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Abstract: Fish eggs have a wide range of predators. However, observing these predators is challeng-
ing, as is identifying fish eggs based on morphological traits. In this study, we observed hydroids,
which are sessile organisms, consuming pelagic fish eggs. We conducted cytochrome c oxidase I
(COI) metabarcoding to identify both the predator and the prey species. Massive COI reads were
de novo assembled and nine representative sequences were constructed. The predator, identified
from the representative sequences and its morphological features, was determined as Ectopleura
crocea. The fish eggs that had been preyed upon belonged to two species: Sillago japonica and Parajulis
poecilepterus. Additionally, four arthropod species (Labidocera rotunda, Oithona similis, Paracalanus
parvus, and Pseudevadne tergestina) were consumed, and their morphological traits could not be
observed, due to digestion. COI metabarcoding was an effective tool for studying the feeding activity
of these small predators.
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1. Introduction

Numerous marine teleost fish species employ a spawning strategy of releasing abun-
dant, dispersed pelagic eggs [1]. These eggs rely on their yolks for nourishment during
development, minimizing the risk of starvation [2]. Fish eggs, which lack the ability to
swim and cannot escape predators, have a high mortality rate due to predation [3,4].

Predators of pelagic fish eggs are highly diverse, ranging from invertebrates such
as copepods to fish and birds [5]. Direct observation of such egg consumption within
marine ecosystems is challenging [6]. An alternative approach is to examine fish eggs
found in the stomachs of predators [7]. The accurate identification of prey species often
depends on the state of their morphology [8]. Even when pelagic fish eggs remain intact, the
identification of their species can be challenging due to the high morphological similarity
among species [9].

Molecular identification based on the DNA barcode has become one of the ways to
complement the difficulties of morphological identification [10–13]. Among the DNA-based
methods, metabarcoding is applied for the sequencing and identification of bulk samples.
Metabarcoding has been used to investigate species compositions in various fields such as
fish eggs and larvae, zooplankton, and gut contents [14–17].

The present study aimed to suggest a new predator of fish eggs through the COI
metabarcoding of hydroids that preyed upon the fish eggs discovered in the southern
coastal waters of Korea. The hydroid, identified as Ectopleura crocea, is a native species of
the North Atlantic and is known to feed on diatoms, crustaceans, copepods, and chaetog-
naths [18]. E. crocea, introduced into the Pacific Ocean via ships [19], was recorded as
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Tubularia mesembryanthemum in Korea in 1941 [20], and its morphology was recorded in
1969 [21]. Since then, investigations on distribution have mainly been conducted [22,23].
Here, we report for the first time the predator–prey relationship between E. crocea and the
fish eggs and Arthropoda based on COI metabarcoding.

2. Materials and Methods
2.1. Sample Collection

The hydroids that consumed fish eggs were collected from the Tongyeong Megacosm
Test Station (34.7701◦ N, 128.3829◦ E), which is operated by the Korea Institute of Ocean Sci-
ence and Technology and located in the southern region of the Korean Peninsula. Seawater
was drawn up using a submersible pump positioned at a depth of 3 m and subsequently
filtered through a net with a mesh size of 300 µm. From the concentrated samples captured
by the net, two hydroids containing fish eggs in their stomachs, designated H1 (collected on
16 July 2015, at a depth of 3 m, water temperature 21.1 ◦C) and H2 (collected on 29 July 2015,
at a depth of 3 m, water temperature 23.4 ◦C), were isolated. These specimens were pho-
tographed using a digital camera attached to a dissecting microscope (Stemi 2000-C, Zeiss,
Jena, Germany) and promptly preserved in 99% ethanol at the collection site. Morphological
identification of the hydroids was conducted with reference to [21,22,24].

2.2. Genomic DNA Extraction, Amplification, and Sequencing

The genomic DNA of two specimens with intact bodies (H1 and H2) was extracted for
species identification following the protocol of the MagListo™ 5M Genomic DNA Extrac-
tion Kit (Bioneer, Daejeon, Republic of Korea). A two-step polymerase chain reaction (PCR)
approach was employed for sequencing using the MiSeq platform (Illumina, San Diego,
CA, USA). The initial PCR utilized a primer containing the MiSeq adapter sequence, with
the aim of amplifying the COI region (313 base pairs; mlCOIintF/jgHCO2198 [25]) in
DNA Free-Taq Master Mix (CellSafe, Yongin, Republic of Korea). The PCR products were
subsequently purified using the MagListo™ PCR/Gel Purification Kit (Bioneer, Daejeon,
Republic of Korea), and then employed as templates for the second PCR. The second PCR
was performed using the primer contained both adapter and index sequences of Nextera
XT Index Kit (Illumina, San Diego, CA, USA), which facilitated the separation of sequences
from each specimen. The first and second PCR conditions followed [26] and [27], respec-
tively. The same purification process was used for the second PCR product as the first
PCR product. Following the measurement of the DNA concentrations, these products were
mixed at equal concentrations. The MiSeq platform was utilized to generate paired-end
COI reads from the pooled samples, resulting in 159,058 reads for H1 and 199,526 reads
for H2.

2.3. Sequence Analysis

COI reads obtained from the two specimens were processed and then used to deter-
mine the species. The paired-end reads from the specimens were merged using BBmerge
with a low merge rate [28]. Subsequently, the primer regions were eliminated from the
merged reads utilizing Geneious R11 (https://www.geneious.com). Merged reads measur-
ing between 310 and 316 base pairs in length were selected for further analysis, resulting
in 6722 reads for H1 and 5210 reads for H2. The Geneious de novo assembler (set to
Low Sensitivity/Fastest) was employed to assemble these merged reads into contigs for
the construction of consensus sequences to represent each species. Consensus sequences
composed of two or more contig reads were identified, resulting in 60 for H1 and 66 for H2.

From the consensus sequences consisting of contigs, sequences containing degenerate
bases (e.g., R, Y, M, or K) were eliminated. After this process, 60 consensus sequences
remained for H1, with a total of 6717 contig reads, while H2 had 50 consensus sequences
with 5153 contig reads. From the consensus sequences featuring more than 100 contig
reads (constituting >1% of the total), the final consensus sequences were extracted, totaling
5 from H1 and 10 from H2.

https://www.geneious.com
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These consensus sequences were employed as reference sequences for mapping the
merged paired-end reads using the Geneious R11 mapper (https://www.geneious.com).
Following reference mapping, consensus sequences containing degenerate bases were
discarded. This procedure led to the creation of a final set of nine representative sequences,
including four from H1 and five from H2.

A BLAST search was performed using the nine representative sequences. The results
revealed sequences with 100% coverage and pairwise identity values of 99% or greater
compared to the representative sequences. Additionally, sequences of related taxa were
extracted. Both the reference sequences and the representative sequences aligned using
ClustalW [29] were utilized for the construction of a maximum-likelihood (ML) tree based
on the HKY+G model (1000 bootstrap repetitions) in MEGA11 [30]. Ultimately, the repre-
sentative sequences were classified into species based on their positions within the ML tree
and genetic distances between the sequences.

3. Results
3.1. Morphology of Hydroids

For both hydroids (H1 and H2; Figure 1), the hydranth with a manubrium, gonophores,
and distal and proximal tentacles were observed. The manubrium and gonangium were
brown and transparent in color. All tentacles were transparent. Centered on the manubrium,
distal tentacles were located at the upper entrance and proximal tentacles at the lower end.
Sample H1 had gonangium surrounding the manubrium. H1 contained two fish eggs with
one oil globule and H2 held one fish egg with one oil globule in the stomach.
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Figure 1. Photos of hydroids collected from the southern coast of Korea. Abbreviations: h, hydranth;
m, manubrium; g, gonophore; d, distal tentacle; p, proximal tentacle. Yellow bar, 1 mm.

3.2. Identification of Ectopleura crocea and Prey via Metabarcoding

COI metabarcoding identified the two specimens (H1 and H2) as Ectopleura crocea,
which had preyed upon fish eggs. A total of nine representative sequences were obtained
from the metabarcoding analysis, with four from H1 and five from H2 (Table 1). The ML
tree constructed from representative and reference sequences distinguished three phyla:
Cnidaria, Chordata, and Arthropoda (Figure 2). Representative sequences for predators
and prey formed these clades, with each containing one species in one genus.

The representative sequences H1.1 (OR449325) from H1 and H2.1 (OR449329) from
H2 formed a clade with the sequence (MH809676) of the predator E. crocea, which was
also identified based on morphological characteristics. The genetic distance between H1.1
(OR449325), H2.1 (OR449329), and E. crocea (MH809676) in the Cnidaria clade was 0.000,
which is much closer than the distance between species in the genus Ectopleura (0.216).
Among representative sequences, H1.1 (OR449325) and H2.1 (OR449329) were constructed
using the largest numbers of reads from H1 and H2, respectively (Tables 1 and S1).
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Table 1. Information about the representative sequences (Rep.) of samples and reference sequences
(Ref.) from the National Center for Biotechnology Information.

Taxonomy Sample

Phylum Species H1 H2

Rep.
(accession
number)

Reads
Ref.

accession
number

Paired
identity

Rep.
(accession
number)

Reads
Ref.

accession
number

Paired
identity

Cnidaria Ectopleura
crocea

H1.1
(OR449325) 5477 MH809676 100.0 H2.1

(OR449329) 1345 MH809676 100.0

Chordata Parajulis
poecilepterus

H1.3A
(OR449327) 102 HM180761 100.0

Parajulis
poecilepterus

H1.3G
(OR449328) 146 HM180763 100.0

Sillago
japonica

H2.2
(OR449330) 1054 MK264510 100.0

Arthropoda Labidocera
rotunda

H1.2
(OR449326) 934 AY145428 99.4

Paracalanus
parvus

H2.3
(OR449331) 801 KC784345 100.0

Pseudevadne
tergestina

H2.4
(OR449332) 621 EU675911 100.0

Oithona
similis

H2.5
(OR449333) 298 JN230870 100.0

Total 6659 4119
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In addition to the representative sequences of predators, reference sequences of two
species of Chordata, namely, Parajulis poecilepterus and Sillago japonica, showed a very
high genetic similarity to representative sequences prepared from samples H1 and H2.
Two sequences, H1.3A (OR449327) and H1.3G (OR449328) from H1, obtained from fish
eggs had a 100% similarity with reference sequences for P. poecilepterus (HM180761 and
HM180763). These two sequences differed in that position 223 was A in H1.3A and G in
H1.3G. The genetic distance between these samples of P. poecilepterus was 0.003, significantly
smaller than that between other species in the Labridae clade (0.242), namely, Leptojulis
lambdastigma (OQ387840) and Pseudolabrus seiboldi (AP006019). Representative sequence
H2.2 (OR449330) from H2 showed a 100% similarity with S. japonica (MK24510). The
genetic distance between H2.2 and S. japonica (MK24510) was much smaller than the
average genetic distance between species in the genus Sillago (0.282) (Tables 1 and S1).

Additionally, four copepods, which are arthropods, were found in H1 and H2, in-
cluding Labidocera rotunda, Paracalanus parvus, Pseudevadne tergestina, and Oithona similis.
The genetic distance between L. rotunda (AY145428) and the representative sequence H1.2
(OR449326) of H1 was 0.007, much smaller than the distance of 0.224 among other species
of the genus Labidocera (Tables 1 and S1). Each of the three representative sequences from
sample H2, H2.3 (OR449331), H2.4 (OR449332), and H2.5 (OR449333), formed a clade with
a sample of known species, namely, Paracalanus parvus (EU599545), Pseudevadne tergestina
(EU675911), and Oithona similis (JN230870), respectively. The genetic distance between
each of these three representative sequences and reference sequences in the copepod clade
was 0.000, indicating a much closer relationship than the average genetic distance among
copepods of 0.502 (Tables 1 and S1). These four species were not apparent during the
external observation of E. crocea (Figure 1).

4. Discussion

This study investigated species of visually observed predator and prey (hydroids
and fish eggs) as well as invisible prey (zooplankton) using COI metabarcoding. Diverse
information on species composition and distributions and predator–prey relationships is
necessary to understand the structure of ecosystems [31,32]. Predator–prey relationships
are identified through direct observation in the wild or analysis of the stomach contents of
collected specimens [33]. As an indirect method, these relationships can also be measured
based on the relative composition ratio of stable isotopes in predators and prey [34]. One
of the most widely used traditional analysis methods for predator–prey relationships is the
identification of prey in the predator’s stomach contents [35,36]. This method provides a
means to clarify the preferences of predators for certain species of prey [37]. Morphological
traits, which are the criteria used for species identification of prey organisms, are inevitably
damaged during predation and digestion [8]. Depending on the condition of the prey,
species identification from stomach contents is often difficult or impossible. Recently,
DNA barcoding and metabarcoding methods have been employed to overcome these
difficulties [38–40].

The predator hydroid was identified as Ectopleura crocea and its prey included two
species of fish eggs and four species of zooplankton. The major morphological character-
istics of the hydroids (H1 and H2) such as the hydranth, manubrium, gonangium, and
distal and proximal tentacles were identical to those of E. crocea [21,22,24]. The similarity
between the nine representative sequences obtained from samples H1 and H2 and the
reference sequences used for species identification was generally 100% (genetic distance,
0.000; Table S1). The representative sequences H1.1 (OR449325) and H2.1 (OR449329) from
specimens H1 and H2, respectively, matched the sequence of E. crocea (MH809676) within
the clade of genus Ectopleura (genetic distance, 0.000) (Figure 2). One species, Labidocera
rotunda (AY145428), had a 99.4% sequence identity and a genetic distance of 0.007, much
smaller than the genus Labidocera variation of 0.224. Interestingly, reference mapping to
Parajulis poecilepterus (HM180761 and HM180763) using reads from the two egg-bearing
H1 specimens generated two consensus sequences containing A and G at position 223,
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respectively. Considering the maternal inheritance of the mitochondrial DNA [41], the
single-nucleotide polymorphism could indicate that these two eggs were released from
different P. poecilepterus individuals. The genetic relationships between the representative
and the reference sequences were useful for the intra- and interspecies identification of
predators and prey.

Due to the feature of DNA metabarcoding, which is generally applied to a mixture
of multiple index samples, cross-contamination (false positives) between samples may
occur. Even if care is taken during experimental processes such as PCR amplification and
sequencing, false positives identified after sequencing must be minimized in silico [42–44].
After sequencing our samples (H1 and H2), zooplankton that could not be identified in
the external appearance of Hydra was discovered. First, we ruled out the possibility of
zooplankton contamination because the two specimens were assessed along with other fish
eggs physically separated from the zooplankton. And we strictly processed and filtered
the reads to generate representative sequences. We also considered contamination from
other fish eggs. A single species of fish was detected in two samples, each containing two
fish eggs and one fish egg. In terms of the number of fish eggs, the theoretical maximum
numbers of species for fish eggs per sample were 2 and 1, respectively, for H1 and 1 and 1
for H2. Moreover, the reads that make up the contig representing the fish eggs of these two
species did not overlap between H1 and H2. Therefore, it was judged that contamination
in this study was well controlled based on the experimental and sequencing process and
the number of fish eggs.

5. Conclusions

Utilizing COI metabarcoding, not only did we detect fish eggs eaten by Ectopleura
crocea, but also mostly digested zooplankton. E. crocea, the predator, preyed upon pelagic
fish eggs, specifically Parajulis poecilepterus and Sillago japonica. Additionally, we found
the presence of digested prey materials in the stomach of E. crocea, originating from four
copepod species: Labidocera rotunda, Paracalanus parvus, Pseudevadne tergestina, and Oithona
similis. The application of COI metabarcoding would be a promising tool for investigating
this diminutive predator and its prey. In Korea, E. crocea is only recognized as an invasive
species. Based on the results of this study, it is worth considering the role of E. crocea in
coastal waters of Korea. Also, the discovery of a new predator of fish eggs, E. crocea, will
expand our understanding of the feeding activities of E. crocea as well as fish egg mortality.
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