
Citation: Han, S. Predefined-Time

and Prescribed-Performance Control

Methods Combined with

Second-Order Terminal Sliding Mode

Control for an Unmanned Planing

Hull System with Input Delay and

Unknown Disturbance. J. Mar. Sci.

Eng. 2023, 11, 2191. https://doi.org/

10.3390/jmse11112191

Academic Editor: Rafael Morales

Received: 28 October 2023

Revised: 13 November 2023

Accepted: 16 November 2023

Published: 17 November 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Predefined-Time and Prescribed-Performance Control Methods
Combined with Second-Order Terminal Sliding Mode Control
for an Unmanned Planing Hull System with Input Delay and
Unknown Disturbance
Seongik Han

Department of Mechanical System Engineering, Dongguk University WISE Campus,
Gyeongju 38066, Republic of Korea; skhan@dongguk.ac.kr; Tel.: +82-54-770-2222

Abstract: In this study, we investigate a terminal sliding mode control (TSMC) system combined with
predefined-time and prescribed-performance control methods for an unmanned planing hull (UPH)
system in the presence of a control input delay at the heading axis and a porpoising motion due
to pitching-moment disturbance. A second-order TSMC system is adopted to bypass the unstable
heading-angle response of the conventional first-order TSMC system caused by the control input
delay of the hydraulic rudder actuator system. Next, predefined-time and prescribed-performance
control methods are proposed to enhance the disturbance rejection performance of an uncertain UPH.
The results of sequential comparative simulations show that the disturbance rejection performance of
the proposed hybrid disturbance rejector using both the predefined-time and prescribed-performance
control methods for a porpoising motion is superior to those of conventional controller systems
without introducing disturbance observers.

Keywords: unmanned planing hull system; control input delay; second-order terminal sliding mode
control; predefined-time control; prescribed-performance control

1. Introduction

Unmanned surface vehicles (USVs) are marine crafts that can conduct unmanned
missions for operations in dangerous areas, harsh environments, polluted areas, or nuclear-
contaminated sites. They can be operated remotely or automatically by pilots from safe
locations with minimal human intervention. USVs are investigated increasingly in marine
engineering areas related to marine robotic vehicles, which provide guidance, navigation,
and control for intelligence, coastal surveillance, reconnaissance, scientific marine research
studies, and commercial and military purposes.

Among the many types of USVs, a planing hull (PH) [1] is a sea surface vehicle in
which the weight of the vehicle is supported by the generated hydraulic pressure in the
vehicle during high-speed navigation. This pressure provides a lift force, which decreases
the vehicle surface resistance. The PH demonstrates high boarding sensitivity in calm-sea-
surface environments; however, under high waves, its boarding sensitivity deteriorates and
adversely affects the vehicle body. This problem can be partially avoided by constructing a
V-shaped PH. However, the size of the hull is limited because the PH requires high engine
power. Nonetheless, PHs is widely used in various fields, such as high-speed patrol vessels,
racing, and leisure vessels. The weight of a PH in the low-speed range is supported only
by buoyancy forces such as the displacement of ships.

Unmanned PH (UPH) control technologies for automatic navigation include speed and
steering control systems. Propeller thrust is typically used in surge speed control systems.
The steering control system for the course-keeping control of a UPH includes a hydraulic
motor pump, hydraulic cylinder, servo motor, and rudder. The control configuration of
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the surface vessel is disadvantageous as it allows only two actuators to be used for motion
with three degrees-of-freedom (DOFs). The propeller thrust is applied to control the surge
speed and, thus, both the sway displacement and heading are controlled by only the rudder
action. Moreover, directly compensating for the unmatched disturbance of the porpoising
motion in the pitching axis using only two actuators is challenging. Thus, the rudder
control action must be improved to simultaneously compensate for both the deviation
from the guided path and porpoising motion disturbances caused by the pitching moment
transferred from the pitch axis, as well as to enhance surge control.

Sliding mode control (SMC) [2] is a widely used control method that is theoretically
simple and robust against external uncertainties. Thus, SMC has been applied to the course-
tracking system of USVs [3–6]. However, the switching operation involved results in
negative chattering [7]. To overcome this issue, the boundary layer theory was established.
Nonetheless, performance degradation remains. As an alternative to conventional SMC,
terminal sliding mode control (TSMC) [8–10] was investigated to realize faster tracking
and better disturbance rejection with only mild chattering. TSMC was applied for path
following and course keeping in USVs [11–16]. However, the finite convergence time of
a TSMC system is typically an unbounded function with respect to the initial conditions
of the system and is conservative in most cases. Moreover, obtaining a direct relationship
between a fixed stabilization time and the tuning control parameters is challenging.

When UPHs are underactuated, unmatched disturbances typically exist, in which
uncertain external disturbances are not directly coupled to the control input. In particular,
direct compensation for the pitching moment generated along the pitch axis is challeng-
ing if the hull form is not designed appropriately to prevent the pitching-moment effect.
Meanwhile, an additional trim tab and interceptor [17–19] were introduced to regulate
eect or ethe pitching momentll form is designeditch axis is difficult to controlthe con-
trol input boat trim, and a maneuvering posture was adopted to address the low wave
resistance. Consequently, the surge speed increased and fuel consumption decreased.
However, equipping these additional devices on boats increases the cost of designing and
manufacturing the UPH, as well as increasing system complexity. Moreover, conventional
disturbance observers [20–22] and extended state observers [23–26] have been used to
estimate the external disturbance in USV systems. Most of these observers are applied
based on matched uncertainty. Moreover, adopting a disturbance observer increases the
control system complexity and computing time.

Inspired by the aforementioned finding, first, the concept of predefined-time control
was developed [27–29] to achieve fast responses and improve robustness to uncertainty.
The distinguishing advantage of predefined-time control is that the system settling time is
determined explicitly by the tuning parameters and can be defined in advance. Moreover,
a partial improvement in uncertainty was achieved. Predefined-time control has recently
been employed for the attitude control of rigid spacecraft systems [30–32], multi-agent sys-
tems [33–36], and USV systems [37,38]. However, predefined-time control prefers to achieve
time-domain performance via direct parameter choice. Thus, the disturbance rejection
effect by only utilizing this scheme is likely to be weak. Applications for the disturbance
rejection of a predefined-time control scheme have been rather scarce, until now.

However, as another constraint control method, prescribed-performance controls [38–42]
are considered to obtain greater robustness to unmatched pitching-moment disturbances
without requiring a complex disturbance observer in this study. Prescribed-performance
control implies that the tracking error should converge to an arbitrarily prescribed small
steady state bound with an appropriate convergence rate and exhibit a maximum overshoot
of less than a sufficiently small predefined value. Based on the prescribed performance,
the steady state and transient performances against uncertainty were improved by apply-
ing a USV system [43–47]. However, the conventional prescribed-performance control
adopted the complex variable transformation that results in a complicated controller struc-
ture. In this study, based on the idea that the robustness of the control system with the
prescribed-performance control can partially exert a disturbance depression, the prescribed-
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performance control applied in [42] was adopted without explicit dependence on the
disturbance observer. The adopted prescribed-performance control term requires a simpler
variable transformation than that presented in [36–41]. Notably, the predefined control
performance can be achieved by adding the prescribed control term.

In this study, a disturbance rejector utilizing both predefined-time and prescribed- per-
formance control methods is introduced to maximize the disturbance rejection performance
against an unmatched pitching moment exerting an effect on the heading axis.

The main contributions of this study are as follows:

(1) Porpoising disturbance due to the pitching moment of UPH systems was assumed to
enhance sensitivity to variations in the unmatched uncertainties of UPH systems.

(2) A second-order TSMC system was designed to accommodate the control input delay
in a hydraulic rudder actuator system.

(3) A second-order TSMC system with predefined-time control was designed to achieve
improved settling-time convergence and robustness to unmatched disturbances when
compared with a conventional TSMC system. Furthermore, it aimed to achieve a
faster and more stable heading-angle response by the UPH than conventional TSMC
for a perturbed environment.

(4) Predefined-time and prescribed-performance control methods were used simulta-
neously for the first time to maximize the rejection performance and obtain stable
tracking performance for an unmatched pitching-moment disturbance without adopt-
ing a complex disturbance observer. Consequently, the tracking performance of the
heading-angle axis was largely improved by utilizing the proposed hybrid distur-
bance rejector.

(5) The proposed second-order TSMC system with a hybrid disturbance rejector facil-
itated by predefined-time and prescribed-performance control exhibited a simpler
controller structure than the conventional robust control systems equipped with a
complex disturbance observer to estimate the disturbance.

(6) To the best of our knowledge, predefined-time and prescribed-performance control
methods have not been applied simultaneously in the field of USV control to improve
disturbance rejection performance. In fact, this concept is not demonstrated in other
control systems.

Finally, several comparative simulations of a nonlinear six-DOF UPH system were
conducted to evaluate the performance of the proposed control scheme.

The remainder of this paper is organized as follows: Section 2 presents a dynamic
model of the UPH system. The design process for the proposed TSMC, the predefined-time
control, and the prescribed-performance control are presented in Section 3. The simulation
results for the UPH model are presented in Section 4. Finally, the conclusions of this study
are presented in Section 5.

2. Modeling the UPH

A simplified UPH system with a characteristic porpoising motion is shown in
Figure 1 [48], where the UPH system features six-DOF motion, and the definitions of
the coordinate variables are presented in Table 1.
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Table 1. Definitions of each coordinate variable.

Nomenclature Force and Moment Linear and Rotary
Velocity

Position and
Euler Angle

Surge X u x
Sway Y v y
Heave Z w z

Roll K p φ
Pitch M q θ
Yaw N r ψ

2.1. Dynamics of UPH

The kinematics of the UPH between the inertial and body coordinated frames are
expressed as follows:

.
η1 = J1(η2)υ1
.
η2 = J2(η2)υ2

(1)

where

η =

[
η1
η2

]
η1 =

x
y
z

 η2 =

φ
θ
ψ

 υ =

[
υ1
υ2

]
υ1 =

u
v
w

 υ2 =

p
q
r



J1(η2) =

cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ



J2(η2) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ


The six-DOF nonlinear rigid body dynamics of the UPH are expressed as follows:

MRBυ + CRB(υ)υ = ΓRB, (2)

where υ = [u v w p q r]T . MRB denotes the inertia matrix of the rigid body, which can be
represented by

MRB =



m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz
−myg mxg 0 −Izx −Izy Iz

 (3)

CRB(υ) denotes the Coriolis centripetal matrix, which can be represented by

CRB(υ) =



0 0 0
0 0 0
0 0 0

−m(ygq + zgr) m(yg p + w) m(zg p− v)
m(xgq− w) −m(zgr + xg p) m(zgq + u)
m(xgr + v) m(ygr− u) −m(xg p + ygq)
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m(ygq + zgr) −m(xgq− w) m(xgr + v)
−m(yg p + w) m(zgr + xg p) −m(ygr− u)
−m(zg p− v) −m(zgq + u) m(xg p + ygq)

0 −Iyzq− Ixz p + Izr Iyzr + Ixy p− Iyq
Iyzq + Ixz p− Izr 0 −Ixyr− Ixyq + Ix p
−Iyzr− Ixy p + Iyq Ixyr + Ixyq− Ix p 0

 (4)

ΓRB = Γ + ΓH + ΓE is the generalized force and moment vector, Γ denotes the propul-
sion and moment vector, ΓH denotes the hydraulic force and moment vector, and ΓE denotes
the environmental disturbance vector, which is composed of the current, wave, and wind
disturbance vectors, i.e., ΓE = Γcurrent

E + Γwave
E + Γwind

E .

2.2. The Modeling of the Drag Force and Pitching Moment of the UPH

The weight of the UPH is supported by the hydraulic pressure generated by the
ship body under high-speed navigation conditions. This pressure is transformed into
a lift force exerting on the body of the ship, thus resulting in a decrease in resistance.
Estimating resistance experimentally is very difficult because the hydraulic equation to
be used contains many unknown hydraulic and disturbance parameters. The Savisky
method [1] can be used to calculate the resistance and pitching-moment variation based
on the variation in the trim angle via an analysis of the fluid field of the planing side. A
schematic representation of the UPH is shown in Figure 2 and the semantics of the UPH
parameters of Figure 2 are listed in Table 2.
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Table 2. Dimensional and dynamic symbols and corresponding semantics of UPH.

Symbol Semantics

LCG the longitudinal distance from the transom to the center of gravity
VCG the perpendicular distance for the bottom from keel to the center of gravity
N, T the vertical drag force and the propulsion force of the propeller
D f the viscous friction drag of the body
f , c the distance between T, N, and the center of gravity, respectively

d, τ, b the draft of the keel in the transom, the trim angle of keel, and the chine width
a, V The distance between D f and the center of gravity, and the speed of the boat

ε the angle between the propulsion force and trim line
β, ∆ the inclination angle of the planing side and the weight of the body

LC, Lk the flooded length of the chine and the flooded length of keel
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The vertical drag (normal force) N is expressed as

N =
∆

cos τ
(5)

D f denotes the friction drag (tangential force). The dynamic equations for a general
planing hull where the force does not pass the center of gravity are expressed as follows:

(T cos(τ + ε)− N sin τ − D f cos τ)i + (N cos τ + T sin(τ + ε)−mg− D f sin τ)j = 0 (6)

(N × c + D f × a− T × f )k = 0 (7)

The friction drag D f exerted on the body skin as a tangential force and the vertical
force N exerted on the floor of the body at the center point of the weight of the body
generate the bow-down moment, where the effective lever arms correspond to c and a,
respectively. Meanwhile, the propulsion force T generated from the propeller generates a
bow-up moment, where the effective lever arm corresponds to f. Assuming a small τ, we
can obtain the following from (6):

T cos ε = ∆ sin τ + D f (8)

Next, assuming that cos ε ≈ 1 in (8) and substituting it into (6), we obtain

∆ = N cos τ + ∆ sin τ sin(τ + ε) + D f sin(τ + ε)− D f sin τ

≈ N cos τ + ∆ sin τ sin(τ + ε) (9)

Subsequently, we obtain

N =
∆[1− sin τ sin(τ + ε)]

cos τ
(10)

T =
∆ sin τ + D f

cos ε
≈ ∆ sin τ + D f (11)

Considering (7), (10), and (11), the total moment can be expressed as follows:

Mtot = ∆
[ c

cos τ
(1− sin τ sin(τ + ε))− f sin τ

]
+ D f (a− f ) (12)

where the lever arms are expressed as
a = VCG − b

4 tan β, VCG = the vertical distance between the transom and center
of weight,

c = LCG− lp,

lp = the distance between the transom and the vertical force exerted based on the keel.
The equilibrium moment implies that Mtot = 0. If a negative moment is observed, then

the assumed navigation trim value is extremely low. The navigation trim is an extremely
important factor and, thus, should be estimated appropriately because it determines the
high-speed navigation performance. An inaccurate trim causes unstable motion, such as
porpoising motion, i.e., the dolphin phenomenon, during navigation. In actual applications,
the trim angle, engine power, and size of the flooded chine and keel should be selected such
that the pitching-moment becomes zero. Otherwise, the equilibrium moment condition is
violated and a disturbance pitching moment may be generated.

Therefore, considering the drag force and pitching moment derived in the previous
section, the generalized external force and moment in the six-DOF rigid body dynamics of
the UPH can be expressed as follows:

ΓRB = Γ + ΓH (13)
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where
Γ =

[
uu 0 0 0 0 ur

]T
ΓH =

[
Du 0 0 0 Dq 0

]T

Du = −mg tan τ −
D f

cos τ

Dq = −Mtot = −∆
[ c

cos τ
(1− sin τ sin(τ + ε))− f sin τ

]
− D f (α− f )

uu,ur denote the control inputs for the surge and yaw axes, Du denotes the resistance
in the surge axis, and Dq denotes the pitching moment, respectively.

Remark 1. The pitching moment Dq as shown in (14) is separated from the control input ur along
the yaw axis, as shown in (15):

Iy
.
q = −m[−( .

w + vp− uq)xg + (
.
u− vr + wq)zg]

−[Iy
.
q + (Ix − Iz)pr− Iyz

.
r + (Iyz p− Ixyr)q + Ixz(p2 − r2)]− Dq

(14)

Iz
.
r = m[(

.
v + ur− wp)xg − (

.
u− vr + wq)yg] + [(−Ixz

.
p + Iyz

.
q) + (Ixzq− Iyz p)r

+(Iy − Ix)pq + Ixy(q2 − p2) + ur
(15)

Thus, when this moment appears, compensating for the disturbance directly using a
conventional disturbance observer based on the pitch or yaw axis dynamics is difficult ow-
ing to the underactuated UPH system. Therefore, other types of disturbance compensators
are required.

2.3. Modeling the Rudder Hydraulic Actuator

The rudder mechanism is an actuator type in which the rudder rotary angle is deter-
mined based on the cylinder stroke of a hydraulic system, after which the rate of turn is
obtained. The rudder hydraulic system was designed under the operating conditions of a
single cylinder with a stroke and the maximum rudder saturation angle. The linear motion
of the hydraulic cylinder was converted into rotary motion via the hinge of the rudder. The
hydraulic system is composed of an oil pump, an orifice flow valve, and a cylinder. The
cylinder velocity is controlled by the area of the orifice valve, and the position of the piston
is determined by the pump flow as shown in Figure 3.
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The slew rate saturation is the maximum rotary velocity. The time delay of the rudder
is expressed as

tδ =

.
δrmax

δr
(16)

where δr denotes the deflection of the rudder and
.
δrmax denotes the maximum rotary

velocity of the rudder.

3. Controller Design of the UPH
3.1. Fundamentals Regarding Predefined-Time Stability and Prescribed-Performance Function

Consider the following system:

.
x(t) = f (t, x; a) (17)

where x(t) ∈ Rn denotes the state of the system, f : R→ Rn is a nonlinear function, and
a ∈ Rb denotes the constant system parameters. The time t is bounded by the interval
[t0, ∞), where t0 ≥ 0, and x(t0) = x0 denotes the initial state of the system.

Definition 1 [28]. The origin of system (17) is globally finite-time stable if it is globally asymptotic
stable and any solution x(t, x0) of system (17) reaches the equilibrium point at some finite time
moment, i.e., ∀t ≥ T(x0):x(t, x0) = 0, where T : Rn → R+ ∪ {0} .

Definition 2 [28]. The origin of system (17) is fixed-time stable if the origin of system (17) exhibits
finite-time stability and the settling-time function is bounded, i.e., ∃Tmax ≥ 0 :T(x0) ≤ Tmax:∀x0.

Definition 3 [28]. In the case of fixed-time stability, the origin of system (17) exhibits predefined-
time stability if the parameter a ∈ Rb of system (17) can be selected such that the settling-time
functionTmax can be predefined as desired.

Definition 4 [28]. For x(t) ∈ Rn, the predefined-time stabilizing function is defined as follows:

ϕp(x; Tc) =
1

pTc
exp(xp)|x|1−p (18)

where Tc > 0, 0 < p ≤ 1, and
.
ϕp =

dϕp
dt exists for all x and Tc.

Lemma 1 [28]. For every initial condition x0, the following system is globally and strongly
predefined-time stable under a strongly predefined time Tc:

.
x(t) = −ϕp(x; Tc) (19)

This implies that x(t) = 0 holds for all t ≥ t0 + Tc, regardless of the value of x0.
A smooth decreasing function ρ(t) > 0 is defined as follows:

ρ(t) = (ρ0 − ρss)e−art + ρss (20)

where ρ0, ρss = limt→∞ρ(t), and ar denote the positive constants selected for the confining
error bound. The heading-angle tracking error is guaranteed to remain in the prescribed
transient and steady-state range bounds as follows:

−ρ(t) < er(t) < ρ(t) (21)

The transformed constraint error is selected as follows [42]:

ξr(t) =
er(t)
ρ(t)

(22)
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The error transformation is selected as follows [42]:

Λpr(t) = tan(κrξr(t)) (23)

where Λpr(t) denotes a smooth and strictly bounded function and 0 < κr < π/2.

Theorem 1. The following condition is true if and only if ρ0, ρss, and a are selected as positive
constants, such that (21) is satisfied.

0 ≤ Λpr(t) ≤ tan(κr), ∀t > 0 (24)

Proof of Theorem 1. See the proof in Theorem 1 [42]. �

3.2. Predefined-Time TSMC Controller Design for Surge Velocity

The target velocity lim
t→∞

U → Ud as t→ ∞ . Furthermore, u→
√

U2
d − v2 because

U =
√

u2 + v2. The desired surge velocity can be expressed as ud →
√

U2
d − v2 because

Ud ≥ |v| is always satisfied. In actual scenarios, the aim of surge control is lim
t→∞

u→ ud

because |v| occupies a small portion in U =
√

u2 + v2. To facilitate controller design, the
cross-product of inertia terms is disregarded, i.e., Ixy = Izx= Izy = Iyz = 0. Hence, the
surge dynamics described in (2) and (13) can be rewritten as follows:

.
u = fu +

1
m

uu + du (25)

where du = 1
m Du, |du| ≤ ∆u, and ∆u denote the unknown disturbance bound, and

fu = −[−vr + wq− xg(q2 + r2) + yg(−
.
r + pq) + zg(

.
q + pr)] (26)

A surge velocity error is defined as eu = ud − u, and a sliding surface is defined as

σu = eu +
∫ t

0
(ku1eu + ku2sig1/2(eu))dt (27)

where kui > 0, i = 1, 2, are constants. Taking the time derivative of (27), we obtain

.
σu =

.
eu + (ku1eu + ku2sig1/2(eu))

=
.
ud − fu −

1
m

uu − du + (ku1eu + ku2sig1/2(eu))
(28)

The control input is selected as follows:

uu = m(uueq + uurob + uupt) (29)

uueq = cu1σu + cu2sig1/2(σu) +
.
ud − fu + ku1eu + ku2sig1/2(eu) (30)

uurob = cu3
σu

|σu|+ εu
(31)

uupt =
1

(
√

2)
γu+1

puTcu

exp(V1
pu)sigγu(σu) (32)

where cui > 0, i = 1, 2, 0 < εu ≤ 1, 0 < pu ≤ 1, and 0 < γu < 1 are constants. The
Lyapunov function candidate is defined as follows:

V1 =
1
2

σ2
u (33)
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Applying the time derivative to (33) and considering (29) yields

.
V1 = σu

.
σu

= σu[
.
ud − fu −

1
m

uu − du + ku1eu + ku2sig1/2(eu)]

= σu

(
−cu1σu − cu2sig1/2(σu)− cu2

σu

|σu|+ εu
− du

− 1

(
√

2)
γu+1

puTcu

exp(V1
pu)sigγu(σu)

)
≤ −cu2

σ2
u

|σu|+ εu
− 1

(
√

2)
γu+1

puTcu

exp(V1
pu)sigγu+1(σu) + |σu|∆u

≤ −|σu|
(

cu2|σu|
|σu|+ εu

− ∆u

)
− 1

(
√

2)
γu+1

puTcu

exp(V1
pu)sigγu+1(σu)

(34)

If cu2 is selected such that the condition of cu2|σu |
|σu |+εu

≥ ∆u is satisfied, and considering

the result of
√

2V1 ≤ |σu|γu+1 [8], then (34) can be expressed as follows:

.
V1 ≤ −

1

(
√

2)
γu+1

puTcu

exp(V1
pu)(2V1)

(γu+1)/2

≤ − 1
puTpu

exp(V1
pu)V1

(γu+1)/2
(35)

where (
√

2)
γu+1

Tcu = Tpu. By setting γu = 1− 2pu, we obtain

.
V1 ≤ −

1
puTpu

exp(V1
pu)V1

1−pu (36)

Based on the result of Lemma 1, σu → 0 can be achieved in a predefined time Tpu of
the surge axis, which is expressed as

Tu ≤ Tpu (37)

Remark 2. The TSMC system is designed using (29) by removing the predefined-time control term,
as follows:

uu = m(uueq + uurob) (38)

3.3. Predefined-Time Second-Order TSMC System Design for Heading Angle

The yaw axis dynamics can be rewritten to facilitate the TSMC system’s design by
disregarding the small cross-product of the inertia terms as follows

.
r = fr(u, v, w, p, q) +

xδPu

Iz
δr + dr (39)

where xδ denotes the moment arm length from the center of rotation for the pivot point of
propulsion, dr denotes the disturbance in the heading axis, Pu denotes the propulsion in the
surge axis, and δr denotes the rudder angle. Meanwhile, the coupled nonlinear dynamics
of the heading axis is expressed as follows:

fr(u, v, w, p, q) =
m
Iz
[(

.
v + ur− wp)xg − (

.
u− vr + wq)yg] +

1
Iz
(Iy − Ix)pq (40)
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As shown in Figure 3, a first-order delay occurred in the angle-position output of the
rudder actuator. This delay can be expressed using the following transfer function:

G(s) =
δr

ur
=

1
tds + 1

(41)

where ur is the control input for the rudder angle and td is the time constant. The state
space model of (41) can be expressed as

τ
.
δr + δr = ur (42)

or .
δr = −(1/td)δr + (1/td)ur (43)

Taking the time derivative of (39) and considering (42), we obtain

..
r =

.
f r(

.
u,

.
v, u, v, w, p, q) +

xδPu

Iz

.
δr +

.
dr

= Fr(
.
u,

.
v, u, v, w, p, q, δr) +

xδPu

td Iz
ur +

.
dr

(44)

where

Fr(
.
u,

.
v, u, v, w, p, q, δr) =

∂ fr

∂
.
u

..
u +

∂ fr

∂
.
v

..
v +

∂ fr

∂u
.
u +

∂ fr

∂v
.
v +

∂ fr

∂w
.

w +
∂ fr

∂p
.
p +

∂ fr

∂q
.
q− xδPu

td Iz
δr

∂ fr

∂
.
u

= −
myg

Iz

∂ fr

∂
.
v

=
mxg

Iz

∂ fr

∂u
=

mxg

Iz
r

∂ fr

∂v
=

myg

Iz
r

∂ fr

∂w
= −

mxg

Iz

∂ fr

∂p
= −

mxg

Iz
w +

1
Iz
(Ix − Iy)q

∂ fr

∂q
= −

myg

Iz
w +

1
Iz
(Ix − Iy)p

To simplify the dynamics, we disregard w- and q-axis terms with insignificant contri-
butions, which yields the following expression:

Fr(
.
u,

.
v, p, δr) =

m
Iz

[
xg(

..
v + r

.
u) + yg(−

..
u + r

.
v)
]
− xδPu

td Iz
δr (45)

Subsequently, we define the errors of the heading axis as follows:

er = ψd − ψ

.
er =

.
ψd −

.
ψ = rd − r

..
er =

..
ψd −

..
ψ =

.
rd −

.
r (46)

Thus, the second-order sliding mode surface is expressed as follows:

σr =
..
er + kr2sigα2(

.
er) + kr1sigα1(er) (47)

In (47), α1 and α2 are selected as [49]{
α2 = α ∈ (1− ε, 1), ε ∈ (0, 1)
α1 = α2α3

2α3−α2
, α3 = 1 (48)
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The coefficient cri > 0 is selected such that the polynomial p2 + kr p + kr1 is Hurwitz.
Taking the time derivative of (47) and considering (45) and (46), we obtain

.
σr =

...
e r + kr2α2

∣∣ .
er
∣∣α2−1..

er + kr1α1|er|1−α1 .
er

=
..
rd + kr2α2

∣∣ .
er
∣∣α2−1..

er + kr1α1|er|1−α1 .
er − Fr(

.
u,

.
v, p, δr)−

xδPu

td Iz
ur −

.
dr

(49)

The heading control law is selected as follows:

ur =
td Iz

xδPu
(ureq + urrob + urpt) (50)

ureq = cr1σr + cr2sig1/2(σr) +
..
rd − kr2α2

∣∣ .
er
∣∣α2−1..

er − kr1α1|er|1−α1 .
er + Fr(

.
u,

.
v, p, δr) (51)

urrob = cr3
σr

|σr|+ εr
(52)

urpt =
1

(
√

2)
γr+1

prTcr

exp(V2
pr )sigγr (σr) (53)

where cri > 0, i = 1, 2, 3, 0 < εr ≤ 1, 0 < pr ≤ 1, and 0 < γr < 1 are constants. Defining
the Lyapunov function candidate as

V2 =
1
2

σ2
r (54)

and taking its time derivative in addition to considering (50), we obtain

.
V2 = σr

.
σr

≤ σr

(
..
rd + kr2α2

∣∣ .
er
∣∣α2−1..

er + kr1α1|er|1−α1 .
er − Fr(

.
u,

.
v, p, δr)−

xδPu

td Iz
ur + ∆r

)
(55)

where
∣∣∣ .
dr

∣∣∣ ≤ ∆r. Substituting (50) into (55), we obtain

V2 ≤ −cr2|σr|3/2 − cr3
σ2

r
|σr|+ εr

− 1

(
√

2)
γr+1

prTcr

exp(V2
pr )sigγr+1(σr) + |σr|

∣∣∣ .
dr

∣∣∣
≤ −|σr|

(
cr3|σr|
|σr|+ εr

− ∆r

)
− 1

(
√

2)
γr+1

prTcr

exp(V2
pr )sigγr (σr)

(56)

If cr2 is selected such that the condition cr3|σr |
|σr |+εr

≥ ∆r is satisfied and considering the

result of
√

2V2 ≤ |σr|γr+1 [8], then (56) can be expressed as follows:

.
V2 ≤ −

1

(
√

2)
γr+1

prTcr

exp(V2
pr )(2V2)

(γr+1)/2

≤ − 1
prTpr

exp(V2
pr )V2

(γr+1)/2
(57)

where (
√

2)
γr+1

Tcr = Tpr. By setting γr = 1− 2pr, we obtain

.
V2 ≤ −

1
prTpr

exp(V2
pr )V2

1−pr (58)

Based on the result of Lemma 1, σr → 0 can be achieved in a predefined time Tpr of
the heading axis, which is expressed as

Tr ≤ Tpr (59)
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Remark 3. The TSMC system is designed using (50) by removing the predefined-time control term
as follows:

ur =
td Iz

xδPu
(ureq + urrob) (60)

3.4. Predefined-Time and Prescribed-Performance Second-Order TSMC System Design for
Suppressing the Disturbance of the Heading Angle

The heading control law with predefine-time and prescribed-performance control
terms is selected as follows:

ur =
td Iz

xδPu
(ureq + urrob + urpt + urpr) (61)

urpr = −cr4Λpr(t)(σr + sig1/2(σr)) (62)

where cr4 > 0 is a constant. Substituting (61) into (55) and based on Theorem 1, we obtain

V2 ≤ −cr2|σr|3/2 − cr3
σ2

r
|σr|+ εr

− 1

(
√

2)
γr+1

prTcr

exp(V2
pr )sigγr+1(σr)

−cr4Λpr(t)σ2
r − cr4|σr|3/2 + |σr|

∣∣∣ .
dr

∣∣∣
≤ −|σr|

(
cr3|σr|
|σr|+ εr

− ∆r

)
− 1

(
√

2)
γr+1

prTcr

exp(V2
pr )sigγr (σr)

(63)

Repeating the procedures outlined in (56)–(58), the predefined-time condition in (59)
can also be obtained.

In this section, TSMC_1st is designed to control the surge velocity. Next, TSMC_2nd for
the heading-angle control is designed to solve the issue of the input delay in the hydraulic
actuator of the heading axis. Furthermore, predefined-time and prescribed-performance
control schemes are adopted simultaneously in the TSMC systems to obtain faster tracking
performance and compensate for the disturbance caused by the pitching moment. The
closed-loop stabilities for the designed control systems are proved explicitly using the
Lyapunov functions.

4. Simulation Results and Discussion

Simulations were performed to demonstrate the effectiveness of the proposed control
strategy for a small UPH model. A small model of the UPH was designed based on a scale
ratio of 1 : 6. The selected dynamics of the small UPH model system are listed in Table 3.

Table 3. Selected dynamics of small UPH model system.

Parameter Value Parameter Value

m 20.8kg f , c, d, a 0.026 m, 0.1 m, 0.12 m, 0.07 m
Ix, Iy, Iz 0.2 kgm2, 0.452 kgm2, 0.275 kgm2 b, λ 0.71 m, 0.41

xg, yg, zg 0.694 m, 0, 0.23 m ε, β 4◦, 10◦

LCG, VCG 1.47 m, 0.11 m τ, α 3◦, 27.5◦

ρ, C f 1026 kg/m3, 0.8 Aw 0.21 m2

The drag force in the surge axis was selected as follows:

Du = 30.2u− 45 N (64)

The tangential drag force is given by

D f =
1
2

ρV2
m AwC f (65)
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where Aw is the wetted surface, C f is the friction drag coefficient, and the mean velocity of
the running side is calculated as

Vm = u

[
1− 0.012λ1/2τ1.1 − 0.0065β(0.012λ1/2τ1.1)

0.6

λ cos τ

]1/2

(66)

The pitching moment can be generated from (13) by using the parameters in Table 3
and (66).

The slew rate saturation is the maximum rotary velocity, which was assumed as
.
δrmax = 10◦/ sec. A total time of 4.5 s was required to rotate the rudder angle plate by
30◦ (0.5236 rad), as shown in Figure 5a. The response velocity for the motion input of the
rudder is expressed as shown in Figure 5b.
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Figure 5. Time-delayed output angle and rudder slew rate for rudder input. (a) rudder angle;
(b) angle rate.

Four control systems were designed to compare the performance of the proposed
control strategy with the conventional strategy: first-order TSMC surge and heading con-
troller (TSMC_1st), first-order TSMC surge controller and second-order TSMC heading
controller (TSMC_2nd), first-order TSMC surge controller and second-order TSMC heading
controller with the predefine-time control (PTSMC_2nd), and first-order TSMC surge con-
troller and second-order TSMC heading controller with the predefine-time and prescribed-
performance controls (P&PTSMC_2nd). The control parameters of the P&PTSMC_2nd
system are listed in Table 4.

Table 4. Selected parameters of P&PTSMC system.

Parameter (Surge) Value Parameter
(Heading) Value

cu1, cu2, cu3 2, 1.5, 1 cr1, cr2, cr3, cr4, κr 2, 1, 2, 10, 50
ku1, ku2, εu 1, 1.2, 0.01 kr1, kr2, εr 1, 1.25, 0.01
Tcu, pu, γu 3, 0.2, 0.5 α1, α2 9/16, 9/23

Tcr, pr, γr 3, 0.05, 0.5
ρ0, ρss, ar 30◦, 10◦, 0.5

4.1. Simulation Results for the Step Command of Surge Velocity and Heading Angle

The simulation was performed to evaluate the control performance under the follow-
ing step command inputs: surge velocity, 15 knots; heading angle 30◦. The simulation
results are shown in Figures 6 and 7. Figure 6 shows the surge velocity outputs and errors
of the TSMC and PTSMC systems. Two cases for the PTSMC system were considered to
show the faster response property of the predefined-time control, where the settling time of
two PTSMC systems was shorter than that of the TSMC system owing to the predefined
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control action. However, the PTSMC1 was selected in the next step because too fast a
response in PTSMC2 causes the saturation of the surge control actuator of the propeller.
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The simulation results under an input delay in the heading control channel are shown
in Figure 7. The TSMC_1st system exhibits severe oscillations because of the input delay
effect, whereas the TSMC_2nd system exhibits a stable response because it considered the
delay effect, as shown in Figure 7a. Meanwhile, the PTSMC_2nd system indicated a faster
response owing to the predefined-time control action, as shown in Figure 7b. The tracking
errors for three systems are shown in Figure 7c, where the PTSMC system showed the most
stable and rapid response among the three systems.
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4.2. Simulation Results for the Multi-Step Command of Surge Velocity and Sine Wave
Heading Angle

The second simulation was performed to evaluate the control performance under
multi-step command inputs comprising a surge velocity and a heading angle of 30◦ sin ωt
with ω = 0.157 rad/s. The simulation results are shown in Figures 8 and 9. Figure 8 shows
the surge velocity outputs and errors of the TSMC and PTSMC systems under velocities
of 10, 15, 20, and 25 knots. Similar to the previous result, the settling time of the PTSMC
system was shorter than that of the TSMC system owing to the predefined-time control
action, as shown in Figure 8b. Figure 8c shows the propulsion control inputs. The pulse
control shapes were generated owing to step speed commands. This can be alleviated by
smooth speed command in the real system’s implementation.
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control input.

Figure 9 shows the heading-angle response for the sine wave commands of the
TSMC_2nd and PTSMC_2nd systems. The tracking outputs are shown in Figure 9a, and
the tracking errors are shown in Figure 9b, where the settling time of PTSMC_2nd is four
times shorter than that of TSMC_2nd. As shown, the PTSMC system responded faster than
the TSMC system, owing to the predefined-time control action. The rudder control angles
of the two systems are shown in Figure 9c.

In this section, the tracking performance of the surge speed and heading angle for the
multi-step surge speed command and the sinewave heading command is evaluated for the
TSMC and PTSMC system. It was shown that the PTSMC system shows a faster tracking
performance than that of the conventional TSMC system.
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4.3. Simulation Results for the Multi-Step Command of Surge Velocity and Sine Wave Heading
Angle for Pitching-Moment Disturbance

The third simulation was executed to evaluate the control performance under the
multi-step command inputs comprising a surge velocity and a heading angle of 30◦ sin ωt
with ω = 0.157 rad/s for the pitching-moment disturbance input. Figure 10 shows the
tracking results of the PTSMC_2nd and P&PTSMC_2nd in the surge channel, where the
surge speed command increased gradually until 60 s. After 60 s, the surge speed of
25 knots was maintained until 300 s. In this case, the tracking performances remained
almost unchanged despite the pitching-moment disturbance.
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The pitching moment was generated using (13), (65), and (66) and the result is shown
in Figure 11a. The P&PTSMC system was applied to evaluate the disturbance rejection
performance using the prescribed-performance control action, in addition to the predefine-
time control action without utilizing a disturbance observer. For the generated pitching-
moment disturbance input, the heading-angle responses of TSMC_2nd, PTSMC_2nd, and
P&PTSMC_2nd are shown in Figure 11b, where TSMC_2nd reveals unstable heading
motion because additional control against the disturbance was not provided in TSMC_2nd.
Figure 11c shows the tracking errors of each system, where the tracking performances of
PTSMC_2nd and P&PTSMC_2nd were better than that of TSMC_2nd. This shows that
unstable heading motion oscillations can be generated due to pitching moment when the
surge speed reaches a high range.
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ment; (b) sine heading-angle output; (c) sine heading-angle error of TSMC_2nd, PTSMC_2nd, and
P&PTSMC_2nd systems; (d) sine heading-angle error of PTSMC_2nd and P&PTSMC_2nd systems
for the prescribed error bound.

However, P&PTSMC_2nd outperformed PTSMC_2nd owing to the application of
the prescribed-performance control for enhancing the disturbance rejection performance.
As shown in Figure 11d, the tracking error of P&PTSMC_2nd was bounded in the range
of ±5◦, though oscillated tracking errors were generated, whereas the tracking error of
PTSMC_2nd extended beyond this bound. Therefore, it was seen that only predefined-time
control cannot compensate for the disturbance effectively. The values of integral time
absolute error (ITAE) and the maximum error of P&PTSMC_2nd decreased by 78% and
37%, respectively, as compared with those of PTSMC_2nd, as shown in Table 5.
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Table 5. ITAE and maximum absolute error values of PTSMC_2nd and P&PTSMC_2nd systems.

System PSMC_2nd P&PTSMC_2nd

ITAE (sec-deg) 4557 (100%) 3574 (78%)
Maximum absolute error (deg) 7.02 (100%) 2.58 (37%)

In this section, consecutive simulations were conducted to investigate the control
performances for the issues of input actuator delay and pitching-moment disturbance with
four control systems such as the TSMC_1st, TSMC_2nd, PTSMC_2nd, and P&PTSMC_2nd
systems. The simulation results showed that the proposed P&PTSMC_2nd system has
outstanding control performance compared to other conventional control systems.

5. Conclusions

In this study, a second-order TSMC system combined with a disturbance rejector based
on the concepts of predefined-time control and prescribed-performance control was exam-
ined to realize the robust tracking control of a UPH system under control input delay and
pitching disturbance due to unstable trim and maneuvering environments. A second-order
TSMC system was utilized to accommodate the heading actuator delay caused by delayed
hydraulic system response to achieve a stable response in the heading-angle tracking sys-
tem. Next, predefined-time and prescribed-performance control schemes were considered
simultaneously to reject the unmatched pitching-moment uncertainties of the UPH system
without explicitly depending on a disturbance observer. Thus, a robust controller equipped
with a hybrid disturbance rejector was designed to achieve an excellent response from a
UPH control system as compared with the response yielded by the conventional control
scheme in conditions with unknown disturbances. Sequential comparative simulations of
the UPH model system in cases with input delays and variations in pitching disturbance
were executed, and the simulation results demonstrated the efficiency of the proposed
control system. Analyzing the simulation results in detail, the TSMC_2nd system could
overcome the performance degradation of the TSMC_1st system due to the input delay
effect in the heading axis. The PTSMC_2nd system showed a faster response for the se-
lected tracking commands and obtained partial robustness against the disturbance, unlike
the conventional TSMC_2nd system. Finally, the P&PTSMC_2nd system showed more
improved robust performance of about 20~60% than those of the PTSMC system against
the disturbance than that of the PTSMC_2nd system under the same response time.

In a future study, the experimental verification for this work will be executed in an
indoor water tank and will be applied to a full-sized UPH on the sea surface.
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