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Abstract: Oil spill detection and mapping using deep learning (OSDMDL) is crucial for assessing its
impact on coastal and marine ecosystems. A novel approach was employed in this study to evaluate
the scientific literature in this field through bibliometric analysis and literature review. The Scopus
database was used to evaluate the relevant scientific literature in this field, followed by a bibliometric
analysis to extract additional information, such as architecture type, country collaboration, and most
cited papers. The findings highlight significant advancements in oil detection at sea, with a strong
correlation between technological evolution in detection methods and improved remote sensing
data acquisition. Multilayer perceptrons (MLP) emerged as the most prominent neural network
architecture in 11 studies, followed by a convolutional neural network (CNN) in 5 studies. U-Net,
DeepLabv3+, and fully convolutional network (FCN) were each used in three studies, demonstrating
their relative significance too. The analysis provides insights into collaboration, interdisciplinarity,
and research methodology and contributes to the development of more effective policies, strategies,
and technologies for mitigating the environmental impact of oil spills in OSDMDL.

Keywords: SAR; remote sensing; oil spills

1. Introduction

Oil spills in the ocean have become one of the most significant environmental issues in
modern times [1–6]. These spills cause severe damage to ecosystems, biodiversity, and the
loss of essential ecosystem processes [7,8]. Furthermore, the impact of oil spills is not limited
to the environment, as they can also adversely affect the economy and public health [9,10].
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Despite the annual decline in oil spills, catastrophic releases still occur in oil production
and transportation [11–13]. More recent examples include the incidents related to the Exxon
Valdez oil spill in 1989, the Hebei Spirit oil spill in 2007, and the launch of the Deepwater
Horizon in 2010.

Ocean oil spills are a serious environmental concern, given the recent increase in
environmental disasters, [1,2,14]. Their consequences can be devastating, leading to the
degradation of entire ecosystems, loss of biodiversity, and disturbance of critical ecological
processes [15,16].

In this sense, remote sensing has become a popular science among researchers, who
have increasingly used remote data for oil spill detection and mapping (OSDM) to monitor,
survey, and manage its associated risks. Despite the advances, there is still a need to
establish a consensus on the most effective methods for OSDM [3–6,17–19]. Therefore, a
comprehensive overview of the existing literature in this field is essential to identify the
most promising and effective techniques, for example [3,4].

In light of the recent growing occurrence and seriousness of oil spill incidents, there
is an urgent requirement to enhance the dependability and precision of methods used in
OSDM [3–6,17–19]. Techniques of detection, monitoring, and classifying oil spills in oceans
and seas are challenging [3,4], so researchers have introduced machine learning algorithms
to solve them.

Numerous machine learning techniques have been used for detecting oil spills. Deci-
sion trees [20], support vector machines (SVM) [21,22], random forests [23–25], and artificial
neural networks (ANN) are the most common techniques described in the literature [26–30].

Among the machine learning techniques, deep learning has recently received more
attention [14,30–33]. In general terms, deep learning is categorized as a subdivision of
machine learning methods [34]. Unlike conventional machine learning algorithms that rely
on predetermined features, deep learning algorithms gain knowledge directly from the
data [31,33,34]. Several advances have recently been made in deep learning architectures
for detecting oil spills [2,30,33]. In this sense, describing the current state and trends in
the literature field of oil spill detection and mapping with deep learning is essential to
consolidate practical analytical techniques and approaches to identify and monitor it and
deepen the knowledge and maturation of this scientific field [6,14,30].

Bibliometrics is an influential tool researchers use to gain insights into global trends
and developments within a specific topic [35,36]. This method involves applying mathe-
matical and statistical tools to analyze the published literature across various academic
disciplines identifying trends and patterns, and the impact of research efforts by individu-
als, research groups, institutions, countries, and journals [1,37–40]. Moreover, bibliometric
reviews can help researchers to identify key contributors to a field of research and deter-
mine which research areas may require more attention or investment [36,41,42], which can
help funding initiatives, collaboration strategies, and policy decisions [1,37,38].

This study helps to fill the knowledge gaps and identify the current state and trends
in the scientific literature of oil spill detection and mapping with deep learning (OSDMDL)
using bibliometric analysis. Several questions are addressed, including the most significant
country contributions, publication trends, leading researchers, and influential journals.
Overall, it provides a comprehensive overview of the scientific research on OSDMDL,
identifying possible avenues for further research.

The manuscript is structured as follows. Section 2 provides a detailed description
of the materials and methods employed in the study. It includes information about the
search strategies and conducted analysis. Section 3 presents the results related to the
publishing trends of oil spill detection and mapping (OSDMDL), including co-occurrence
networks, top-cited authors, countries, and journals. Section 4 discusses the findings and
their implications. Finally, the manuscript concludes with the concluding remarks section,
which summarizes the key points and highlights the significance of the study’s outcomes.
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2. Materials and Methods

The proposed research framework is structured into two main steps, from database
selection to graphical analysis, as described in Table 1, and is illustrated in the flowchart
diagram (Figure 1).

Table 1. This table presents a concise overview of the relationships between the research questions,
the data sources used, and the analytical methods employed in this study.

Questions Analysis Source Data

How do OSDMDL study
publication trends behave?

General statistics/word
Co-occurrence network/country

collaboration spatial network
All papers

Which countries stand out in terms
of OSDMDL production?

General statistics/word
Co-occurrence network/country

collaboration spatial network
All papers

What are the most influential
papers in the OSDMDL field? General description tables Most cited papers

Which journals are most prominent
in terms of the number of articles
published in the OSDMDL field?

General statistics/general
description and citation tables All papers

What is the overall picture of
collaboration between countries
regarding the OSDMDL field?

General statistics/general
description and citation

tables/country collaboration
spatial network

All papers

What is the central theme, focus,
and approach most prominent in
research in the OSDMDL field?

Word Co-occurrence network/
general description All

We employed a comprehensive methodological approach that incorporates the fun-
damental principles of traditional bibliometric analyses, utilizing both qualitative and
quantitative descriptors. We integrated various analytical tools to provide a more compre-
hensive understanding of our target topic. Additionally, we sequentially scrutinized our
findings by analyzing the co-occurrence network to comprehend better the patterns associ-
ated with implementing remote sensing technology and its advancements in OSDMDL.

2.1. Bibliographic Base

For our research, we have used the Scopus database, which Elsevier established in
November 2004. It is a vast bibliographic resource covering various scientific literature
from various fields [43]. The database includes citation analysis data from 1996, providing
a comprehensive overview of the world’s research products. The Scopus database currently
contains over 53 million published references from more than 24,000 scientific journals [43].
The web-based system of the Scopus database offers a range of tools that enable efficient
and objective searching of the literature in specific fields using basic and advanced search
queries [43]. These features facilitate rapid and consistent information acquisition, offering
a detailed and comprehensive view of scientific fields [43]. Given the characteristics of the
Scopus database, we have selected it as the primary literature source for our study (refer
to Figure 1). By utilizing this valuable resource, we anticipate obtaining a more thorough
understanding of our research subject.

A search query was then formulated to include relevant keywords, phrases, and
Boolean operators to obtain the most accurate and precise results. As an initial search strat-
egy, we used the following search query “TITLE-ABS-KEY ((“Oil Spill detection” OR “Oil
Spill mapping”) AND (“Neural network” OR “Deep neural network” OR “Convolutional
neural network” OR “CNN” OR “deep belief network” OR “DBN” OR “recurrent neural
network” OR “RNN” OR “conditional generative adversarial networks” OR “CGANs”
OR “semantic segmentation model” OR” fully convolutional networks” OR “FCNs” OR
“Feature Merge Networks” OR “FMNet” OR “U-Shaped Network” OR “U-Net” OR “deep



J. Mar. Sci. Eng. 2023, 11, 1406 4 of 21

convolutional neural networks” OR “DCNNs” OR “conditional adversarial network” OR
“MCAN” OR “Conditional Generative Adversarial Network” OR “CGAN”))”.

Figure 1. The diagram depicts the sequence of procedures implemented throughout the various
stages of the study.

The screening was performed manually, examining all titles and abstracts. When there
was uncertainty about a paper’s relevance to our evaluation of the OSDMDP field, we
thoroughly read the paper. Irrelevant papers, such as gray literature and review papers,
were all excluded. We also excluded conference proceedings, book chapters, and books
to ensure we obtained a more focused subset of OSDMDP-related papers published up to
2022. By doing so, we avoided any redundancy that may have arisen from the same content
being published multiple times in different literary productions. The subsequent step was
to analyze the most frequently cited papers to identify the most authoritative sources [43].

2.2. Data Analysis

This study utilized the Bibliometrix package [40] and VOSviewer 1.6.17 [44–47]
software to conduct quantitative and statistical publications analyses and generate a co-
occurrence network of terms, respectively.
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Bibliometrix is a statistical programming tool for analyzing scientometrics and bib-
liometrics data [48]. At the same time, VOSviewer is a specifically designed tool for bib-
liometric analysis used to create visualization maps of various aspects related to scientific
publications, including scientific journals, researchers, research organizations, countries,
keywords, and abstracts [44–47].

To create co-occurrence networks of words and terms, we incorporated all the informa-
tion in the articles’ titles, abstracts, and keywords. We selected the “map based on text data”
option in VOSviewer 1.6.17 [44–47] and used bibliographic database files to accomplish
this. We employed a binary counting algorithm to count all occurrences of words and terms
and then constructed a thesaurus file to avoid semantic errors resulting from a redundancy
of meanings (see Table S3 in Supplementary Materials for more details).

To obtain the complete information for constructing the co-occurrence network, we
used a threshold value of one associated with the minimum number of occurrences of terms
and words. The complete set of terms and words was used to build the network [44–47].

To analyze author production, scientific production in different countries, collabo-
rations between countries, trends over time, author production over time, most cited
articles, and the number of publications based on the impact of the source, we utilized the
Bibliometrix library [48].

Subsequently, we performed a second division of the literary data, selecting the most
cited articles. This selection represented approximately 50% of the total number of selected
articles. We extracted various attributes from each article, including data image, digital
image processing, temporal data image usage, spatial data resolution, study site, primary
objective, study topic, spectral index, total citation, percentage of total citation, and total
citation per year.

All analytical figures and analyses were conducted on R version 4.0.4 [49,50], us-
ing the Rstudio IDE, version 1.4.1106 [51], along with the ggplot2 version 3.3.5 [52] and
Bibliometrix—version 3.1.4. libraries [48]. Table S3 contains a tabulated summary of the
parameters employed in constructing the co-occurrence network, countries’ collaboration
world map, and thesaurus file.

3. Results
3.1. Publishing Trends

After refining the database and carefully reviewing the literature, we identified 70 pub-
lished documents using the OSDMDL methodology (see Table 2, Figure 2, and Table S1 for
more details). Regarding publication trends, the production of OSDMDL-related articles
has shown some inconsistency over the years. Specifically, the mean and standard deviation
are ~2.6 ± 3.8 papers/year.

Although the subject of machine learning has grown lately, it involves a robust and
complex methodology, which restricts the number of researchers using it. Understanding
all the deep learning process steps requires good scientific and programming skills to
apply these methodologies. It is the reason for the low number of manuscripts published
annually. Soon, with all the last decade’s technological advances, we see the number of
publications in this area grow. Visually we can see 5 distinct production peaks in 2013, 2016,
2018, 2020, and 2022 (Figure 2). The highest productivity levels were observed in 2022, with
18 published papers, and in 2020, with 7 published papers, respectively.

The occurrence of oil spill events requires new research, and the consequent devel-
opment of new detection and monitoring techniques. Therefore, manuscript production
peaks usually follow major oil spill events in the last decade. These years’ publications
represent 35.7% of the total articles published in the OSDMDL scientific field. In contrast,
the production of articles between 1996 and 2012 only accounts for 14% of the published
papers. However, we have noted a steady increase in cumulative publications in later
years, particularly since 2013, as seen in Figure 2. These findings suggest that the OSD-
MDL scientific field has gained increasing popularity recently and remains a focal point
for researchers. The use of machine learning and deep learning in complex data classi-
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fication and decision-making in many academic areas has enabled the development of
new algorithms capable of mathematically optimizing spatial data pattern detection and
recognition systems [53].

Table 2. General statistics are associated with production sources, papers by parents, funding
institutions, authors, and affiliation. In the center of the graph is the co-occurrence network of terms
and words. The different colors represent different clusters.

Main Information

Timespan 1996:2022 1996:1999 2000:2009 2010:2019 2020:2022

Sources (Journals) 40 1 4 24 17
Documents 70 1 5 33 31

Annual growth rate % 11.76 0 8.01 16.65 60.36

Document contents

AUTHORS
Authors 225 1 13 107 120

Authors of
single-authored docs 3 1 0 2 0

Authors collaboration

Single-authored docs 3 1 0 2 0
Co-authors per doc 4.07 1 3.8 3.73 4.58

International
co-authorships % 15.71 0 60 12.12 12.9

Document types

article 70 1 5 33 31

Figure 2. Annual growth rate of OSDMDL publications (black curve, left y-axis) compared to the
cumulative annual growth (red curve, right y-axis) of the database (1996–2022).
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The decade with the highest number of publications related to the OSDMDL method-
ology was the 2010s, with 33 papers published (Table 2). It corresponds to 47.1% of
the published documents and has an average of 3.3 ± 1.8 standard deviation (SD). This
process was strongly linked to the Deepwater Horizon oil spill case, owned and operated
by Transocean, located in the Macondo basin (Mississippi Canyon) in the Mexican Gulf.
It spilled more than 5 million oil barrels into the ocean. Naturally, due to the large scale
of this spill, there was a significant increase in detection and monitoring studies at the
time. Following the 2010s, 2020–2022 had 31 papers published, representing 44.3% of
the total published documents with a mean of 10.3 ± 6.6 SD. We also found only 5 pa-
pers published during the 2000s, representing 7.1% of the publications with a mean of
0.5 ± 0.7 SD. Similarly, only 1 paper was published in the 1990s, representing 1.4%
of the total published documents with a mean of 0.2 ± 0.5 SD. We believe that low
technology has made applying such complex techniques through limited computer
systems difficult.

Table 2 presents the trend statistics associated with production between 1996 and
2022. In terms of statistics related to the growth rate of the number of published pa-
pers, it is noted that, except for the period from 1996–1999 with a zero-growth rate, all
other periods showed an increase, with 2020–2022 standing out with a growth rate of
60.36% (Table 2).

When analyzing the number of authors per decade, another pattern emerges, such as
the increase in paper production, with a more significant number of authors in more recent
decades. Specifically, the decades 2010–2019 and 2020–2022 had the highest numbers of
authors, with 107 and 120, respectively.

Upon evaluating the co-authors per papers metric, it was possible to verify that the
period from 2020–2022 had the highest values, with a score of 4.58. It was followed by
the 2000–2009 decade, with a score of 3.8, then by the 2010–2019 period, with a score of
3.7, and finally, 1996–1999, with a score of 1 (Table 2). A higher value indicates a higher
degree of collaboration between researchers during that period, with 2020–2022 having
the highest degree of collaboration. It is worth noting that this metric only considers the
paper’s quality or impact. However, it can be used as an indicator of collaboration and
interdisciplinarity within a research field (Table 2).

Additionally, there was a noticeable increase in international collaboration, with the
highest percentage of co-authorships (12.12%) found in 2000–2019 (Table 2). Interestingly,
the 2020–2022 decade shows a similar percentage of co-authorships to the previous decade,
with 12.9% (Table 2).

The co-occurrence network depicted in Figure 3 revealed various themes and research
methods employed by authors in the OSDMDL literature. A total of 1423 items were
identified from the network from 1996–2022. The top 5 most frequent unigrams were “Spill”
(48 occurrences), “SAR” (35), “detection” (24), “Accuracy” (24), and “experiment” (14)
(Figure 3). The term “accuracy” appears prominently as it involves training metrics and
analysis of the results applied to neural networks. Accuracy represents the ability of the
trained neural net to identify the targets precisely. Therefore, the authors need to know the
effectiveness of the applied methodology.

The co-occurrence network was represented in 35 clusters during this period. The top
10 most frequent unigrams formed clusters that accounted for approximately 42.23% of the
network. The 10 clusters with the highest number of items (Figure 3) were colored red (76),
green (69), dark blue (64), khaki (62), purple (59), light blue (59), orange (56), brown (54),
magenta (53), and pink (49).
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Figure 3. Word co-occurrence network presented in titles, abstracts, keywords, and general feature
information of the papers published between 1996 and 2022.

Based on their representativeness, let us look at each of the ten main clusters dealing
with various OSDMDL-related issues:

− Cluster 1: This cluster primarily focuses on neural networks, network approaches,
experimental results, dark spot detection, and dark formation detection. Researchers
in this cluster use various neural network models to detect and classify oil spills.

− Cluster 2: The second cluster revolves around oil spill detection, network methods,
recall metrics, overall accuracy, and environmental factors. Researchers in this cluster
develop and evaluate different network methods for detecting oil spills, considering
environmental factors that affect oil spill detection accuracy.

− Cluster 3: This cluster is focused on synthetic aperture radar (SAR), accuracy, ma-
rine oil spill detection, convolutional neural networks (CNN), and marine oil pol-
lution. Researchers in this cluster work on developing and improving SAR-based
methods for detecting marine oil spills, using CNN models and other techniques to
enhance accuracy.

− Cluster 4: This one deals with artificial neural networks, oil spill accidents, ocean
waves, sunglint effects, and optical images. Researchers in this cluster explore the use
of artificial neural networks for detecting oil spills, considering various factors that
affect detection accuracy, such as ocean waves and sunglint effects.

− Cluster 5: The fifth cluster focuses on image data, classification, remote sensing
analysis, time series images, and image segmentation. Researchers in this cluster
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develop and evaluate image-based methods for detecting and classifying oil spills
using various data analysis techniques.

− Cluster 6: This cluster centers around pixel value, network development, polarimetric
features, remote sensing, and Terrasar X images. Researchers in this cluster use
polarimetric features of Terrasar X images and other remote sensing data to develop
and optimize network-based approaches for detecting oil spills.

− Cluster 7: It deals with performance measures, sea surface, biogenic slick, polarimet-
ric synthetic aperture radar images, and original SAR images. Researchers in this
cluster develop and evaluate performance measures for detecting oil spills, taking
into account various factors that affect detection accuracy, such as biogenic slicks and
polarimetric SAR images.

− Cluster 8: This one focuses on data processing, improved fully convolutional network
(FCN), satellite images, discrimination, and oil spill events. Researchers in this clus-
ter use FCN-based methods for processing satellite images and detecting oil spills,
considering factors that affect discrimination accuracy.

− Cluster 9: This cluster revolves around satellite data, wind conditions, film thickness,
optimal classifier, and field observation. Researchers in this cluster develop and
evaluate various methods for detecting and classifying oil spills using satellite data,
considering factors that affect detection accuracy, such as wind conditions and oil
film thickness.

− Cluster 10: The final cluster centers around support vector machines (SVM), stage,
target type, network process, and optimum network. Researchers in this cluster
explore SVM-based methods for detecting and classifying oil spills at different stages,
dealing with different types of targets, and optimizing network processes for better
detection accuracy.

Figure 4 shows how oil detection technologies have developed. Interestingly, the
bigram frequency terms tend to occur after 2015, with a notable increase between 2018
and 2022. We can observe that, in previous years, there was a predominance of remote
sensing data for spatial analysis techniques, especially SAR data. In the last 5 years, with
the computational advance and the possibility of CNN analysis in parallel systems and
GPUs (graphics processing units), detection studies in neural networks and multilayer
textural analysis development have grown significantly.

Figure 4. Temporal trends of the most frequent bigrams abstract terms between 2008 and 2022. The
blue circle size indicates the frequency, and blue lines indicate temporal trends of bigrams terms
along time.
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However, it is worth mentioning that some bigram terms, such as “dark formation”,
deserve special attention despite not having a high frequency in a particular year. It is
because “dark formation” has been consistently present since 2008, indicating its signifi-
cance in the broader context of the subject matter. As the identification of oil spills in SAR
images is based on “dark formation”, despite the evolution of identification and monitoring
techniques, we continue to use specular reflectance in SAR data as the main methodology
to identify these targets.

3.2. Country Contribution

In the scientific field of OSDMDL, China emerged as the leading contributor among
the top 10 countries, with a substantial share of 23.1% (33) of the total scientific production.
Italy secured the second spot with 7% (10), followed by South Korea at 4.2% (6). The
United Kingdom and the United States shared the fourth position, each with a 3.5% (5)
contribution. Germany and Greece both recorded a 2.8% (4) contribution, while Canada,
India, and Iran each contributed 2.1% (3) to the field (Figure 5).

Figure 5. The co-authoring collaboration network by countries from documents published. The red
lines indicate collaboration between authors from different countries, and the width indicates the
frequency of collaborations.

It is important to note that scientific production is a crucial indicator of a country’s
research output and contribution to the global knowledge base. The fact that China is
leading the way in OSDMDL research suggests that the country is investing significantly in
this field and has the necessary resources and expertise to produce high-quality research.
Similarly, the presence of Italy, South Korea, the United Kingdom, the United States,
Germany, Greece, Canada, India, and Iran in the top ten countries indicates their active
involvement and interest in advancing research in OSDMDL.

Figure 5 depicts the flow and intensity of collaboration between countries based on
author and institutional collaborations. The width of the edges in the figure indicates the
strength of the links between countries. It provides valuable insights into the nature and
extent of collaborative efforts in the OSDMDL research field, highlighting countries actively
engaged in joint research and knowledge exchange.

Upon assessing the collaborative efforts among nations, it is noteworthy that the
United Kingdom (UK) and China have displayed significant involvement, with a contri-
bution of 19.23% (5) each, accounting for 38.46% of the total collaborations. On the other
hand, Italy has exhibited a substantial level of engagement, representing 15.38% (4) of the
collaborative activities. Canada, the United States of America (USA), and Greece have
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each displayed a comparable level of involvement, contributing to 11.54% (3). In contrast,
Portugal, Spain, and Iran have shown a relatively lower level of collaborative activities,
contributing to one-third of it each (1).

It is worth noting that the present study undertook an individualized evaluation of
the collaborative efforts among nations, thus highlighting the degree of their involvement
while also considering any collaboration among them.

3.3. Most Influential Publication

Upon analyzing the literature in the OSDMDL field, it was observed that a select
subset of 37 articles stood out due to their high citation count, representing 52.8% of the
articles in the selected field (see Table S2 for more details). The remarkable finding was
that this subset had accumulated 93% of the total citations, accounting for 1551 out of
1667 citations in the OSDMDL field.

This result shows the impact of these 37 articles in the OSDMDL field, which re-
searchers have widely recognized and cited. The higher citation count for these articles
could be attributed to their contribution to advancing the understanding of OSDMDL and
their utility in guiding future research.

Upon analyzing the most highly cited articles in the field of interest, it was observed
that the top 10 articles accounted for 56.5% of the total citations, amounting to 943 citations,
as depicted in Figure 6. This observation suggests that a small fraction of the literature in
the field has garnered disproportionate attention and influence.

Figure 6. The figure shows the ten most impactful papers based on total citations. The blue circles on
the right side indicate the respective citation numbers.

When evaluating the top 5 neural network architectures most commonly used in the
37 selected studies focused on the OSDMDL field, it was observed that multilayer percep-
trons (MLP) stood out, being present in 11 studies. It was followed by the convolutional
neural network (CNN) architecture used in five studies, while U-Net, DeepLabv3+, and
fully convolutional network (FCN) were all used in three studies. It is worth noting that
among the 37 studies evaluated, only 12 (32.4%) utilized more than 1 neural network
architecture to generate their results. Among these studies, the multilayer perceptrons
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(MLP) and deep convolutional neural network (DCNN) architectures were the most com-
monly used.

The high frequency of using MLPs can be attributed to their widely used and well-
established architecture for neural networks, known for their ability to perform well in
various machine learning tasks, including image and signal processing, classification, and
regression. On the other hand, the use of DCNNs can be explained by their superior
performance in image processing tasks, as they can learn increasingly complex and abstract
features from input images through multiple convolutional layers. It is noteworthy that
while MLPs and DCNNs are the most used neural network architectures in the evaluated
studies, other architectures, such as CNNs, U-Net, DeepLabv3+, and FCN, also have their
strengths and are frequently used in specific applications.

When evaluating the top five sensor systems primarily used, it was observed that the
combination of Envisat ASAR and RADARSAT-2 was used in seven articles, indicating
a significant preference over other systems. Next, ERS-SAR 2 was used in six articles,
demonstrating similar popularity. Sentinel-1, on the other hand, was used in five articles,
a common choice among researchers. Finally, TerraSAR-X was used in three articles,
indicating that its use is still less every day than the other options. Free SAR data were few
and did not have continuous acquisition.

Machine learning studies require a significant number of samples to train the codes.
Therefore, most publications directly reflected the RADARSAT and Envisat ASAR most
extensive time series data. Moreover, since 2014, we have had a significant database of
Sentinel SAR data, which now has more than 15 confirmed oil spill cases in its global
records. The TerraSAR-X and COSMO-SkyMed data also presented official records of
spills, but their paid platform makes most of the studies applied to this theme unfeasible.
Upon analyzing the use of features in the studies, it is clear that 40.5% of the papers
utilized it. It is a surprising finding, as features are essential to image analysis and machine
learning algorithms. Among the studies that used features, some categories were the most
frequently used.

One of the most utilized categories was texture features. Texture features are a way to
describe the spatial arrangement of pixels within an image, and they are often used to help
differentiate between objects or regions of interest. In addition, geometrical and statistical
features were also used, providing valuable information about the shape and distribution
of objects within the image. For many years, this was the principal methodology applied
to identify oil targets in the ocean using SAR images. However, it became less effective
over the years with the development of deep learning technologies. Spectral bands were
another prominent feature utilized.

Upon analyzing the patterns related to image preprocessing, it could be observed that
a vast majority, around 65%, employed one or more preprocessing techniques. It indicates
the importance of image preprocessing in remote sensing studies to obtain accurate results.
The most commonly used techniques were related to image normalization, which reduces
the presence of speckles, and the data rescaling to improve the image quality.

3.4. Influential Journals

Figure 7 illustrates the distribution of articles among various journals that have pub-
lished OSDMDL-related research. The analysis of the results indicates that 40 different
journals have contributed to the knowledge in this field. Among these journals, the 10 most
notable sources in terms of the number of articles published are “Remote Sensing,” with
12 articles, representing approximately 17.1% of the total, followed by “IEE Transactions on
Geoscience and Remote Sensing”, with 7 articles accounting for 10% of the total. “IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing” comes in
third with 5 articles, approximately 7.1% of the total. “Marine Pollution Bulletin” had
4 papers, about 5.7% of the total.
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Figure 7. The figure shows the ten most impactful papers based on total citations. The blue circles on
the right side indicate the respective citation numbers.

In comparison, “The Journal of Coastal Research” and “Sensors” had 3 articles each,
representing roughly 4.3% of the total for each one. “Applied Sciences” and “International
Journal of Remote Sensing” had 2 articles each, accounting individually for about 2.86%.
Finally, “Acta Oceanologica Sinica” and “Archives of Environmental Contamination and
Toxicology” had 1 article each, representing approximately 1.43% individually. These
findings provide insights into the most influential journals in the OSDMDL research
domain and can help researchers identify critical sources for future research in this area.

The impact of the top 10 journals in the context of OSDMDL, based on the number
of citations, is illustrated in Figure 7. The two most influential journals in this field are
IEEE Transactions on Geoscience and Remote Sensing, with significantly more citations
than the rest. The total number of citations for the remaining journals in the top 10 is
relatively similar.

3.5. Authors Contributing

When analyzing Figure 8, we can observe the top 10 authors who have published the
most in the context of OSDMDL. Our analysis of the selected articles revealed the presence
of 225 different authors, with an average of 4.07 authors per article, but only 3 articles
had a single author. The top 5 most prominent authors were Li Y., who ranked first with
7 papers, representing 10% of the analyzed articles. Zhang J. followed in second place with
5 papers and approximately 7.1%. Del Frate F., Jung H-S., and Gong P. tied in third place
with 4 papers, which accounts for approximately 6% for each author (Figure 8).
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Figure 8. Temporal trends of essential authors between 1990 and 2021. The blue circle size indicates
the number of published papers, and the red lines indicate temporal trends of papers published for
each author over time.

When examining the temporal trends of authors in the context of the OSDMDL, it
became evident that some authors had a significant presence in the number of published
articles while also showing a consistent production level over time. The three authors who
stood out the most in this regard were Del Frate F., Li J., and Li Y. As shown in Figure 8, these
authors have maintained a relatively steady level of productivity throughout the years,
which may indicate their continued interest and contribution to this research topic. Their
consistent production also suggests a high level of expertise and knowledge in OSDMDL.

4. Discussion

We conducted a comprehensive literature review and identified 70 documents that
have been published using the OSDMDL scientific target topic. Although our results
emphasized the importance and relevance of OSDMDL-related papers, they revealed that
its production has been inconsistent over the years, with five distinct peaks. The highest
peak was observed between 2020 and 2022. As we explained, due to the computational
advance and the possibility of CNN analysis in parallel systems and GPUs (graphics
processing units), the development of detection studies in neural networks and multilayer
textural analysis grew significantly. Overall, there has been an increase in published papers
across all periods, except for 1996–1999, which showed a decline in production. The detailed
statistics in Table 2 highlight the changes in production over the years, with recent years
showing a significant increase in OSDMDL-related publications. These findings suggest
that this topic is rapidly expanding, and more research is needed to address this field’s
challenges and opportunities [1,2,4,14,33].

In this study, the authors analyzed the OSDMDL methodology trends over 26 years.
The first works deal with radar remote sensing techniques for detecting oil spills on
the ocean surface. These studies showed that known parameters, such as polarization,
backscatter, and damping ratio, helped apply deep learning techniques effectively today.
The results show that the number of papers published in this field has consistently increased
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over time, with the highest growth rate observed in the last three years. It suggests a
growing interest among researchers in the field of OSDMDL.

Another interesting finding is the increase in the number of authors per decade,
with the highest numbers found in 2010–2019 and 2020–2022. It indicates that the field
is becoming more collaborative and interdisciplinary, with researchers from different
backgrounds working together [1,2,4,14,33]. This increasing collaboration reflects the
highest score observed in the last three years [1,2,4,14,33]. This trend of international
collaboration has a positive development in the OSDMDL-related research topic as it allows
for exchanging a broader range of perspectives and expertise. Overall, the outcomes of this
study offer a significant understanding of the patterns of collaboration and interdisciplinary
approaches within the field of OSDMDL.

The diversity of OSDMDL-conducted research is highlighted by the various themes
and methods identified here. Policymakers and researchers can use this information to
understand the field better and identify areas for further research. Moreover, the co-
occurrence network created in this study provides a valuable tool for researchers to identify
collaborations, trends, and gaps, helping them plan and prioritize future research efforts.

Words such as “oil spill,” “oil,” and “SAR” are some of the most common recurrent
bigram terms in the literature after 2015, indicating promising opportunities for future
research and innovation in detecting and mitigating oil spills. However, specific bigram
terms such as “dark formation” have consistently appeared since 2008, highlighting their
significance in the broader context of OSDMDL. The study suggests that researchers should
consider these recurring terms while researching OSDMDL.

Our results show a detailed analysis of the scientific production and collaborative
efforts in the field of OSDMDL. One notable finding is that China has emerged as the leading
contributor, accounting for 23.1% of the total scientific production, followed by Italy and
South Korea. The UK and the USA shared the fourth position with a contribution of 3.5%
each. It highlights the dominance of certain countries in this field and emphasizes the
need for more diverse contributions from other countries. Furthermore, the collaborative
efforts among nations were also discussed, with the UK and China displaying significant
involvement while Portugal, Spain, and Iran showed relatively lower levels of collaborative
activities. It indicates that more collaborative efforts are needed to facilitate the exchange
of knowledge and expertise among researchers from different countries.

Another significant finding is that highly cited OSDMDL articles represent only a
tiny fraction but have accumulated most of the citations. The top 10 most cited articles
accounted for 56.5% of total citations, indicating that a small fraction of the literature in
the field has gained disproportionate attention and influence. It highlights the importance
of producing high-quality research that can significantly advance the understanding of
OSDMDL and guide future research.

Our results suggest that researchers must carefully select appropriate neural network
architectures, sensor systems, features, and preprocessing techniques to produce reliable
and accurate results. For example, the multilayer perceptrons (MLP) and convolutional
neural network (CNN) architectures were the most generally used, and the combination of
Envisat ASAR and RADARSAT-2 was the most frequently used sensor system.

In this study, we investigated the distribution of articles related to OSDMDL across
different journals and identified the most impactful sources for future research. Our
results revealed that 40 journals have contributed to this field, with Remote Sensing, IEEE
Transactions on Geoscience and Remote Sensing, and IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing being the top 3 journals in terms of the
number of published articles. Interestingly, these three journals also accounted for the most
citations, with IEEE Transactions on Geoscience and Remote Sensing and Remote Sensing
having a significantly higher number of citations than the other journals. The dominance of
these few top journals in terms of published articles and citations highlights the influence
of these journals on the field. Therefore, researchers should publish their work in these
high-impact journals to increase the visibility and impact of their research.
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Through the analysis of the selected articles, the top 10 authors who had published the
most in the context of OSDMDL revealed that the authors’ collaboration was paramount.
We found 225 authors involved, with an average of 4.07 authors per article. Researchers
working in this domain are more likely to collaborate with other researchers, which can
lead to more comprehensive and diverse research outcomes. Notably, the most influential
authors identified in this study are from different countries, including China, Italy, and
South Korea. This finding suggests that the OSDMDL research domain is an international
research area that attracts scholars from diverse geographic regions.

We also discovered that only three articles had a single author, indicating that col-
laborative work is a common practice in this research domain. Li Y. emerged as the most
prominent author with seven papers, followed by Zhang J. with five papers. Del Frate
F., Jung H-S., and Gong P. tied for third place with four papers each. These authors have
significantly contributed to the developing knowledge in the OSDMDL field.

When analyzing the authors’ temporal trend, three authors stood out with a consistent
level of productivity over time: Del Frate F., Li J., and Li Y. They may possess a high level
of expertise and interest in the field, based on the consistency in their contribution level to
the field, as indicated by Figure 6. Identifying authors with a consistent level such as this is
significant as it indicates their long-term commitment to the field and their sustained efforts
in advancing the understanding of OSDMDL. Their research can guide future studies and
shape the direction of OSDMDL-related topics.

Pinpointing authors such as these three can help identify potential collaborators and
mentors for early career scientists and potential research groups or institutions that are
actively involved in OSDMDL research.

5. Conclusions

This article is the first to use bibliometric review methods to assess the evolution of
the OSDMDL literature. Through this study, we provide insights into scientific production
related to countries, journals, and methods of analysis and evaluation that focus on remote
sensing in OSDMDL.

This article examines the literature on OSDMDL over the past 26 years (1996–2022).
The study uses a qualitative and quantitative word association network approach to provide
an overview of the research trends in this field. The authors conducted a bibliometric
analysis with systematic review elements and identified significant and exciting aspects
of OSDMDL research. The findings indicate a significant increase in published articles in
this field. However, there still needs to be more opportunities to expand conceptual and
theoretical studies and methodological aspects of OSDMDL.

Several areas should be prioritized in the future. One crucial area is the investigation
of novel neural network architectures, as recent developments in this field have yet to
be fully explored. Researchers can discover new and more effective ways to detect and
monitor oil spills by delving into these new techniques.

Another promising area for theoretical and methodological advances is the exploration
of preprocessing and feature space analysis techniques. These techniques play a crucial
role in the accuracy of results and the overall effectiveness of the models used in OSDMDL.
By improving these techniques, researchers can enhance the accuracy of their models and
thus provide better tools for detecting and monitoring oil spills.

Advances in the OSDMDL field allow for improving the effectiveness of oil spill
detection and monitoring tools. By leveraging the latest technologies and techniques,
researchers can develop more effective and efficient methods for detecting and responding
to oil spills, ultimately minimizing their impact on the marine environment.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jmse11071406/s1, Table S1: The table describes the details
associated with selected papers in OSDMDL. The columns contain the information SR–(First Author,
year, and paper), LA–(Language), TI–(Paper title), PY–(Publication year), and TC–(Total citation).;
Table S2: The table describes the details associated with 37 most influential publication selected
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papers in OSDMDL, Table S3: The table describes the summary of Parameter Values in Co-occurrence
Network, Countries’ Collaboration World Map, and Thesaurus File. References [54–117] are cited in
the Supplementary Materials.
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