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Abstract: The process of fish cage inspections, which is a necessary maintenance task at any fish
farm, be it small-scale or industrial, is a task that has the potential to be fully automated. Replacing
trained divers who perform regular inspections with autonomous marine vehicles would lower the
costs of manpower and remove the risks associated with humans performing underwater inspections.
Achieving such a level of autonomy implies developing an image processing algorithm that is capable
of estimating the state of biofouling buildup. The aim of this work is to propose a complete solution
for automating the said inspection process; from developing an autonomous control algorithm for
an ROV, to automatically segmenting images of fish cages, and accurately estimating the state of
biofouling. The first part is achieved by modifying a commercially available ROV with an acoustic
SBL positioning system and developing a closed-loop control system. The second part is realized by
implementing a proposed biofouling estimation framework, which relies on AI to perform image
segmentation, and by processing images using established computer vision methods to obtain a rough
estimate of the distance of the ROV from the fish cage. This also involved developing a labeling tool
in order to create a dataset of images for the neural network performing the semantic segmentation
to be trained on. The experimental results show the viability of using an ROV fitted with an acoustic
transponder for autonomous missions, and demonstrate the biofouling estimation framework’s
ability to provide accurate assessments, alongside satisfactory distance estimation capabilities. In
conclusion, the achieved biofouling estimation accuracy showcases clear potential for use in the
aquaculture industry.

Keywords: fish cage inspection; aquaculture biofouling estimation; underwater image segmentation;
autonomous ROV control loop; image annotation tool

1. Introduction

There has been a growing acknowledgment of the crucial role played by small-scale
fisheries and industrial aquaculture in ensuring global food security and nutrition in
the 21st century. Global aquaculture production has shown a rising trend over the last
30 years, with around 80 million tonnes of seafood produced in 2020 [1]. Aquaculture is
known to be highly labor-intensive, requiring significant human involvement in various
tasks such as feeding, cleaning and processing as opposed to the envisioned streamlined
machine-supported industrial agriculture. The emergence of autonomous robots presents
an opportunity to supplement and enhance these labor-intensive operations. By integrating
autonomous robots, the aquaculture sector can achieve higher efficiency, reduce operational
costs, and ensure sustainable fishing practices for the future.

Previous research in this field often deals with only one specific aspect of aquaculture
activities, like net damage detection in [2,3]. Other work such as that by Duda et al. [4]
uses computer vision techniques to achieve ROV pose estimation and briefly touches on
biological buildup on the net, but only mentions it as a potential problem for pose estima-
tion. More work by Livanos et al. [5] discusses enhancing ROV autonomy level through
intelligent navigation, but does not showcase a use for any specific fishery maintenance
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task. Work by Qiu et al. [6] examines the estimation of built-up biofouling using image pro-
cessing, but only briefly mentions using an ROV to capture footage needed for research. To
the best of the authors’ knowledge, there is no literature on the development of a complete
autonomous fish cage inspection system that includes not only visual biofouling estimation,
but also control and localization of an underwater vehicle. A research project named HEK-
TOR (Heterogeneous autonomous robotic system in viticulture and mariculture) aimed
to fill this knowledge gap and offer a solution that enables efficient coordination among
heterogeneous autonomous robots, as can be seen in Figure 1. More information about the
project can be found in [7,8].

Figure 1. A schematic of the proposed HEKTOR underwater inspection solution.

One task that can, or better said should be automated, is the inspection of fish cage
nets in aquaculture. The net gradually accumulates biofouling which has many negative
consequences. The main problem is the reduction in available area for clean water to
flow through which causes the water inside the pen to become less oxygenated and more
fouled, ultimately resulting in increased fish sickness and death rate. Accompanying
problems include the addition of extra mass to the pen structure, thus placing stress on
the mooring ropes, damaging the net and causing a need for reknitting it. Periodic visual
inspections by divers are currently necessary to assess the condition of the pens and
determine the appropriate timing for cleaning. Using an ROV or an AUV to perform said
visual inspections would reduce the need for divers, thus creating a more streamlined,
autonomous, and risk-averse inspection process. It is worth mentioning publications from
the scope of the HEKTOR project related to this topic. One of them touched on the topic of
pose estimation published in [9] that compares two different visual servoing approaches.
Another paper diving into more detail about semantic image segmentation and distance
estimation can be found in [10], which directly precedes the work described in this paper.

As shown in Figure 1, in the scope of the HEKTOR project, a completely automated
underwater fish cage inspection process includes an autonomous surface vehicle (ASV)
integrated with an ROV. This integration means that the camera is streamed from the ROV,
while biofouling estimation, control, and underwater algorithms are run onboard the ASV.
The inspection process is envisioned to be split into two tasks. The first task is processing
the underwater footage obtained from a filming vehicle in such a way to correctly estimate
the amount of biofouling present on the net. The second task is developing an autonomous
control algorithm to maneuver an ROV around the pens that is controlled via an ASV.

The main research goal was to develop an image processing algorithm that could be
combined with the control algorithm in order to accurately assess the amount of biofouling
accumulated on the nets. This research paper contributes in several key areas. Firstly, a
neural network is successfully utilized for accurately segmenting underwater images of
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fish pens, enabling precise identification of pen structures. The architecture used for AI
segmentation is the popularly employed UNet [11], explained in more detail later. Secondly,
the research explores and tests the feasibility of retrofitting an ROV with an underwater
transponder to achieve precise localization. This modification improves upon its manual
operation while also enabling autonomous missions, enhancing both its operational ease
and versatility. Thirdly, the paper proposes a technique for estimating the extent of bio-
fouling buildup on a given pen. By combining image segmentation with localization, the
technique provides a valuable means of quantifying the level of biofouling on fish pens.
Lastly, the proposed biofouling estimation technique is successfully tested in controlled and
repeatable experimental scenarios. Collectively, these contributions improve fish pen bio-
fouling analysis, and highlight potential advancements in the field of underwater robotics
and mariculture practices.

The rest of this article is organized as follows: Section 2 discusses both the acquired
and developed equipment used during the research, with two subsections that examine the
custom-made ASV, and retrofitting of the commercially available ROV in detail. Section 3
presents the process of collecting underwater footage of fish pens, describing the methods
employed to capture the necessary footage used in the research. The developed labeling
tool is then described and the annotation process is presented. In addition, the approach
used for estimating the amount of biofouling is outlined. Furthermore, the developed ROV
control algorithm is presented, and its development and implementation is elaborated
upon. Section 4 describes the experimental setup used to validate the biofouling estimation
algorithm performance. Results obtained from the conducted experiments are presented in
Section 5. Concluding remarks and future work are outlined in Section 6.

2. Equipment
2.1. ASV Korkyra

A custom-made aluminum catamaran named Korkyra was developed to function as a
versatile remote-controlled or autonomous surface vehicle, as shown in Figure 2. Detailed
information concerning the development of the catamaran can be found in [7,12]. This
specially designed catamaran boasts several key features, one of which is a landing platform
dedicated to accommodating a lightweight drone for aerial operations [13]. Additionally, it
incorporates a docking and tether management system intended for seamless integration
with an ROV, enabling underwater mission capabilities, [14]. It also features a robust
metal frame that enables the mounting of diverse tools and sensors such as cameras, sonar,
lidar, etc.

To support real-time control algorithms, data processing, and other computational
requirements, a powerful onboard computer is used, ensuring efficient and reliable opera-
tion. With its purpose-built design and advanced functionalities, the custom aluminum
catamaran serves as a valuable asset for remote-controlled or autonomous operations,
facilitating enhanced surveillance, data collection, and exploration capabilities both on and
under the water surface.

Figure 2. Autonomous surface vehicle Korkyra: (left)—TMS mounted, (right)—LP mounted onto
the ASV.
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2.2. ROV and Acoustic Localization System

Accurate localization in a cluttered environment such as fisheries is a critical compo-
nent for achieving autonomy. In order for autonomous systems to navigate and operate
effectively in such environments, they must be able to precisely estimate their own posi-
tion relative to obstacles, structures, and other objects. Accurate localization enables the
autonomous control system to make informed decisions, plan optimal paths, and avoid
collisions. An underwater acoustic positioning system is essential for autonomous un-
derwater missions due to the absence of GPS and standard RF-based positioning systems
in underwater environments. This technology plays a vital role in enabling autonomous
underwater missions by providing reliable positioning information where traditional po-
sitioning systems cannot operate effectively [15]. The use of acoustic signals allows for
precise localization and tracking of AUVs and ROVs or other underwater assets. By using
acoustic signals, the positioning system enables accurate navigation, mapping, and control
of underwater vehicles in real-time.

A commercially available ROV was acquired from Blueye, a Norwegian company spe-
cializing in underwater technology. The ROV was mounted with a transponder belonging
to an SBL acoustic underwater positioning system, as can be seen in Figure 3 below. The
SBL acoustic localization system is the Underwater GPS G2 acquired from WaterLinked,
also a Norwegian company specializing in acoustic subsea communication and positioning
systems. An L-shaped fixed position configuration with 4 transceivers placed at various
depths, and 1 transponder mounted on the ROV was precise enough for use in a controlled
test inspection scenario. A secondary, but perhaps more realistic rectangular configuration
with the 4 transceivers mounted on an ASV was also tested and provided good results
in rough weather conditions. However, the depth reading was taken directly from the
ROV because the sensor readings were far more precise than those received from the
SBL transponder. More information about the integration process, underwater acoustical
positioning system, accuracy testing and validation can be found in [16].

Figure 3. The used Blueye Pro ROV and a closeup of the retrofitted WaterLinked Underwater GPS
G2 transponder.

3. Methods
3.1. Dataset Collection and Labeling

The crucial initial step of this research involved using a manually controlled ROV to
collect underwater video footage of circular fish cages utilized in fish farming during the
summers of 2020 and 2021. High-quality video footage of real industrial fish pens was
filmed in the Adriatic Sea near the coast of the island of Ugljan. The collected underwater
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footage showcased the net cages in various states of biofouling buildup, ranging from
relatively clean to those in need of cleaning. This diverse range of footage provided
valuable visual documentation of the gradual accumulation of biofouling on the fish cages
over time. The footage gathered during those two years served for all computer vision-
related research leading up to trials and validation experiments in a controlled seawater
pool in Biograd, Croatia in late September and early October of 2022. There was close to
4000 images available from Ugljan for the creation of an initial dataset, and each mission in
Biograd generated close to 1000 images. Later in this paper, a more detailed breakdown
of how many images were labeled and ended up in the final dataset will be presented
in Section 5.2.

The first step in the process of estimating the amount of biofouling built up on the
pen net involves extracting useful information from underwater footage. This poses a well-
known image segmentation problem. To solve it, it was first necessary to create a dataset of
labeled images of the fish cages. To efficiently label hundreds or even thousands of images,
a labeling tool was developed. This tool utilized the K-Means clustering algorithm [17]
to group pixels of similar colors within the images. In short, K-Means clustering is an
unsupervised machine learning algorithm used for grouping vectors of the same size into
clusters based on their similarity, with the K being a hyperparameter representing how
many clusters we expect to find. It works by generating K random starting centroids, then
iteratively assigning vectors to their nearest centroid, and then updating the centroids to
minimize the total sum of squared distances between vectors and their respective centroids.

By segmenting the images based on color similarities, the labeling tool significantly
expedited the process of labeling the cage structure. This approach made it possible to
handle large volumes of images effectively, streamlined the labeling process and enabled
the creation of comprehensive datasets for further image analysis and training of neural
networks used for semantic image segmentation. The tool, shown in Figure 4, works
under the assumption that underwater images naturally lose yellow–orange hues as depth
increases, with the dominant colors in images being blue, brown and green. This makes it
possible to faithfully simplify an image down to less than 10 colors, while not losing much
structural detail. An operator can select which image needs annotation, choose the color
space (either LAB or HSV if LAB is not satisfactory), and choose the K parameter (mostly
set to 7). This is all done through the toolbar shown at the top of Figure 4. The entire image
is used as the input into the K-Means algorithm, and the result is that similarly colored
pixels belong to the same cluster. The clustered pixels also most often belong to the same
entity, that is, they have the same semantic meaning. The tool can turn the pixels in an
image belonging to a cluster on or off so that the operator can easily see to what object
on the image they belong to. The labels assigned to each pixel were either “sea”, “cage”,
“fish”, and “blurry”, as shown in the bottom left of Figure 4.

3.2. Biofouling Estimation Framework

The modular biofouling estimation framework proposed herein is depicted in Figure 5.
The framework comprises several interconnected nodes with each node serving a specific
purpose. The framework and the nodes came about as a product of developing image
processing algorithms and the ROV control loop in the Robotic Operating System (ROS).
Node (1), shown in Figure 5, is responsible for executing the image segmentation process,
separating the fish pen structure and its net from the background. Node (2) combines the
segmented data with the distance information to reconstruct how a clean net would appear
at that specific filming distance. Node (3) compares the two binary images, one of the ideal
net state and one of the current state, and the result quantifies the extent of biofouling
coverage on the net’s surface. Node (4) implements pose (distance) estimation from a single
camera if the distance from the filmed net is not known from a 3D map of the environment
or some other source.
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Figure 4. Screenshot of the labeling tool developed for easier dataset creating. The image in the top
left is the original image with clusters of pixels turned on or off. The image in the top right replaces
pixels from the original image with their respective centroids resulting from K-Means clustering. It is
possible to choose the color space of the image, change the K hyperparameter, and turn the pixels on
and off using the toolbar above the images. The legend pop-up window in the bottom left is used for
turning the grouped pixels “on or off” and assigning labels. The color squares represent the resulting
centroids of K-Means clustering.

A particular implementation of the framework developed during research calculates
an estimated distance from the net by determining the approximate distance between each
center of the small squares in the net, shown in more detail in Figure 6. The selection of
centers as good features in the biofouling estimation process was based on their inherent
stability. As biofouling builds up on the net, the squares gradually reduce in size, however
the position of the center remains constant. This property makes the centers robust features
for detection. By having knowledge of the distance in pixels for specific features on an
object in an image, as well as the corresponding real-life distances, along with information
about the camera sensor used for capturing the picture such as the physical size of the
sensor and its focal length, it is possible to estimate the distance from the observed object
to the camera. This allows for a reasonable estimation of the distance from the camera to
the observed fish pen. This method of distance estimation can be classified as a geometric
approach to the problem, as opposed to using a more time-consuming and computationally
heavier deep-learning approach.

Figure 5. Schematic of the used biofouling estimation framework.
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Figure 6. Ideal net visualizer part of the framework shown in more detail as it is implemented.

3.2.1. Biofouling Buildup Quantification

The described framework deals with one image at a time. Two different approaches
were tested during research concerning how to estimate the total amount of biofouling for
a filmed net. The idea behind an initial approach was to have an ROV film the fish pen net
from very specific positions, chosen mathematically to have the least amount of overlap
between any two images. These images could then be combined into a “mosaic” of the
complete fish pen net and ran through the estimation framework. The problem with this
approach is that it would require very precise localization data and an always up-to-date
precise 3-D map of the environment so that the ROV can be localized with regard to the
fish pens. Such precise localization and a 3-D map was not available during testing, which
produced unsatisfactory results shown later.

A more realistic approach would be to film the net area of interest with as uniform
a movement as possible at a fixed distance from the net. Uniform movement of the ROV
would ensure that each segment of the net is filmed for roughly the same amount of time.
If this is the case, then the images that go into the framework do not have to be picked
because every area of the net is filmed for the same amount of time. The entire footage can
be fed into the framework, and the amount of biofouling for the filmed area would be the
average of all of the estimations. This approach was used for obtaining accurate results that
are presented later, albeit the footage was decimated so that ROV would save its current
high resolution frame every second due to storage restrictions. The ROVs movement speed
was such that filming at 1Hz was frequent enough to capture the entire net area.

3.2.2. Framework Filters

There are two filters seen in Figure 5. The “uneven movement filter” node utilizes
estimated distance data to exclude any footage captured during periods of unstable move-
ment, ensuring that only reliable footage is considered. This approach works under the
assumption that the ROV moves uniformly during autonomous missions. The filter tries
to detect sudden changes in movement and invalidate any footage filmed during that
specific time period. This filter can be applied both in real-time or offline after completing
a mission. Figure 7 visualizes how the filter works, with footage that is captured during
stable movement marked with green, and footage captured during non-uniform movement
marked red.

The “contour filter” node (see Figure 5) uses a detected contour shape and area filter.
In short, it is possible to detect square contours of the net openings in the segmented images
using standard contour detection techniques. Furthermore, it is possible to filter out any
contours deemed unwanted using their features such as shape or area. It is reasonable to
assume that the detected contours should be of square shape, and roughly the same size.
If some contour is too small or large, or not square in shape, then it can be discarded in
further processing. More details on contour detection can be found in [10].
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Figure 7. Plot visualizing the calculated average distance of centers of net openings for one mission.
The green bar represents an image that passed through the movement filter, while the red bar
represent images that are deemed to have been captured during periods of non–uniform movement.

3.2.3. Image Segmentation Node

The most computationally heavy node, node (1), shown in Figure 5, dealing with
image segmentation underwent a major revision during research. At first, an approach
involving machine learning was tried before using neural networks. The resulting data from
labeling include the semantic meaning of not only pixels, but also colors within the image
since it involved differentiating the boundary between cage structure, background sea, and
fish using K-Means. This provided an opportunity for further analysis and exploration of
color-related characteristics within the labeled images. The labeled colors obtained from the
image labeling process were utilized to train a logistical regression model. This model used
the numerical color representation to learn the relationships between different colors and
their corresponding semantic labels, meaning whether a specific pixel belongs to the pen
structure or the background sea and fish. The dataset was split into the standard 80–20%
train–test split, meaning that the model weights were trained on data stemming from 4 out
of 5 images, and the 5th image was used for testing. More on this method can be found
in [10]. This initial approach was abandoned due to its lack of robustness and limited
performance. While it provided fine results on images used to train it, it struggled to
handle variations in lighting conditions, color temperature, inherent blurriness associated
with images taken while moving, etc. As a result, a more advanced and robust approach
was sought to overcome these limitations and improve the accuracy and reliability of the
semantic segmentation node.

Utilizing neural networks for image segmentation is a more robust approach due
to their ability to learn complex patterns and features. Networks like these can adapt to
variations in lighting, color temperature, etc. This makes them well-suited for the task
of underwater semantic segmentation. The neural network architecture chosen for this
task is UNet, a well-established and widely used model in the field of image segmentation.
Originally developed for semantic segmentation of medical images, UNet’s complex ar-
chitecture makes it a good choice for a wide range of segmentation tasks. UNet received
its name from its characteristic U-shaped architecture. This neural network architecture
functions by first encoding an input image through a series of convolutional and pooling
layers to capture features and context. It then uses skip connections to combine features
from the encoding path with those from the decoding path, which consists of upsampling
and convolutional layers, to produce a pixel-wise segmentation mask, classifying each
pixel into one of several predefined categories. This U-shaped architecture allows UNet
to effectively capture both high-level context and fine-grained details for accurate image
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segmentation [11,18]. The UNet model was trained to distinguish between the net of the
fish pens and the background behind it showing sea and fish. The dataset was again split
into the standard 80–20% train–test split, but this time the image sets were chosen randomly
from the entire image pool.

The only image processing done before feeding the image to the AI model for segmen-
tation is sharpening using the standard Laplacian sharpening filter. Other popular image
processing techniques like blurring or histogram equalization were tried, but abandoned
due to unsatisfactory results.

3.3. Closed-Loop ROV Control System

Initial work carried out involving autonomous control with the acquired ROV involved
the task of maintaining a straight path while ascending and descending along a fish pen
section using only visual odometry. This work aimed to test image processing techniques
for the specific underwater inspection use-case and develop an algorithm that allowed
the ROV to accurately perceive its position and orientation relative to the pen structure,
enabling smooth and precise navigation in vertical movements [19]. Further advancements
in achieving autonomous control using visual odometry relied on detecting distinctive
feature points within the captured images. These feature points were then utilized in
conjunction with established image processing techniques to estimate the movement of
the ROV from a single camera [9]. Seeing how the ROV is now retrofitted to incorporate
precise underwater localization, the next step was to use the available localization data in
control algorithms.

A lawnmower pattern trajectory controller was designed to serve as a preliminary
proof-of-concept test to validate the possibility of complete autonomous control for the
modified ROV. This test aimed to assess and confirm crucial functionalities such as precise
position estimation, efficient trajectory planning, and most importantly to validate the
responsiveness of the ROV’s control loop. Successful execution of the lawnmower pattern
trajectory test would serve as a confirmation of the feasibility of autonomous control for
the modified ROV and provide a solid foundation in further developing and refining the
ROV’s autonomous capabilities for more intricate tasks in real-world scenarios. It would
pave the way for using autonomous control to enhance efficiency, safety, and productivity
in underwater operations of fisheries, opening new possibilities for further research, and
industrial applications.

The control algorithm for the ROV was implemented using multiple states to facilitate
its movement [20]. Each state represents a specific behavior or action for the ROV, such
as moving to a starting position, swaying, descending, or resurfacing to a predetermined
end point. A general schematic for the control system can be seen in Figure 8, and the
different states of the controller can be seen in a UML class diagram of the controller
implementation in Figure 9 below. The control loop is closed by using the position data
from the UWGPS transponder mounted directly onto the ROV to compare current position
with the active waypoint. The control system implemented for the ROV managed surge
and heave motions. The control algorithm should effectively control and stabilize these
motions to ensure precise positioning and maneuverability underwater [21]. Additionally,
the ROV features built-in automatic heading maintenance, that is, it can travel in a constant
direction during operation. This feature was turned on during missions. The position
error is used as an input into a classic PID controller that generates thruster commands,
so that the control system can be used for any 2-DOF ROV [22]. The thruster command
is calculated using the standard PID formula: u(t) = Kpe(t) + Ki

∫ t
0 e(t)dt + Kd

de
dt , where

Kp, Ki, Kd are the tunable gain parameters, and e(t) is the position error. Since underwater
localization systems often have considerable signal noise, the gain for derivative term was
set to Kd = 0 to avoid random thruster force spikes.



J. Mar. Sci. Eng. 2023, 11, 1873 10 of 24

Figure 8. Schematic depicting the ROV control loop.

Figure 9. Schematic showing the implemented control loop class diagram. The “Controller” class
generates waypoints by taking into account the leftmost and rightmost possible values for the position,
depth, and how many discrete points to generate along the horizontal and vertical axes. The outputs
are values for thruster speed along two controlled degrees of freedom (surge and sway).

4. Experimental Setup

Validation experiments for the biofuling estimation framework were conducted in a
controlled seawater pool in Biograd, Croatia in late September and early October of 2022.
For the purpose of conducting these trials, a pen net was acquired from an industrial fish
farm and deployed within the controlled environment of an Olympic-sized pool 50 m
long and 25 m wide. Only half of the total pool length was used for testing, so the actual
experiment work area was around 625 m2.

The dimension of the net is ∼14 m wide and ∼3 m high, so ∼42 m2 of area in total.
This acquisition enabled the emulation of real-world conditions and realistic performance
evaluation of the developed system. To simulate biofouling buildup in this scenario,
camouflage-pattern colored square patches were strategically hand-placed onto the fish
cage net as can be seen in Figure 10. The patches were 0.25 m squares. They were designed
to mimic the visual appearance of underwater biological fouling using a brown–yellow
color scheme, representing different kinds and stages of underwater biological growth. In
each iteration of the experiment, an increasing number of patches were added to the net.
The entire net was thoroughly filmed after each round of placing the patches. In total, the
net was filmed 7 times. Once with no patches, then once with patches covering 22%, 33%,
and 44%, and three times with patches covering 66% of the net (but with greater distance
to the net each time).

However, a significant change from the previous two years was implemented; instead
of manual control during filming, the ROV was autonomously controlled during the
underwater missions. This transition from manual to autonomous control allowed for more
precise and consistent data collection. The implementation of autonomous control in the
controlled ocean-floor pool environment not only facilitated better data collection but also
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served to test and validate the developed autonomous control algorithm. The outcomes
from this testing phase yielded valuable insights regarding control efficiency, highlighting
areas for further improvement or optimization.

Figure 10. The Olympic sea water pool used for testing, with the net dragged out in order to place
patches for biofouling simulation. The affixed patches on the net can be seen close-up filmed during
a mission in the red circle.

The developed ROV control algorithm was also tested in the pool situated in Biograd.
A testing environment like this provided a controlled setting to assess the control algo-
rithm’s performance. It also featured an “ocean floor”, resulting in more realistic testing
conditions as opposed to having a flat artificial floor. The pool’s depth varied depending on
the tide but generally maintained a depth of approximately 3 m. Using a relatively shallow
pool for testing posed a more challenging scenario for the computer vision components of
the estimation framework. This is due to the fact that in an actual industrial fish farm the
seafloor is not visible due to greater sea depth. The setup of the testing grounds viewed
from above is shown in Figure 11.

The deployment of an ASV with the intended SBL acoustic positioning system was
not feasible because a pool was used for conducting the experiments. Using a crane
to lower and raise the ASV in and out of the pool was not possible. To overcome this
limitation, a fixed baseline of transponders was positioned around the pool’s edge. These
transponders served as reference points for the acoustic positioning system, enabling the
accurate localization of the ROV with a transponder within the pool. While this approach
differed from the anticipated ASV + ROV combination, it provided a needed practical
solution for achieving reliable positioning data during the experimental setup in the pool
environment. A screenshot of the UWGPS system GUI can be seen in Figure 12 below,
taken during one testing of the ASV+ROV combination. The green line represents the ASV
trajectory which should always be available as it has the UWGPS box mounted, while the
blue line represents the trajectory of the free-moving transponder that is attached to the
ROV in this case, and can travel out of the search range.
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Figure 11. Drone shot showing the pool setup experiment in Biograd, Croatia. The net was strung
between two posts.

Figure 12. Screenshot of the UWGPS GUI while the ROV is tethered to the ASV which also acts as
the carrier for the short baseline transponder setup. Since the trajectory of the ROV is visualized, this
software was used to roughly estimate the precision of the SBL setup.

5. Experimental Results

This section is divided into four subsections, each focusing on different aspects of
the study. Section 5.1 provides an in-depth analysis of the autonomous ROV control loop
results, presenting the performance, accuracy, and effectiveness of the developed control
loop algorithm in enabling autonomous control of the ROV. Section 5.2 delves into the image
labeling results, presenting the accuracy and reliability of the labeling process. Section 5.3
discusses the training process and details the UNet model training results. Section 5.4
focuses on the results pertaining to the main research topic, which is the estimation of the
amount of biofouling buildup.

5.1. Autonomous ROV Control Loop Results

Each ROV mission took around 15 min to cover the aforementioned 42 m2, and the
position is plotted every second to correlate with logged images. The 3D plot in Figure 13
below visualizes the ROV’s movement during a mission, and its ideal trajectory generated
by the control algorithm. When the 3D plot is flattened to only show the X- and Z-axes like
in Figure 14, it is easy to see that the ROV’s actual trajectory closely follows the generated
one. When only the depth data recorded during a mission are plotted like in Figure 15,
it is possible to see that the ROV’s automatic depth maintenance system works well in
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combination with the developed control algorithm. The depth error tolerance was set to
±0.1 m, and it can be seen that when the error exceeded the set tolerance the ROV was
swiftly controlled back into the allowed range. Observing all the autonomous missions
using a boxplot to plot the depth error like in Figure 16 one can see that the median value
of the depth error is less than 0.05 meters, and almost all of the recorded errors are within
the tolerance limit, except a few outlier values, which is expected as the ROV needs a small
amount of time to correct the depth.

Figure 13. 3D plot of the ROV position. The blue line represents a perfect trajectory, the colored dots
represent actual positions in time during one mission.

The Y-axis in Figure 13 correlates to the distance from the ROV to the net since the
net was strung out straight. The controller was implemented with this assumption, so it
tried to keep a constant Y-coordinate throughout the mission. This axis was controlled
by the surge motion of the ROV. The thrusters dead zone for surge was greater than for
heave, which made it more difficult to precisely control the ROV in this direction. The
tolerance was doubled to ±0.2 m for this reason. Figure 17 shows the logged data during
the course of one mission for the Y-axis only. It can be seen that the ROV deviated outside
of the tolerance zone more often than for depth, but the controller successfully corrected
its behavior each time, bringing it back into the allowed range. The boxplot showing the
Y-coordinate keeping error for all the autonomous missions can be seen in Figure 18.
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Figure 14. Plot showing the recorded trajectory of the ROV compared to the perfectly generated one,
during one mission.

Figure 15. Plot showing the error in maintaining wanted depth during purely horizontal movement
during one mission. The gaps in the line represent diving movement.

The ROV’s SDK has the option to set the gain of the thrusters in order to change
the maximum speed. Lowering the gain increases the thrusters sensitivity to low input
values, allowing for finer control at the expense of top speed. Seeing how the task of
fish pen inspection requires precision of movement and due to the constant filming it
would be better to not have sudden changes of direction, the gain was lowered to increase
maneuverability. Having the ROV’s surge speed be between ∼0.1 m/s and ∼0.2 m/s has
shown to be a good compromise between the quality of footage regarding image sharpness,
and the duration of a mission. The ROV’s velocity data for a single mission can be seen in
Figure 19 below.
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Figure 16. Box plot showing the depth keeping error during multiple autonomous missions. The
orange line represents the median value of all the values logged. The “box” around the median value
captures ±25% of the data. The “whiskers”, i.e., the top and bottom line capture the remaining 25%
of data. Simply put, each section from line to line represents 25% of recorded data. The dots above
the top line represent outliers.

Figure 17. Plot showing the Y-position of the ROV throughout one mission.

5.2. Image Labeling Results

The images picked for the dataset were represented in the LAB color space. This
particular color space was chosen due to its perceptual uniformity, which means that a
change in the numerical representation closely follows an actual change in perceived color.
The LAB color space separates the luminance (L) channel from the color information (A
and B channels). The developed labeling tool was then used to label the images, ensuring
precise identification and annotation of the fish pen structures for further analysis and
training of machine learning and AI models. The K parameter in K-means clustering
algorithm was mostly set to K = 7, but was rarely increased if the labeling precision
achieved was not satisfactory. During the image labeling process, only the central part
of the full HD image was considered due to concerns related to camera distortion and
overall poor image quality near the edges. By focusing on the central portion, which was
less affected by distortion and exhibited better image quality, the labeling process could
be conducted more reliably, ensuring high-quality annotations and minimizing potential
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errors or inconsistencies caused by image imperfections towards the edges. Increasing the
K parameter and disregarding image edges helped for footage filmed in Biograd because
the sea floor was visible in that footage. This posed an unexpected problem because in
the footage filmed at the industrial fisheries at Ugljan the sea floor is not visible due to
great sea depth, which is a reasonable assumption to work with when conceptualizing
solutions involving computer vision. Moving on, it was necessary to exclude certain labeled
images from the dataset after the labeling process was complete. Images exhibiting labeling
errors, low image quality, or inconsistencies were identified and removed from the training
dataset. This was done to ensure the quality and reliability of the dataset. Table 1 shows
the distribution of images in the dataset. A visualization of how images were annotated
can be seen in Figure 20.

Figure 18. Box plot showing the Y-position keeping error during multiple missions. Again as in
Figure 16, only a small percent of the recorded data are classified as outliers and shown as dots on
the plot.

Figure 19. Plot showing achieved speeds in the X- (sway), Y- (surge), and Z- (heave) directions during
one mission. One can notice the ROV moving left–right and vice versa by examining the X-direction
speeds. It is also possible to notice the diving periods of the ROV by the spikes in the Z-direction
velocity when reaching the end of the net width.
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Table 1. Table showing how many images per filming year were labeled in total, and how many of
the labeled images ended up in the training/validation dataset for the neural network.

Footage Year Location Labeled Imagess Images in Dataset

2020 Ugljan 938 261

2021 Ugljan 405 197

2022 Biograd 919 694

Figure 20. Visualization of two labeled images. The top row only has the pixels semantically
belonging to the background sea selected, while the bottom row has the pixels belonging to the cage
structure selected.

5.3. UNet Architecture Segmentation Results

As mentioned earlier, in order to train the UNet model the standard 80–20%train–test
split was used, meaning that the model was trained on 80% of available annotated images
in the dataset, and the results of the training steps were validated on a randomly selected
20% of images in the dataset that are unseen during training. The learning rate for each
training step was automatically adjusted during training as needed, and can be seen in
Figure 21 below. The training process was stopped once no more discernible improvement
was shown from one iteration to the next.

Figure 21. Plot showing the learning rate used in each step of the training.
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Dice score is a common metric used for scoring the performance of image segmentation
models, ranging from 0.0 to 1.0 (a higher value is better). It measures the similarity or
overlap between the predicted segmentation mask and the ground truth segmentation
mask [23]. The highest Dice score achieved on the validation set of images was 0.8434
during the 9th training epoch, and the weights calculated to achieve this coefficient were
saved to be used later on. The Dice score can be seen changing during the training process
in Figure 22. A visualization of how the trained UNet model successfully segments the
images can be seen in Figure 23.

Figure 22. Plot showing the popular Dice score used in image segmentation analysis and its change
during the training.

Figure 23. Result of predictions made by a trained UNet neural network segmentation model for:
(left)—an image taken in the controlled conditions in Biograd, (right)—an image taken at a real
fishery near Ugljan.

5.4. Biofouling Estimation Results

As previously mentioned, an industrial fishery provided a fish pen net for the experi-
mental setup. Square patches were affixed onto the net in a series of iterations to simulate
biofouling. The patches were incrementally added in four stages, progressively covering
larger areas of the net. All of missions had the ROV at around 1 m away from the net being



J. Mar. Sci. Eng. 2023, 11, 1873 19 of 24

filmed, except a repeated mission at 66% where the distance was purposefully increased to
around 1.5 m.

To establish a benchmark result, the biofouling estimation algorithm was initially
applied without the implementation of any filtering methods mentioned in Section 3.2.2. All
of the recorded footage in a filming session was only cropped around the center of the frame
and fed into the estimation algorithm. Table 2 shows the benchmark estimated percentages.

Table 2. Table showing the actual simulated biofouling percentage, and the estimated biofouling
percentage generated by the estimation framework.

Actual Biofouling Estimated Biofouling

22.00% 16.00%

33.00% 32.19%

44.00% 41.02%

66.00% 65.48%

5.4.1. Framework Filters Results Using UNet for Semantic Segmentation

The two filter methods implemented were the exclusion of footage during non-uniform
movement, and the contour filtering based on size and shape of detected contours. As
can be seen in Figure 24 below, the filters made only a small difference to the estimated
percentage. This is due to the fact that the autonomous filming worked well in a sense that
the ROV’s speed was consistent throughout the mission and the angle of the filming was
good. Each area of the net is filmed for around the same amount of time, and the neural
network semantic segmentation model performed well, so the benchmark result without
filtering was close to correct from the start.

Figure 24. Bar plot showing the error in the estimated percentage of biofouling.

When the filming conditions are not perfect, such as in the repeated 66% coverage
scenario tested in Biograd, then the filters help out. The filming conditions were purpose-
fully worsened by having a greater distance from the ROV to the net during filming. The
combination of both filters reduced the estimation error by 1.75% in total, as can be seen in
Table 3 below.
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Table 3. Table showing the actual simulated biofouling percentage, and the estimated biofouling
percentage generated by the estimation framework with the combinations of the footage and computer
vision filters turned on.

Value Biofouling Estim. Error

Actual biofouling 66.00% /

No filter estim. 48.04% 17.96%

Contour filter estim. 49.44% 16.56%

Movement filter estim. 48.98% 17.02%

Combined filter estim. 49.79% 16.21%

5.4.2. Effect of Filming Conditions

As can be seen in Table 3, when the filming conditions are unfavourable the estimation
error is unacceptably large. This was first noticed during a control run while testing the
autonomous movement. The net had no patches affixed to it meaning that the estimated
percentage of biofouling should be close to 0%. However, the heading angle of the ROV was
fixed to a constant value. The filming angle during the mission was not always perfectly
perpendicular in relation to the net, since the net was strung between two posts and the
bottom of the net could not be fixed to anything. This made the net slightly convex and
wavy, as opposed to the tightly strung out fish pen nets at fisheries that are almost perfectly
straight, except at the rounded bottom. Also, there is the possibility for the heading to
slowly drift on its own during a mission because of an imperfectly calibrated compass built
into the ROV. The heading drift coupled with the slightly wavy net produced an estimation
of 32.37% biofouled net area, when it should have been 0%. The clean net was filmed from
an otherwise good distance of ∼1 m, but with a tilted angle.

One of the considerable factors during filming is the time of day, that is, the position
of the Sun. The used Blueye Pro ROV does not have an HDR camera, meaning that
the overexposure of one part of the camera sensor to light ruins the rest of the image.
This effect of course decreases as depth increases, but still poses a problem when filming
near the surface. Filming missions should be planned accordingly, holding them early
in the morning or late afternoon, or filming the cages with the Sun behind the camera.
Furthermore, it goes without saying that the filming distance greatly impacts image quality
and the estimation process as a whole. Filming should be done at a distance where the
the net can be clearly separated from the background, i.e., the edges should be sharp and
easily discernible.

As mentioned earlier in Section 5.2, the sea floor could have a big impact on the
computer vision component of the framework. Having the sea floor visible increases
the already difficult challenge of accurate semantic image segmentation. The scenario is
unlikely because fish farms should be situated 3km away from shore and have 50 m of
depth available to limit the environmental impact, as mentioned in [24,25].

5.4.3. Choosing the UNet Architecture Instead of Logistical Regression

It is important to note that the results seen so far were achieved using the trained
UNet architecture model for semantic image segmentation. While logistical regression
initially seemed promising for semantic segmentation (previous research done in [10]), its
limitations became evident during testing in Biograd. It quickly became apparent that the
method is not robust enough. Small changes in lighting conditions completely threw off
the segmentation which then produced unusable results. Adding the footage captured in
Biograd into the training dataset does improve estimation results, but at the same time it
degrades the quality of segmentation from footage captured in previous years. Still, the
biofouling estimation algorithm was run with both the old and new (added footage from
Biograd) logistical regression models, and the results can be seen in Table 4 below. All of the
estimated percentages in the table are generated by the framework without using any of the
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filters mentioned before. In Figure 25, below that shows the absolute estimation error for
each autonomous filming mission, it is apparent that using logistical regression not trained
on new footage produces much more inaccurate results than the other two models. Training
a logistical regression model with new footage does improve performance, but at the cost
of overtraining which can be seen by poor performance for the highest biofouling scenario.
The results for that particular test are worse because the filming conditions are different in
a sense that the previous three filming missions were carriedo ut on Wednesday afternoon,
and the 66% biofouling coverage filming was done the next day on Thursday morning.

Table 4. Table showing the average estimate of biofouling percentage when using the footage filters,
for each semantic segmentation model.

Actual Biofouling Log. Reg. Estim.
(Old Footage)

Log. Reg. Estim.
(New Footage) UNet

22% 29.96% 20.99% 16.00%

33% 50.12% 34.63% 32.19%

44% 53.49% 41.73% 41.02%

66% 52.45% 50.05% 65.48%

Figure 25. Bar plot showing the average absolute error in the estimated percentage of biofouling for
logistical regression models trained on just old (blue bar) and combined (orange bar) data, and UNet.

To sum up, using a robust UNet model for the image segmentation node in the
biofouling framework produced an average absolute biofouling estimation error of just
2.54%, as can be seen in Figure 25. The image segmentation is the most computationally
heavy task of the framework, and the time taken to segment an image using a trained UNet
model depends on the power of the onboard computer in the ASV if the estimation is to be
done in real-time, or the workstation if the estimation is to be carried out after filming is
complete. Using a dedicated GPU to run the UNet model is heavily recommended because
it reduces the processing time of a 960 × 540 resolution image from a few seconds using a
CPU, to the millisecond order of magnitude using a GPU. Furthermore, using UNet for
segmentation means that potentially obtaining a diverse range of footage from various
fisheries filmed under different conditions could only enhance the model’s robustness and
performance, whereas opting for simpler models like logistical regression would lead to
overtraining when faced with varying scenarios.
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6. Conclusions and Future Work

In conclusion, the main contributions of this research were: (1) development of a
labeling tool in order to create a curated dataset of labeled underwater HD images of fish
pens, (2) development and implementation of a framework successfully used for estimating
the amount of biofouling on the nets of fish pens, that incorporates a trained AI neural
network model used for the task of semantic segmentation of underwater images of fish
pens, and (3) development of an autonomous closed-loop control system using the available
SDK for the ROV and the available localization data supplied by the retrofitted underwater
positioning system.

The control loop algorithm successfully controlled the ROV in a pool setting using
point-to-point navigation. Although the scenario in which the experiment was conducted
is not an exact replica of the actual conditions in a fish farm, it still demonstrates the
possibility of using the ROV as an autonomous vehicle to perform inspection missions. The
control algorithm could be modified to include a three-dimensional map of the farm and
also fuse SONAR measurements if such a sensor would be mounted onto the ASV, together
with UWGPS and live camera footage, to achieve localization in a complex environment.
The labeling tool made it possible to accurately segment and semantically label the images
of fish pens at around 30 s or less per image, thus allowing us to create a dataset of more
than a thousand images within a satisfactory time frame. Perhaps most important, the
implementation of the proposed framework which was tested in a controlled environment
proved to be a success with the absolute value of the estimation error roughly being 2.5%. It
is also worth noting that carrying out the inspection mission in one take while keeping the
velocity of the ROV almost constant throughout, without much backtracking or spending
too much time filming one area in relation to the rest of the net, produces an accurate
estimation. Precisely determining filming positions to keep the overlap of footage fed to
the estimation framework at a minimum might not be cost-effective to develop. Due to the
nature of the current inspection process which involves divers estimating the state of the
net, a “good enough” estimation is satisfactory.

For future endeavors, the developed framework should be tested at an industrial
fishery using the original idea of pairing the ASV Korkyra with an ROV. This field testing
would aim to validate the framework’s effectiveness in a challenging environment like an
industrial fish farming operation. Furthermore, the previously developed proprietary tether
management system (cited in [14]) that also relies on localization of the ROV should be
integrated physically onto the ASV, and its driver software should be fully tested in such a
setup. Lastly, the project also envisions an air surveillance aspect using a light autonomous
drone. The landing platform for the drone was designed in such a way that it can be
mounted onto the ASV Korkyra [13]. The combined heterogeneous system comprising
the ASV Korkya, an ROV operating with the TMS, and the drone should be tested in a
real-world scenario in the future.
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GPS Global Positioning System
GPU Graphical Processing Unit
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HD High Definition
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UML Unified Modeling Language
UWGPS Underwater GPS
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Anić, M.; et al. Heterogeneous autonomous robotic system in viticulture and mariculture: Vehicles development and systems
integration. Sensors 2022, 22, 2961. [CrossRef]
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