in all sections. Thus, G. obliquus specimens
were handpicked based on their abundance, continuous appearance throughout the study
time interval, and their paleoclimatic significance [64]. To minimise ontogenetic, growth
rate, and size effects on shell weight, the tests were selected from the narrow 250–300 µm
size fraction [65]. Once picked, the samples were sonicated in methanol for ~10 s to remove
clay particles adhering to the foraminifera tests and rinsed a further five times in ultraclean
water. The observation of the shell microstructure of randomly selected specimens using
a Jeol JSM 6360 Scanning Electron Microscope (SEM) showed a ‘frosty’ appearance [66],
confirming the relatively good preservation regime. All picking, cleaning, and diagenesis
screening were performed at the Department of Historical Geology-Paleontology in Athens.
Isotopic analyses were performed using a Thermo GasBench II coupled to a Thermo 253
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isotope ratio mass spectrometer in continuous flow mode, thermostated sample tray, and
a GC PAL autosampler at the Goethe Universität–Senckenberg BiK-F Joint Stable Isotope
Facility. The analytical precision was 0.07‰ for δ18O and 0.06‰ for δ13C, with replicates
to reveal a reproducibility and natural sample variability better than 0.1‰. The results are
reported against Vienna Pee Dee Belemnite (VPDB) using the standard δ notation expressed
in per mil (‰).

5. Results

5.1. G. menardii Size and Concurrent δ18Oforam Changes during the
Tortonian–Messinian Transition

The focus in the size evolution of G. menardii was given to the maximum length
measurements through time (Figure 4, Table 1). According to Regenberg et al. [59], this
morphological parameter is a good proxy for the foraminiferal shell size. In the eastern
Mediterranean Sea, the measured specimens from the three selected Cretan sections are
significantly smaller compared to the large to giant forms (exceeding 700 µm) identified
during the Late Miocene to Middle Pliocene in the Atlantic Ocean [25]. However, the
regional latest Tortonian evolutionary trend, as illustrated in Figure 4, reveals a complexity
characterised by striking changes in their size distribution over a wide range, which may
give evidence of variable palaeoceanographic conditions during that time and/or potential
associated shifts in the ecology of G. menardii.

Between 7.36 and 7.24 Ma, the maximum G. menardii length exhibits several peaks,
of which most are associated with the maximum recorded values and, strikingly, with
correspondent counter peaks in δ18Oforam (Figure 4). Particularly at 7.297 Ma, the largest
G. menardii specimens (up to 590 µm) are measured, with the relevant mean recorded
value to be 441 µm (Figure 4), where the δ18Oforam records an outstanding low value
peak (−2.1‰). Similarly, some of the smallest G. menardii specimens (in the range of
350 µm) correspond to δ18Oforam high values (in the range of 0.5‰) (Figure 4). Besides
the peak values, for periods with constant G. menardii specimens’ size, a corresponding
constant of δ18Oforam can be observed. For example, for the 7.355–7.327 Ma and 7.322 and
7.333 Ma intervals, the G. menardii specimen size is ~385 µm with a corresponding high
δ18Oforam of ~1‰ (Figure 4). Similarly, in the Potamida record, for the 7.285–7.245 Ma, a
larger G. menardii specimen size of ~415 µm appears with corresponding low δ18Oforam
in the range of −1.7‰ (Figure 4). For Kapariana and Faneromeni, the 7.285–7.245 Ma
interval is characterised by small size G. menardii specimens (~340 µm) and constantly
high δ18Oforam values in the range of 0.4‰ (Figure 4).

Based on additional geochemical analyses on the same samples from the Potamida
section, the relevant SST value for this sample is 29.2 ◦C [67], which is consistent with
the optimum temperature conditions for the studied species [68]. On the contrary, during
the negative peaks in the size distribution record, the mean values in terms of maximum
shell diameter are significantly reduced, showing a dominant average size smaller than
350 µm. It is worthy of note that in some cases (7.303 Ma), they almost reach half of the size
documented during the positive peaks, thus reflecting different environmental changes
(Figure 4). Our integrated dataset from Crete Island displays a pattern mostly characterised
by intermittent values around 390 µm during the 7.36–7.30 Ma time slice, followed by a
noticeable variability characterised by sudden size increases and reductions up to 7.24 Ma,
possibly related to the increasing environmental stress developed in the eastern Mediter-
ranean water column when approaching the Tortonian–Messinian boundary. The δ13C
values range between 1.83 and 0.22‰, showing a general trend towards lighter values,
indicative of the progressive isolation of the basin during that time (Table 1). The relatively
low δ13C values reported here are consistent with those reported from eastern Mediter-
ranean sites (e.g., Faneromeni, Metochia sections; [42,69]), reflecting the oligotrophic nature
of this setting.
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Table 1. Globigerinoides obliquus (δ18Oforam, δ13Cforam) data and Globorotalia menardii size measure-
ments on the three study sections from Crete Island for the 7.36–7.24 Ma time interval.

Age (Ma) δ18Oforam (‰) δ13Cforam (‰)
G. menardii Maximum Diameter

(µm)

Potamida Section
7.246 −1.68 1.25 410.01
7.266 −1.99 1.13 416.17
7.270 −2.46 1.16 430.88
7.276 −1.41 1.31 392.14
7.285 −1.49 1.60 425.08
7.287 0.02 1.12 348.98
7.289 0.00 1.83 375.17
7.293 0.25 0.84 348.58
7.297 −2.11 1.77 440.82
7.303 0.43 0.74 338.97
7.305 0.35 1.77 368.67
7.307 −0.91 0.97 383.39
7.309 −0.87 1.66 383.67
7.311 0.21 1.38 357.29
7.313 −0.83 1.46 374.21
7.317 −1.01 1.18 374.01
7.321 −1.25 1.81 390.86
7.326 0.86 1.32 351.12
7.328 −0.53 0.86 381.31
7.330 −1.03 0.98 395.16
7.332 −0.85 1.19 385.27
7.336 −0.83 1.66 384.48
7.338 −1.20 1.48 395.31
7.342 −1.34 1.62 390.26
7.344 −1.00 1.33 376.23
7.346 −0.80 1.27 389.63
7.350 −0.88 0.91 385.82
7.354 −1.05 1.76 399.05
7.356 −0.37 1.16 365.56
7.358 −0.90 1.29 381.06

Kapariana Section
7.247 −0.25 0.84 341.73
7.256 0.02 0.22 336.89
7.268 0.20 0.69 343.62
7.326 0.60 0.53 339.28
7.363 0.51 0.70 351.20

Faneromeni Section
7.246 0.63 1.07 347.17
7.273 0.96 1.22 343.47
7.280 0.41 1.23 368.13
7.360 0.65 1.24 350.52

5.2. Stable Abundance and Coiling Direction Patterns over the Latest Tortonian

Besides the observed size variability, the data show no significant changes in the
distributional pattern of G. menardii during the studied time span (Figure 4). In all samples,
the analysed species did not attain high percentages (>10%), indicating the almost disap-
pearance of its population preceding the Tortonian–Messinian boundary, possibly due to
the extreme environmental conditions that started to develop even before the Messinian, as
was initially considered. Apart from the sample POTB5 at 7.297 Ma, in the Potamida record,
where a slight increase in its abundance was observed, no other significant variations in its
abundance were documented. Moreover, most of the analysed specimens were dextrally
coiled (only a few sinistrally coiled specimens that are statistically insignificant), which



J. Mar. Sci. Eng. 2023, 11, 1228 10 of 20

means that the coiling direction of G. menardii within the Mediterranean over the latest
Tortonian remained constant and not environmentally controlled.

6. Discussion
6.1. Environmental Forcing on G. menardii Size Variability

The size of an organism is a key variable for determining the environmental pressures
that cause evolutionary changes in palaeobiological studies. In the case of planktonic
foraminifera, where their calcification and growth is directly related to the environmental
conditions [70,71], such a functional trait is usually used to explain changes during present
and/or past oceanographic conditions on short or long time scales, respectively [14]. Due to
the complex nature of the environment that hosts the foraminifera, particularly between the
different oceanic basins, there are several physico-chemical parameters such as temperature,
salinity, stratification, productivity, and oxygen availability that could potentially exert a
strong or minor control on morphological variability [23,50,72]. Moreover, it is even more
difficult to determine which environmental parameter reflects the optimum conditions of
each species, since different species present varying ecological preferences.

Even though foraminiferal test size evidence has become increasingly available over
the last decades through species-specific test size distribution patterns, comparatively little
is known about the possible mechanism and how exactly it varies in response to brief
and extreme environmental changes. Unfortunately, only limited effort has been made to
track morphological transitions between succeeding species within a suspected lineage.
Particularly for the G. menardii lineage, temperature, salinity, and stratification have been
implicated as the primary drivers of its size shifts documented over both the Neogene and
Quaternary [25,73–75].

During the Tortonian–Messinian transition, the temporal size variation of G. menardii
presented here shows a good correlation (R2 = 0.83) with the stable oxygen isotopic compo-
sition of the surface dweller G. obliquus measured on the same samples (Figure 5a).

A thorough examination of the entire dataset from all three sections shows that low
δ18Oforam values generally coincide with larger average sizes (Figure 4). The above relation-
ship indicates the synergic effect of temperature and/or salinity on average G. menardii size
within the marginal Mediterranean Basin, with its large size spectrum observed to probably
arise due to relatively large changes in both these environmental parameters documented
during the pre-evaporitic MSC interval. Such parameters can indirectly influence deeper
living species such as the thermocline-dweller G. menardii, since changes in SST and SSS
are expected to mirror variations in the depth and extent of thermocline as well as the
upper water column water stratification intensity, respectively—processes that are closely
associated with the life history of the studied species [50]. In the generally stable warm
late Tortonian eastern Mediterranean environment [42,62], the salinity variations seem to
be more plausible compared to temperature changes for interpreting the conspicuous size
variability. In the absence of SST and SSS estimates such as those used by Vasiliev et al. [63]
and Kontakiotis et al. [41] on younger Kalamaki and Agios Myron sections, respectively,
we can only approximate the SST and SSS changes accounting for the δ18Oforam variations
depicted in the studied sections.
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Foraminiferal δ18O records are a function of temperature and the ambient oxygen
isotopic composition of seawater (δ18OSW) in which the shell precipitated, which, in
turn, depends on global ice volume and ocean salinity. A higher temperature leads to
decreasing δ18OSW because of the increased supply of glacial melt (i.e., fresher ocean),
while higher salinity is generally a result of a negative water budget (i.e., excess evap-
oration) resulting in higher δ18OSW. If the temperature (T) component is accounted
for, foraminiferal calcite δ18O can be used to estimate past changes in salinity, because
δ18OSW covaries linearly with SSS [76], as both increase with evaporation and decrease
through the admixture of low-δ18O freshwater. The observed 3.3‰ variation in δ18Oforam
(Figure 4; Table 1) would indicate ~16 ◦C SST change if the temperature would have been
the only modified palaeoceanographic parameter (using the Orbulina universa low-light
paleotemperature equation of Bemis et al. [77]). If the SSS would be the single param-
eter determining the δ18Oforam (i.e., δ18OSW), this would translate to a salinity change
of more than 7 (when using the modern δ18Osw–salinity relationship for the Mediter-
ranean Sea of Pierre [78]). A 16 ◦C SST change is possible, but unlikely, considering the
rather stable climate conditions at the end of Tortonian and the important temperature
changes appearing after the studied interval [62], but in the range of 10 ◦C, as reported
by Vasiliev et al. [63] and Kontakiotis et al. [41]. A salinity change of ~7 within the
studied 125 kyr interval seems large even for a marginal marine basin. However, the con-
nectivity of the Mediterranean to the open marine suffered large modifications around
that time, with a reduction in the efficiency of gateways to the Atlantic Ocean because
of the tectonic uplift of the Rifian and Betic corridors [79], but only at about 7.2 Ma.
Similar ~7 SSS changes are documented in the younger Agios Myron [41] and Kalamaki
Messinian [63] sections where they appear rather suddenly, within a few tens of kyrs.
However, exclusively SST or SSS changes are highly unlikely to account for the observed
δ18Oforam change. It must be a combination of changes affecting the two, SST and SSS,
parameters. Considering that the 16 ◦C approximated SST changes would have been
unrealistic, we can safely indicate that the SSS changes were significant in the eastern
Mediterranean Basin at the end of the Tortonian, accompanying temperature changes at
times; colder or saltier would result in higher δ18Oforam, and warmer or fresher in lower
δ18Oforam.

Undoubtedly, strong temperature- or salinity-driven upper water-mass stratification
changes could lead to a relatively large variation in the G. menardii size, reflecting the chang-
ing patterns of ecological niches within the thermocline [74,75]. The preference of such
graduated micro-niches in the upper water column may also confirm their biostratigraphic
significance over the Late Miocene. Importantly, our G. menardii size record strongly cor-
relates (R2 = 0.83) with the δ18O measured on G. obliquus, therefore a direct relationship
between size and δ18O values is proved.

However, up to now, the lack of consensus of available regional SST and SSS data
and subsequent stratification intensity regarding this period makes it impossible to discern
which parameter plays the dominant role in this evaporative setting, reflecting, in parallel,
the preferred optimum environmental conditions for this species. Only if the temporal
gradient of each specific parameter is quantified will we know the distinct SST/SSS-
size relationships, better understand evolution or adaptive processes, and apply such
measurements as accurate palaeoclimatic and/or palaeoceanographic proxies. Efforts for
the quantitative estimation of the Mediterranean upper water column properties similar
to those for the Messinian [41,42,63] should be extended into the Tortonian, while further
studies on time-equivalent sections from different sub-basins (e.g., the Sorbas basin in
Spain, Sicily in Italy) within the Mediterranean Sea are needed to confirm our results.

Doubtless, the problem of the combined T-S effect demands further investigation into
potential disentangling between their signals in this setting. Nevertheless, this study clearly
indicates that during the latest Tortonian, the temperature and salinity in this basin were
close enough to the lower tolerance limits of G. menardii. The combined effect of the tem-
perature decrease (~10 ◦C in the Mediterranean [41,42]) and any further increase of salinity
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during the Messinian possibly led to a drastic decrease in its abundance and/or size, as it
could not survive under such conditions, and, finally, its replacement by G. conomiozea. Both
the higher size variability observed in the Potamida section and the offset in average size
measurements between the study sections just before the Tortonian/Messinian boundary
(at 7.30–7.24 Ma) may be the signatures of less favourable conditions during that time.

Interestingly, the average G. menardii size and δ13C are poorly correlated (R2 = 0.3) in
all three sections (Figure 5b), indicating that primary productivity has a smaller effect on
G. menardii size compared to those of sea surface temperature and salinity in this setting.
The scattering observed between the Kapariana and Potamida and/or Faneromeni sections
reveals that regional differences in productivity might also affect the size in G. menardii.
Proportional small productivity changes preceding the Tortonian–Messinian boundary,
due to reduced freshwater inputs, can be inferred given the ultra-oligotrophic nature of the
study area. For the Atlantic and Pacific Oceans, the test-size evolution of G. menardii dur-
ing the Late Miocene [74,75] has shown that the larger sizes possibly preferred shallower
water levels within the thermocline, due to a stronger chlorophyll maximum developed
at the boundary between the surface and subsurface layer where the marine snow ac-
cumulates [80]. The increased concentrations of degrading particulate organic matter
occurred in that specific layer [81] and the subsequent settlement of G. menardii shells
may have led to the optimum test growth and development of larger shells. The high-
density contrast probably developed within the Mediterranean upper water column is
likely to bring nutrients in such a narrow water mass and favour its survival by promoting
growth to a large size [82]. This adaptation may have occurred with a decreased upper
thermocline ventilation strength and associated low oxygen saturation levels in accordance
with the deglaciation proliferation model for late Quaternary menardiforms of Sexton
and Norris [57].

6.2. Testing the Optimum Size Hypothesis

Relevant upper water column controls, in terms of temperature, salinity, and produc-
tivity gradients, on the morphology of the same species were recorded earlier by several
researchers around the world. Initially, Ericson and Wollin [83] and Sarkar and Guha [84]
noted decreased relative abundance or even the near absence of G. menardii during glacial
periods in both Atlantic and Indian core transects. Later, Bhonsale and Saraswat [73]
showed that such a distinct differential abundance pattern at the glacial–interglacial scale
also covaries with its average size, with both to be comparatively higher during the inter-
glacial periods. All of these initial findings seem to confirm the optimum size hypothesis
previously proposed by Hecht [17], assuming that planktonic foraminiferal populations
are largest at their ecological optimum. Testing this theory, our observations from the
eastern Mediterranean only partly (test size, but not abundance) support it. This implies
that under extremely stressful conditions such as those developed in the Mediterranean
Sea during the MSC, the size is a good measure of preferred growth conditions, particu-
larly for G. menardii, but the relative abundance could not be additionally considered as a
determinant of optimum conditions. Our findings are consistent with the more recent work
of Rillo et al. [85], which found no relationship between test size and relative abundance
for several species (including G. menardii), possibly due to the adaptation strategies of their
shells and/or factors influencing their relative abundance at a species level [86]. Under
high-stress conditions, a species can narrowly adapt by adopting a stabilising selection
strategy that allows only the phenotypes most tolerant to size variations to thrive [87].
Although its relative abundance will be reduced, its survival size ranges will persist under
suboptimal conditions in the modified water mass structure. Therefore, each species follows
its own ecological preferences by reacting subtly to environmental stress. We speculate that
this interpretation fits well with the results presented here. Moreover, the species-specific
size response to environmental parameters such as temperature, salinity, and the associated
upper water mass structure documented in this work agrees well with the most updated
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environmental controls of modern planktonic foraminifera as those determined for the
tropical Indian Ocean [86] and the subtropical Mediterranean Sea [21].

6.3. Size Evolutionary Constraints versus Late Miocene Mediterranean Palaeoceanography

During the Miocene, the menardiform globorotalids evolved through the G. praescitula-
G. archeomenardii-G. praemenardii lineage [52,88] with the subsequent increase in their sizes.
Although the diversification rise observed in this lineage parallels that in planktonic
foraminiferal species richness observed globally from the middle Miocene [89], the accom-
panied size increase was not monotonous and it could be characterised as moderate during
the Late Miocene and huge during the Pliocene [14,26]. Evidence from the equatorial
Pacific and the marginal Caribbean Sea in the Atlantic Ocean [26] has shown a striking
size increase from small, normally perforated G. menardii during the Late Miocene to large
(sometimes giant) menardiiforms that prevailed during the Pliocene in response to an
increase in the latitudinal thermal gradients in the upper water column caused by the
emergence of the Isthmus of Panama and the intensification of the Northern Hemisphere
Glaciation [56]. Such a size evolutionary trend was also documented in other Late Neogene
planktonic foraminiferal populations in the level of single species (e.g., G. crassaformis; [90]),
and/or lineages (e.g., G. pleisiotumida/G. tumida [91], G. conoidea/G. inflata [92]).

In the Mediterranean Sea, the measured test-size variations show that the G. menardii
lineage consisted of relatively intermediate-sized tests between 7.36 and 7.24 Ma. Such
moderate size development (compared to that experienced during the Pliocene) was inter-
preted as a step increase in the G. menardii evolutionary mode, while the abrupt and short
size alterations characterised by maxima and minima sizes were attributed to changing
surface water properties. The only discrepancy between our size records can be seen at
the top of the study interval (7.27–7.24 Ma), in which larger specimens were reported in
Potamida compared to the other two sections. The heavier δ18O values documented in the
former could be attributed to the higher water depth (600–700 m [93] or 400–550 m [37]) of
the Potamida site compared to those (200–300 m [35,93]) of the Kapariana and Faneromeni
sections. The latest Tortonian evidence from the marginal eastern Mediterranean Basin fully
supports the low size increase reported in the open ocean [26], and further suggests that
the observed species-specific morphological record could mirror the palaeoceanographic
history of the Mediterranean during that time by providing hints to changes in the upper
water column structure.

During the Late Miocene, the Mediterranean Basin was subjected to complex changes
in terms of its ocean gateways configuration, water circulation and subsequent palaeo-
ceanographic reorganisations, and paleoclimatic perturbations [40–42,60,63,94]. Since the
late Tortonian, changes in the upper water column structure and stratification were accen-
tuated as a response to MSC. The associated Messinian cooling event, well documented
within [41,62] and beyond the Mediterranean Sea [95,96], undoubtedly enhanced the strati-
fication and therefore provided new water niches. G. menardii tried to adapt under such
environmental stress conditions by searching for new preferred habitats. Although the
development of a stronger keel is often indicative of the depth of new habitats [12], no
such characteristic can be extracted from our data set, possibly due to the regional and
temporarily brief nature of the present work.

Following this scenario, the observed size variability could reflect an adaptive response
of this species to the enhanced stratification and changing SSS and SST patterns (Figure 6).
Particularly for the 7.30–7.27 Ma time interval when G. menardii tended to develop the
largest and the smallest sizes between neighbouring samples in the Potamida section,
these alternate size variations probably reflect occupation of shallower and deeper habitats,
respectively. The shallower habitats may occur when the mixed layer becomes thin, less
ventilated, and thermocline shoals in the photic zone during warming and/or freshening
events (Figure 6).
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Figure 6. Schematic illustration of the combined thermal- or salinity-driven stratification and thermo-
cline development hypothesis.

In the Late Miocene, the strong density contrast, possibly due to the combined
temperature–salinity gradient between the surface and subsurface water masses, rein-
forced the stratification intensity. In such a strong thermocline, G. menardii gametes and
nutrients are thought to concentrate at a shallower level habitat [82], thus explaining the
existence of larger foraminiferal sizes. On the contrary, during cold/salty episodes, the local
paleo-wind intensification along with the increased evaporation over the eastern Mediter-
ranean Basin possibly led to a deepening of the mixed layer and a subsequent depression
of the thermocline. Under such physical conditions, the accumulation of chlorophyll and
organic matter was lower and might have occurred in the intermediate to lower thermo-
cline layers [74]. This weak thermocline structure resulted in the test growth reduction
as manifested by intermediate to small shells. The ongoing deterioration in G. menardii
viability under enhanced environmental pressure presumably caused its relatively low
percentage or barren intervals towards the Tortonian–Messinian boundary (mostly in the
Kapariana and Faneromeni sections). In this regard, the above interpretations reveal a
direct relationship between the test size and thermal- or salinity-driven upper water column
stratification in the habitat of G. menardii by suggesting that the depth migration of this
species within the thermocline could be considered possible, reflecting the most favourable
conditions for its survival.

7. Conclusions

The morphological variability of G. menardii form 5 has been studied in three Cretan
(Potamida, Kapariana, and Faneromeni) sections covering the 7.36–7.24 Ma time interval.
Although the abundance and coiling direction of the analysed species do not show any sys-
tematic change during this time slice, its temporal size variations signify useful evolutionary
constraints in terms of the palaeoecology and palaeoceanography of such a subtropical and
high evaporative marginal setting. Such regional data could be characterised as comple-
mentary to the relatively scarce, open ocean evolutionary trend in menardiforms known
for the Late Miocene in a global context. Our observations from the eastern sector of the
Mediterranean indicate a low test-size increase during the latest Tortonian accompanied by
significant temporal variability when approaching the Tortonian–Messinian boundary. The
latter appears to be associated with abiotic changes in the upper water column structure
as a response to changing surface water properties (temperature, salinity, stratification,
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and productivity) and thermocline development. The better correspondence of average
size with oxygen rather than carbon isotopic composition clearly indicates that the size of
G. menardii is more affected by sea surface temperature and salinity than primary produc-
tivity. The abiotic mechanism for the observed size variability is likely attributed to the
temperature- and/or salinity-driven stratification enhancement under stressful conditions
that started to develop in the Mediterranean Basin during the latest Tortonian and gradually
accentuated during the onset of the Messinian Salinity Crisis and the accompanied changes
in G. menardii depth habitats. Based on that scenario, the larger tests may occur within
warm/fresh surface water masses of a strong thermocline, while tests reduce in size during
cold/salty and weak thermocline conditions. Overall, this study provides new insights
into the Neogene evolutionary processes of menardiforms, and a further understanding of
its ecological dynamics under environmental stress conditions.
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