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Abstract: The successful operation of a large-diameter cold water pipeline installation is crucial
for harnessing the potential of ocean thermal energy conversion. However, there is a shortage of
research focused on mechanical performance analysis during installation. This study establishes
a pipeline response analysis model based on a nonlinear beam theory to elucidate the underlying
mechanical behaviour. Employing the method of singular perturbation, the general solution for
the exterior region of the pipeline, the solution at the boundary layer, and the valid solution across
the entire domain are derived. A comparison with numerical solutions is conducted to validate the
accuracy and effectiveness of the theoretical model. Based on the theoretical analysis, the influence
of installation depth and pipeline curvature on the pipeline’s shape, tension, curvature, and stress
is discussed. The results indicate that increasing the installation depth leads to intensified pipeline
bending and significant deformation, reaching a maximum bending moment of 3.92 MN·m at a
distance of 50~100 m from the bottom of the pipeline. The results also show that, as the pipeline’s arc
length increases from 0 to 100 m, the bending curvature, Von Mises stress, and bending stress exhibit
a trend of initial growth followed by a decline, peaking at 7.45 MPa, and 6.83 Mpa, respectively, while
the actual tension and axial tension decrease initially and then increase, reaching −0.17 MN and
−0.17 MPa, respectively, at the maximum arc length. The findings of this study provide valuable
insights for practical cold-water pipe installation and laying.

Keywords: ocean thermal energy conversion; cold-water pipe; singular regression method; float and
sink installation; dynamic characteristics

1. Introduction

Ocean Thermal Energy Conversion (OTEC) involves the extraction of a substantial
volume of deep-sea cold water from depths exceeding 1000 m through a specialized conduit
known as a cold-water pipe (CWP). This cold-water pipe plays a pivotal role in facilitating
the complete evaporation of the liquid mass, thereby harnessing the requisite mechanical
energy to drive a turbine and generate electricity at a level suitable for commercial power
generation. Consequently, the effective length of the CWP can span an impressive range
of 800 to 1200 m while boasting a diameter of up to 10 m [1]. As a result, the cold-water
pipe emerges as the most critical and demanding component within OTEC installations.
Simultaneously, the safe and effective installation and positioning of the CWP presents a
significant technical challenge that must be overcome to ensure the successful operation of
OTEC projects.
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As a typical marine riser, chilled water pipes’ installation and laying methodology
resemble that of risers. Deepwater pipelines are laid using either J-type applying or S-
type laying techniques. J-type laying results in a greater bending radius of the pipeline
from sea level to the seabed, positioning the landing point close to the pipe-laying vessel.
This arrangement allows for easier monitoring, precise positioning, and less tension on
the pipeline [2]. However, J-type laying exhibits lower speed and efficiency than S-type
applying, with the latter being more stable [3]. Nevertheless, considering the structural
characteristics of large-diameter chilled water pipes and the imposed restrictions on their
maximum bending radius during installation and laying, foreign scholars have introduced
a novel method: the Float and Sink Method [4,5]. The specific construction procedure
is as follows: 1© The pipe is towed with air and connected to the OTEC device using a
winch and rope. Additional buoyant material required for transportation is subsequently
removed. 2© Seawater is gradually allowed to fill the pipe, while the bending curvature of
the pipe is controlled by pulling it tightly from the installation vessel to regulate its descent.
3© Once the pipe attains its vertical position, the load is transferred from the installation

vessel to the winch on the OTEC unit. 4© The Cold-Water Pipe (CWP) is elevated to its final
position, and the ultimate connection is accomplished by an underwater robot, as depicted
in Figure 1. The pipeline’s actual installation and laying process is influenced by dynamic
characteristics, such as the laying depth and length. Therefore, comprehending the dynamic
characteristics of the pipe and the factors that influence them during installation and laying
holds significant importance in the design of large-diameter cold water pipe systems.
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Figure 1. Floating sink method working principle.

In installing and laying chilled water pipes, the inherent deformation characteristics
involve large deflections, nonlinearities, and elastic deformations, falling within geometric
nonlinear problems. The fundamental equation describing the pipe’s shape is a nonlinear
equilibrium differential equation. The pipe installation and laying process analysis can
be categorized into static analysis, quasi-static analysis, and dynamic analysis [6]. Static
analysis methods are employed to analyze flexible pipes’ form and stress conditions using
discontinuous laying techniques. Konuk [7], based on elastic rod theory, derived a static
equilibrium formula for underwater pipelines using perturbation methods, effectively
addressing the nonlinearities of submarine pipelines. Lenci and Callegari [8] proposed an
improved approach to detect boundary layer phenomena based on classical contact network
theory modifications, demonstrating its applicability in deepwater and ultra-deepwater
installation and laying. Brown and Palmer [9] presented a solution method based on a
catenary to determine the shape and stress of deepwater S-laid pipelines, albeit disregard-
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ing pipe stiffness. Using reinforced contact network theory, Gong et al. [10] established
a balanced control differential equation for pipe fittings. They derived an equation for
the pipeline configuration from the barge to the seabed, described the numerical iteration
method for solving the pipe configuration, developed the corresponding program, and
analyzed the effects of laying depth, pipe diameter, and length of the support frame on
the pipe configuration. Winget and Huston [11] studied the dynamic issues caused by the
interaction between flexible cables and pipelaying vessels by developing algorithms for
kinematics, force systems, and control dynamics equations combined with the Runge–Kutta
method. Santillan and Virgin [12] studied the effects of platform motion and vibration sen-
sitivity on S-laid pipeline installation, analyzing the influence of total pipeline length, buoy
position, and fixed height of attachment points on deflection and compared experiments
and simulations. Wang et al. [13] developed a coupled dynamic model considering various
influencing factors, based on the catenary theory and Morison equation, to determine the
initial shape of flexible pipes and studied the emotional behaviors of axial tension, bending
moment, and stress-strain during the laying process. They found that wave effects were
most significant when wave direction interacted with ship width, wave height exceeded
2 m, and the spectral period was 8 s. Zan et al. [3] established a motion-coupling model for
S-laid pipeline installation, considering the effects of vessel motion, surface waves, ocean
currents, wind forces, pipeline dynamics, and contact between rollers and the pipeline.
The Newmark method was used for the solution, and the results were validated by com-
parison with the OrcaFlex software, demonstrating a clear relationship between pipeline
dynamic response and vessel motion. Xu et al. [14] developed a specialized finite element
model (FEM) for S-laid deepwater pipeline installation, considering anomalous wave ef-
fects, vessel motion, interaction between the pipeline and support frame rollers, and cyclic
contact between the pipeline and seabed soil. These scholars have demonstrated through
theoretical analysis, numerical simulation, and experimental methods that the dynamic
characteristics of pipelines during deepwater installation and laying directly influence the
results and installation process of applying facilities. Therefore, to ensure the safe and
effective installation and laying of large-diameter chilled water pipes, it is necessary to
study the dynamic characteristics of these pipes during the process. Ghafouri et al. [15]
used 3D stress distribution to extract the dynamic equations of fluid-structure interaction
and solve the obtained Equation based on the state vector method. Zarastvand et al. [16]
investigated the acoustic performance of the stiffened doubly curved shells based on a
genetic algorithm. Alanazi et al. [17] studied buried pipelines under static loads using finite
element analysis. The authors simulated different types of pipelines (steel, concrete, and
3D-printed concrete) with different thicknesses and soil conditions (sandy and cohesive,
moist, and saturated). They compared the results based on the stress and displacement
of the soil and the pipelines. Yamini et al. [18] discussed the hydraulic performance of
seawater intake systems using computational fluid dynamics (CFD) modelling. The au-
thors used CFD modelling to show general hydraulic design principles and performance
acceptability criteria for pump intakes in different conditions. They explored scenarios
for avoiding or resolving hydraulic problems that have arisen due to hydraulic model
studies. Nogmov et al. [19] provided valuable insights into the performance of pipeline
valves under different loading conditions and suggested possible application directions for
the bench.

This study employed a nonlinear beam theory and singular perturbation method
to investigate the dynamic characteristics of large-diameter chilled water pipes during
installation and laying using the float and sink method. A mechanical response analysis
model was established, and the general solution in the external region of the pipeline, the
answer at the boundary layer, and the effective solution in the entire domain were derived.
Numerical solutions were obtained using Matlab software, and the results were validated
by comparing them with simulations from OrcaFlex software. The effects of laying depth
and pipe curvature on pipe bending moment, tension, curvature, and stress were analyzed.
The main variable parameters in this study are summarized in Table 1.
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Table 1. Nomenclature.

Parameters Description

L Pipe length
EI Pipe bending stiffness

Qcw Pipeline cold seawater flow rate
LTOP The horizontal distance between tug and OTEC

H Laying water depth
Sr Cable arc length

θ(s) The angle between CWP and the horizontal plane
θ′(s) The curvature of the bend along the CWP pipeline
Surf Cable extension arc length

v Cold seawater flow rate
ac Cable section suspension chain line scale factor
µC Gravity per unit length of cable
T The tensioning force of the pipe
LP The horizontal projection of CWP
Lr Horizontal projection of the cable
Vr Vertical projection of the cable
Vp Vertical projection of CWP
DS Equivalent single-layer pipe outer diameter

2. Theoretical Model and Solution
2.1. Nonlinear Beam Theory

To analyze the stress state of a suspended pipeline, a coordinate system is established
with the touchdown point (TDP) as the origin, as demonstrated in Figure 2. In this Figure 2,
L represents the arc length of the pipeline, h signifies the water depth of installation, φ
is the angle between the pipeline and the horizontal direction upon water entry, and T
denotes the pipeline’s tension force. According to nonlinear beam theory [20], a force
balance diagram for the pipeline’s micro-segment is established, as presented in Figure 3.
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Figure 2. Pipeline stress model. Figure 2. Pipeline stress model.

In this Figure 3, s denotes the unit arc length. ds indicates the pipeline’s micro-segment,
θ is the angle between the pipeline’s micro-segment and the horizontal direction, V and H
are the axial force components in the vertical and horizontal directions, respectively, and H
is a function of x. M refers to the bending moment on the micro-segment, and ρ symbolizes
the pipeline’s buoyant weight per unit length in water (the buoyancy in water minus the
weight in air).
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dM
ds

= H sin θ −V cos θ (1)

The balance equations for the pipeline’s micro-segment in the axial direction and the
vertical direction are established:

dV
ds

= ρ (2)

The pipe has a large bending deformation when laid; ignoring shear deformation, the
pipe is considered as a beam and the bending moment of the pipe is obtained as:

M = EI
dθ

ds
(3)

Substituting Equations (2) and (3) into Equation (1) yields:

EI
d2θ

ds2 + V cos θ − H sin θ = 0 (4)

According to the Singular perturbation, introducing the dimensionless variable
x = s/L(x ∈ [0, 1]), such that ε = EI

HL2 the equation is divided by H at both ends, gives:

ε
d2θ

dx2 +
V
H

cos θ − sin θ = 0 (5)

At the TDP, s = 0 the shears force of the pipe:

Q =
EId2θ

L2dx2 =
dM
ds

= H sin θ −V cos θ (6)

where x = 0. The deformation of Equation (5) yields the vertical component of the force at
s = 0:

V = H
(

tan θ − ε

cos θ
· d2θ

ds2

)
(7)

where x = 0 and s = 0. Substituting a = tan θ, b = − 1
cos θ ·

d2θ
ds2 in Equation (7), we obtain:

V = H(a + εb) (8)

Integrating Equation (2) and substituting ω = ρL
H , the expression for the vertical

component of the force for s = 0 is given by:

V = H(ωx + a + εb) (9)



J. Mar. Sci. Eng. 2023, 11, 1520 6 of 17

Substituting Equation (9) into Equation (5) yields the control equation for CWP as:

ε
d2θ

dx2 + (ωx + a + εb) cos θ − sin θ = 0, 0 < ε << 1 (10)

A nonlinear second-order differential equation characterizes the dynamic response
control equation of this cold-water pipe, and the second-order derivative of the equation
has a coefficient of small parameters.

2.2. Boundary Conditions

To solve the ordinary differential equations (ODE) that describe the pipeline shape,
we need to specify two boundary conditions at the two ends of the pipeline. One end is
connected to the system with bending stiffness (beam), and the other consists of hinges
attached to the OTEC platform. Therefore, we assume that the bending moment at both
ends is zero, i.e., M(s = 0) = 0 and M(s = 1000) = 0. This gives us a two-point boundary
value problem that can be integrated numerically.

M(s = 0) = 0→ EIθ′(0) = 0→ θ′(0) = 0
↔

AB (11)

M(s = 1000) = 0→ EIθ′(1000) = 0→ θ′(1000) = 0 (12)

From Figure 4, the geometric relationship between CWP and the cable is expressed as

Lrtot = LP + Lr f (13)

vP = vr (14)

where Equation (13) indicates that the horizontal distance Lrtot between the tug and the
OTEC unit is equal to the sum of the horizontal projection Lr of the CWP and the horizontal
projection Lrf of the cable. The following expressions apply:

Lrtot = 1000m
Lr =

∫ 1000
0 cos θ(s)ds

Lr f = Lrtot − Lr f = aC

[
arsinh

( sr+sr f
aC

)
− arsinh

( sr f
aC

)] (15)

where Lrtot denotes the horizontal distance between the tug and the OTEC unit, Lp the
horizontal projection of the CWP, Lr the horizontal projection of the cable, s the arc length
of the pipeline, θ the angle between the pipeline and the horizontal direction, rf the cable
section suspension chain line scale factor, and ar the gravity per unit length of cable.

Equation (14) indicates that the vertical projection of CWP. vP is equal to the vertical
point of the cable vr. The following expressions apply:{

vp =
∫ 1000

0 sin θ(s)ds
vr = vrtot − vr f = aC

{[
ar cosh

( Lr+Lr f
aC

)
− 1
]
−
[

ar cosh
( Lr f

aC

)
− 1
]} (16)

The original problem has been transformed into a new problem where there are only
four unknowns that need to be solved. This can simplify the problem and make it easier to
solve, as shown in Table 2.
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Table 2. Unknown variable.

Unknown Description

θ(s) Angle between CWP and horizontal plane
θ′(s) Bending curvature along the CWP line

Sr Cable arc length
Sr f Cable extension arc length

2.3. Singular Perturbation
2.3.1. General Solution for the Exterior

Singular perturbation [21] is a widespread analytical approximation method for deal-
ing with nonlinear problems. It is based on small parameters and is well-suited for sig-
nificant deformation problems in pipeline laying. In this paper, the matching asymptotic
expansion idea of the singular perturbation method is combined with the van Dyke match-
ing theory to solve the problem. The basic idea is to check the external solution of the
boundary layer with the internal solution. The external solution is obtained directly by
the regular perturbation method, which is only valid outside the boundary layer and falls
within it. The internal resolution of the boundary layer cannot be obtained directly by the
regular perturbation method but by scaling the magnitude of the independent variable.
Then, the external and internal solutions are matched through matching conditions to
determine the undetermined constants. Finally, the composite key is obtained from the
exterior and interior solutions.

The outer or external field solution is one stream of the general solution in the exterior
region. Based on the above analysis, it is known that the boundary points are x = 0 and
x = 1. For the external solutions, the regular regression method can be directly applied
to expand them. Expanding the variables θ in the control equation into a power series of
small parameters ε, it is obtained:

θ =
∞

∑
i=0

εi/2θi(x) = θ0 +
√

εθ1 + εθ2 + O(ε3/2) (17)

where O(ε3/2) is the higher-order correction term. Substituting Equation (17) into Equation
(10), the 0th order approximation is obtained as:

θ0(x) = arctan(ωx + a) (18)

The first-order approximation is given by

θ1(x) = 0 (19)
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The second-order recurrence results in the following:

[(ωx + a) sin θ0 + cos θ0]θ2 = θ′′ 0 + b0 cos θ0 (20)

where, b = − 1
cos θ ·

d2θ
ds2 = −

∞
∑

i=0
εi/2b0, b0 is the zero-order approximation of b.

Substitute the results of Equations (18) and (19) into Equation (14). The second-order
approximation is obtained as:

θ2(x) = − 2(ωx + a)ω2[
1 + (ωx + a)2

]5/2 +
b0

1 + (ωx + a)2 (21)

Up to this point, the external solution can be obtained as follows:

θ0 = arctan(ωx + a) +

− 2(ωx + a)ω2[
1 + (ωx + a)2

]5/2 +
b0

1 + (ωx + a)2

ε + O(ε3/2) (22)

The solution near the boundary layer can be called the interior solution or the infield
solution to describe the situation when the independent variables converge to the boundary.
For the interstitial in this paper, the boundary layer is x = 0 and x = 1.

2.3.2. Solution at the Boundary Layer

(1) Internal solution around x = 0

The previous analysis of the matched asymptotic expansion method shows that the
coordinate transformation must be performed first when solving the interior solution.
Introducing a pair of coordinates ζ in the vicinity of the amplification x = 0. Since the
highest order in the equation is the second order, the transformation ζ = x√

ε
can eliminate

the higher order derivatives in the equation, and the substitution ε d2θ
dx2 = ε d2θ

d(
√

εζ)
2 = d2θ

dζ2

into the control Equation (10) yields:

d2θ

dζ2 +
[
ω
√

εζ + a + εb
]

cos θ − sin θ = 0 (23)

Transformation θ is performed such that θ(x, ε) = ψ(x, ε) + θ(x, ε)|x=0 = ψ, (x, ε) +
arctana, Equation (23) is transformed into:

d2ψ

dζ2 +
[
ω
√

εζ + a + εb
]

cos(ψ + arctana)− sin(ψ + arctana) = 0 (24)

Substituting α = (1 + a2)
1/4, µ = θ(x, ε)|x=0 = arctana in the simplification gives:

d2ψ

dζ2 +
[
ω
√

εζ + a + εb
]

cos(ψ + µ)− α2 sin ψ = 0 (25)

The following is the same as the external solution. The power series of the expansion
is obtained.

ψ =
∞

∑
i=0

εi/2ψi(ζ) (26)

The equation at the zero order can be found by finding the recurrence relation of each
order according to the external solution.

ψ′′ 0 − α2 sin ψ0 = 0 (27)
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The equation in the first order is:

ψ′′ 0 + ωζ cos(ψ0 + µ)− α2 cos ψ0ψ1 = 0 (28)

The equation in second order is:

ψ′′ 2 + b cos(ψ0 + µ)− ζ sin(ψ0 + µ)− α2 cos ψ0ψ2 = 0 (29)

Equation (26) is solved in general as

ψ0 = 0 (30)

And substituted into Equation (27) to obtain the general solution as

ψ1 = Ae−aζ + Beaζ +
ζω

α4 (31)

According to the boundary matching, we can get A = ω

α
5 B = 0, then Equation (31)

becomes:
ψ1 =

ω

α5 e−aζ +
ζω

α4 (32)

Substituting Equations (30) and (31) into Equation (28) yields the general solution:

ψ2 = C(ζ2 +
ζ

α
+

1
α2 )e

−aζ + Deaζ − b
α4 +

aω2ζ2

α8 ζ2 +
2aω2

α10 (33)

According to the boundary condition and the matching condition of the binomial
expansion, we get C = − aω2

4α4 , D = 0, Equation (32) becomes:

ψ2 = − aω2

4α8 (ζ
2 +

ζ

α
+

1
α2 )e

−aζ − b
α4 +

aω2ζ2

α8 ζ2 +
2aω2

α10 (34)

bringing each general solution into the power series of:

ψ = ψ0 +
√

εψ1 + εψ2 + 0(ε3/2) =
√

ε( ω
α5 e−αζ − ζω

α4 ) + ε[− aω2

4α8 (ζ
2 + ζ

α + 1
α2 )e−aζ

− b
α4 +

aω2ζ2

α8 ζ2 + 2aω2

α10 ] + O(ε3/2)
(35)

Substituting θ(x, ε) = ψ(x, ε) + arctana into Equation (35) gives the internal solution
near x = 0 as:

θ I
0 = arctana + ψ = arctana + ψ0 +

√
εψ1 + εψ2 + 0(ε3/2) = arctana +

√
ε( ω

α5 e−αζ − ζω
α4 )

+ε[− aω2

4α8 (ζ
2 + ζ

α + 1
α2 )e−aζ − b

α4 +
aω2ζ2

α8 ζ2 + 2aω2

α10 ] + O(ε3/2)
(36)

(2) Internal solution around x = 1

In the same way, as used at x = 0, the independent variable is scaled up by introducing
a change in coordinates ζ = 1−x√

ε
, Let, θ(x, ε) = ϕ(x, ε) + θ(x, ε)|x=1 = ϕ(x, ε) + arctan(ω +

a), β = [1 + (ω + a)2]
1/4

, follow the steps used at x = 0 to obtain the internal solution near
x = 1 as:

θ I
1 = arctan(ω + a)−

√
ε[ 1

β (λ + ω
β4 )e−βξ + ξω

β4 ] + ε[−ω(ω+a)
4β4 (λ + ω

β4 )(ξ
2 + ξ

β + 1
β2 )e−βξ

−ω2(ω+a)
β8 (ξ2 + 2

β2 ) +
b0
β4 ] + O(ε3/2)

(37)
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2.3.3. Valid Solution across the Entire Domain

The unified expression for a valid solution over the entire domain is called a syn-
thetic solution and is usually denoted by yC. There are two commonly used methods for
synthesizing artificial solutions:

(1) Additive synthesis method

yC = yO + yI − (yO)
I
= yO + yI − (yI)

O
(38)

In Equation (32), (yO)
I
= lim

x→0
yO the inner limit of the external solution (yI)

O lim
x→0

yI is

called the outer limit of the internal solution.

(2) Multiplicative synthesis

yC =
yOyI

(yO)
I =

yOyI

(yI)
O (39)

The additive synthesis method applied in this paper yields an effective solution over
the entire domain:

θC = θO + θ I
0 + θ I

1 − (θO)
I
0 − (θO)

I
1 (40)

From Equation (22), replacing the external solution x = 0 with x for ζ
√

ε yields the
internal limit of the external solution as:

(θO)
I
0 = arctan(ωζ

√
ε + a) + ε{− 2(ωζ

√
ε + a)ω2

[1 + (ωζ
√

ε + a)2
]
5/2 +

b0

1 + (ωζ
√

ε + a)2 }+ O(ε3/2) (41)

From Equation (36), the external solution ζ is replaced by x√
ε

at x = 0 to obtain the
internal solution with the outer limit as:

(θ I)
O
0 = arctana +

√
ε( ω

α5 e−αx/
√

ε − xω
α4√ε

) + ε[− aω2

4α8 (
x2

ε + x
α
√

ε
+ 1

α2 )e−αx/
√

ε

− b0
α4 +

aω2x2

α8ε
+ 2aω2

a10 ] + O(ε3/2)
(42)

From Equation (22), substituting 1− ζ
√

ε for x at x = 1 for the external solution yields
the internal limit of the external solution as:

(θO)
I
1 = arctan(ω−ωξ

√
ε + a) + ε{− 2(ω−ωξ

[1+(ω−ωξ

√
ε+a)ω2

√
ε+a)2]5/2

2

+ b0

1+(ω−ωξ
√

ε+a)2 }+ O(ε3/2)
(43)

The internal limit of the external solution is obtained by replacing ζ with 1−x√
ε

at x = 1
by Equation (37):

θ I
1 = arctan(ω + a)−

√
ε[ 1

β (λ + ω
β4 )e−β(1−x)/

√
ε + ω−

β4
ωx√

ε
]

+ε[−ω(ω+a)
4β4 (λ + ω

β4 )(
(1−x)2

ε + 1−x
β
√

ε
+ 1

β2 )e−β(1−x)/
√

ε

−ω2(ω+a)
β8 ( (1−x)2

ε + 2
β2 ) +

b0
β4 ] + O(ε3/2)

(44)

By substituting Equations (41) and (44), the synthetic solution is given as follows:

θC = arctan(ωx + a) + ε{− 2ω2(ωx+a)

[1+(ωx+a)2]
−2/5 +

b0
1+(ω

1
x+a)2 }

+
√

ε( ω
α5 e−αx/

√
ε − xω

α4√ε
) +
√

ε ω
α5 e−αx/

√
ε

−ε aω2

4α8 (
x2

ε + x
α
√

ε
+ 1

α2 )e−αx/
√

ε − ε{ω(ω+a)
4β4

(λ + ω
β4 )[

(1+x)2

ε + 1−x
β
√

ε
+ 1

β2 ]}e−β(1−x)/
√

ε

(45)
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Equation (45) is the synthetic solution of the nonlinear differential equation for the
CWP pipe, from which it can be seen that the internal solution decays exponentially with
the increase of the internal solution ε. The internal solution a is valid only in the boundary
layer, and its value tends to zero in the external region; outside the boundary layer, the
morphology of the pipe is determined by the external solution, and the influencing factors
of the external solution are the cable tension, the horizontal length of the suspended
section of the pipe, the tensioning force, the wet weight of the pipe, and the water flow
force. According to Equation (45), the morphology and bending moment of CWP pipe
can be obtained by an iterative method. θ(s) and θ′(s) are obtained by combining the
ordinary differential Equation (10) and the boundary conditions (11) and (12) with the
software “solve” in Matlab, and the nonlinear system of Equations (13) and (14) is formed
by combining (13) and (14) and solving this type of singular-edge problems iteratively
with the built-in Matlab function bvp4c. The results of bvp4c are imported into the fslove
module to solve the associated solutions. As shown in Figure 5, a flowchart of the singular
perturbation for cold-water pipes’ large deformation problem is given.
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the increase of the internal solution ε . The internal solution a is valid only in the bound-
ary layer, and its value tends to zero in the external region; outside the boundary layer, 
the morphology of the pipe is determined by the external solution, and the influencing 
factors of the external solution are the cable tension, the horizontal length of the sus-
pended section of the pipe, the tensioning force, the wet weight of the pipe, and the water 
flow force. According to Equation (45), the morphology and bending moment of CWP 
pipe can be obtained by an iterative method. ( )sθ  and ( )sθ ′  are obtained by combin-
ing the ordinary differential Equation (10) and the boundary conditions (11) and (12) with 
the software “solve” in Matlab, and the nonlinear system of Equations (13) and (14) is 
formed by combining (13) and (14) and solving this type of singular-edge problems itera-
tively with the built-in Matlab function bvp4c. The results of bvp4c are imported into the 
fslove module to solve the associated solutions. As shown in Figure 5, a flowchart of the 
singular perturbation for cold-water pipes’ large deformation problem is given. 

 
Figure 5. Flowchart of cold-water pipe large deformation problems.

3. Solution Correctness and Validity

To validate the accuracy and efficacy of the singular perturbation method, we utilized
the parameters for the cold-water pipe, environment, and fluid, as outlined in Table 3.
Using OrcaFlex software, we conducted a finite element simulation of the bending moment
exerted on the cold-water pipeline during installation, the results of which are juxtaposed
against the method proposed in this paper, as depicted in Figure 6. One can discern that
the numerical and simulated outcomes are nearly harmonious, with both revealing that the
maximum bending moment occurs at a location 50~100 m away from the bottom of the
pipe, boasting a value of 3.92 MN·m. Notably, at a position approximately 100 m from the
bottom of the pipe, the simulation results display numerical fluctuations, reaching minor
peak values. This occurs as some buckling transpires at the point of articulation between
the top tensioner and the CWP as the pipe begins to descend.
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Table 3. CWP, environment and other parameters.

Parameter Values

Pipe length (m) 1000
Pipe outside diameter (m) 1.564
Pipe inner diameter (m) 1.5

Unit length dry weight (kg/m) 235
Pipe density (kg/m3) 960

Modulus of elasticity (Gpa) 0.9
Wave height (m) 4.8

Wave phase angle (o) 180
Water depth (m) 1200

Seawater density (kg/m3) 1025
Wave period (s) 7.8

Sea surface current velocity (m/s) 0.99
Sea current subsea current velocity (m/s) 0
Ship—platform maximum distance (m) 2250

Ship movement speed (m/s) 3.5
Cable length (m) 1250
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Figure 6. Comparative analysis of CWP bending moment.

4. Results and Discussion

Drawing on the semi-analytical solutions articulated in this paper, it becomes evi-
dent that laying depth significantly impacts pipeline form, such as pipeline arc length
substantially influencing the pipeline’s tension, curvature, bending moment, and stress.
This section delves into the specific effects of these parameters on the mechanical properties
of cold-water pipes, utilizing parameters as outlined in Table 3 for our analyses.

4.1. Influence of Laying Depth on Pipeline Form

Figure 7 depicts the developmental curves of pipeline forms under different laying
depths, where the water depth on the y-axis signifies the final form of the pipeline’s depth
from the sea surface. It is perceptible that laying depth substantially impacts the final
form of the pipeline. At a laying depth of 580 m, the pipeline is under gentle tension; as
Curve 1 indicates, the pipe primarily withstands tension from the pipe-laying ship. As
laying depth increases, at 320 m, the pipeline form gradually bends (Curve 2), reaching its
ultimate state when the maximum bend occurs during the pipe-laying process (Curve 3).
These findings affirm that significant arcs occur near the bottom of the pipe, validating the
issue of high deflections during cold-water pipe (CWP) laying.
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4.2. Parameter Analysis
4.2.1. Effect of Pipe Arc Length Tension

This section examines the influence of arc length on pipeline tension, choosing a
pipeline length of 1000 m, with remaining parameters selected from Table 3, and employing
Matlab’s fslove to collect values at 20 m intervals. Figure 8 delineates the developmental
trend curves of pipeline tension under varying pipeline arc lengths. Figure 8 presents a
graph tracing the evolution of actual and adequate tension in correlation to the pipeline’s
arc length. The pipeline’s arc length significantly influences natural and compelling tension.
The proper tension progressively escalates with an increase in the pipeline’s arc length.
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In contrast, the actual tension initially declines to zero, then reverses its trend, matching
the adequate tension at the pipeline’s maximum arc length. The effects of the pipeline’s arc
length on actual and effective tension can be explained by bending forces. When the pipeline
is turned to a specific arc, it endures bending forces perpendicular to its axial direction
and is aimed at the centre of the bend. The bending force’s impact gradually intensifies as
the pipeline’s arc length extends, resulting from an increase in the distance between the
bending force and the center of the bend. However, this increases the magnitude of the
bending force, counteracting the effect of actual tension, leading to a gradual reduction in
the actual tension. As the pipeline’s arc length increases, the tension dominates, equating
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to the bending force at a certain point. Beyond this point, with the continuation of the arc
length’s increase, the tension continues to grow until it equates to adequate tension.

4.2.2. Effect of Pipe Arc Length on the Curvature

This section investigates the influence of pipeline arc length on pipeline curvature.
With Matlab parameters selected and value intervals identical to the previous quarter,
Figure 9 shows the developmental pattern of pipeline curvature under different arc lengths.
With the increase in pipeline arc length, the pipeline’s bending curvature first increases,
reaching its peak of 4.86 m at an arc length of 81 m, then gradually reducing to zero at
the pipeline’s maximum arc length. The primary reason lies in the inverse relationship
between the pipeline’s bending curvature and the bending angle. An increase in arc length
implies a smaller bending angle, increasing the pipeline’s curvature. As the pipeline’s
arc length continues to grow, the pipeline’s bending curvature begins to reduce. This is
because of the existence of a bending moment during the bending process of the pipeline.
This force can return the pipeline to a straight state. When the arc length increases to a
certain extent, the effect of the bending moment surpasses that of the bending force, causing
the pipeline’s bending curvature to start reducing. It is noteworthy that both actual and
practical tension maxima appear near the hinge point at the pipeline’s top. Throughout the
installation and laying process, the bending curvature of the pipeline’s arc length remains
within the permissible bending curvature, indicating the feasibility of this installation and
laying method.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 9. Bending Curvature and Pipe Arc Length. 
4.2.3. Effect of Pipe Arc Length on Stress 

This section examines the effect of pipeline arc length on the pipeline’s Von Mises 
stress, bending stress, and axial stress. As shown in Figure 10, with the pipe arc length 
increasing, the pipe bends more and more, which means that the bending moment and 
the bending stress also increase. However, at some point, the bending moment reaches a 
maximum value and decreases as the pipe approaches a vertical position. This causes the 
bending stress to also fall after getting a peak value of 7.45 Mpa and 6.83 Mpa, respec-
tively. The axial force and the axial stress are influenced by both the ship’s tension force 
and the pipe curvature’s bending force. As the pipe arc length increases, the tension force 
decreases due to the increased horizontal distance between the ship and the pipe. This 
causes the axial stress also to decrease. However, as the pipe bends more and more, the 
bending force increases and acts in the opposite direction of the tension force. This causes 
the axial stress to change its sign and start to increase in magnitude. The Von Mises stress 
is affected by both the bending stress and the axial stress. As both of them increase ini-
tially, so does the Von Mises stress. However, as both of them decrease after reaching their 
peak values, so does the Von Mises stress. Interestingly, at the pipeline’s maximum arc 
length, the pipeline’s bending stress reduces to zero, while Von Mises stress remains non-
zero, corresponding to the actual installation and laying situations. Conversely, the pipe-
line’s axial stress gradually decreases to zero and then starts to increase in the opposite 
direction. At the pipeline’s maximum arc length, the pipeline’s axial stress equates to the 
Von Mises stress. Moreover, throughout the entire installation and laying process, the var-
ious stresses of the pipeline’s arc length. 

Figure 9. Bending Curvature and Pipe Arc Length.

4.2.3. Effect of Pipe Arc Length on Stress

This section examines the effect of pipeline arc length on the pipeline’s Von Mises
stress, bending stress, and axial stress. As shown in Figure 10, with the pipe arc length
increasing, the pipe bends more and more, which means that the bending moment and
the bending stress also increase. However, at some point, the bending moment reaches a
maximum value and decreases as the pipe approaches a vertical position. This causes the
bending stress to also fall after getting a peak value of 7.45 Mpa and 6.83 Mpa, respectively.
The axial force and the axial stress are influenced by both the ship’s tension force and
the pipe curvature’s bending force. As the pipe arc length increases, the tension force
decreases due to the increased horizontal distance between the ship and the pipe. This
causes the axial stress also to decrease. However, as the pipe bends more and more, the
bending force increases and acts in the opposite direction of the tension force. This causes
the axial stress to change its sign and start to increase in magnitude. The Von Mises stress
is affected by both the bending stress and the axial stress. As both of them increase initially,



J. Mar. Sci. Eng. 2023, 11, 1520 15 of 17

so does the Von Mises stress. However, as both of them decrease after reaching their peak
values, so does the Von Mises stress. Interestingly, at the pipeline’s maximum arc length,
the pipeline’s bending stress reduces to zero, while Von Mises stress remains non-zero,
corresponding to the actual installation and laying situations. Conversely, the pipeline’s
axial stress gradually decreases to zero and then starts to increase in the opposite direction.
At the pipeline’s maximum arc length, the pipeline’s axial stress equates to the Von Mises
stress. Moreover, throughout the entire installation and laying process, the various stresses
of the pipeline’s arc length.
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5. Conclusions

This study has addressed the dynamic characteristics of large-diameter cold water
pipes during the float-and-sink installation process, which is crucial for harnessing the
potential of ocean thermal energy conversion. Based on nonlinear beam theory and the
singular perturbation method, we have derived the theoretical model of the cold-water
pipe’s mechanics and analyzed the pipeline shape, tension, bending curvature, and stress
parameters of the cold-water pipe under different laying depths and arc lengths. The main
conclusions are as follows:

(1) A novel semi-analytical solution had been developed for the nonlinear differential
Equation of the cold-water pipe, which can accurately and efficiently capture the
pipeline form and stress state during the installation process. The solution has been
validated by comparing it with numerical simulations using OrcaFlex software, show-
ing good agreement and reasonable differences.

(2) The laying depth significantly impacts the final form of the pipeline, which transitions
from gentle to increasingly bent, exhibiting significant bending near the bottom of the
pipeline. This confirms the likelihood of substantial deformation of large-diameter
cold water pipes during the installation process and suggests the need for careful
monitoring and control of the laying depth.

(3) The pipeline’s arc length substantially influences the pipeline’s tension, curvature,
bending moment, and stress. We have found that the bending curvature, Von Mises
stress, and bending stress of the pipeline all first increase and then decrease as the
arc length of the pipeline increases, peaking at about 80 m along the pipeline. We
have also found that both actual and axial tension decrease and then increase with
the increase in the pipeline arc length. These findings indicate that special attention
should be given to the section of the pipeline at 50~100 m during the actual installation
process to ensure the safe and smooth installation of the pipeline.
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(4) This study has some limitations that should be acknowledged and addressed in
future research. First, we have assumed that the cold-water pipe is a uniform beam
with constant cross-section and material properties, which may not be realistic for
practical applications. Second, we have neglected some external load conditions such
as wave-induced forces, soil-pipe interaction, and thermal effects, which may have
significant effects on the dynamic behavior of the cold-water pipe. Third, we have
only considered one installation method (the float-and-sink method), which may not
be suitable for all scenarios and environments. Future research should aim to relax
these assumptions and incorporate more realistic factors into the theoretical model, as
well as explore other installation methods such as J-lay or S-lay.

(5) The findings of this study provide valuable insights for practical cold-water pipe
installation and laying, as well as for theoretical analysis and numerical simulation of
large-diameter marine risers. The proposed semi-analytical solution can serve as a
useful tool for designing and optimizing cold-water pipe systems for ocean thermal
energy conversion projects. The results can also help to identify the critical parameters
and regions that affect the mechanical performance of cold-water pipes and to develop
effective strategies for mitigating potential risks and challenges during installation
and operation.
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