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Abstract: This study utilizes 27 years of sea level anomaly (SLA) data obtained from satellite altimetry
to investigate spatial–temporal variations in the South China Sea (SCS). The local mean decomposition
(LMD) method is applied to decompose the sea level data into three components: high-frequency,
low-frequency, and trend components. By removing the influence of high-frequency components,
multiple time series of regular sea level changes with significant physical significance are obtained. The
results indicate that the average multi-year SLA is 50.16 mm, with a linear trend of 3.91 ± 0.12 mm/a.
The wavelet analysis method was employed to examine the significant annual and 1.5-year periodic
signals in the SCS SLA series. At the seasonal scale, the sea level rise in coastal areas during autumn
and winter surpasses that of spring and summer. Moreover, there are generally opposing spatial
distributions between spring and autumn, as well as between summer and winter. The linear trends
in multi-year SLA for the four seasons are 3.70 ± 0.13 mm/a, 3.66 ± 0.16 mm/a, 3.49 ± 0.16 mm/a,
and 3.74 ± 0.33 mm/a, respectively. The causes of SCS sea level change are examined in relation
to phenomena such as monsoons, the Kuroshio Current, and El Niño–Southern Oscillation (ENSO).
Based on the empirical orthogonal function (EOF) analysis of SCS SLA, the contributions of the first
three modes of variance are determined to be 34.09%, 28.84%, and 8.40%, respectively. The temporal
coefficients and spatial distribution characteristics of these modes confirm their associations with
ENSO, monsoons, and the double-gyre structure of SCS sea surface temperature. For instance, ENSO
impacts SCS sea level change through atmospheric circulation, predominantly affecting the region
between 116◦ E and 120◦ E longitude, and 14◦ N and 20◦ N latitude.

Keywords: sea level change; South China Sea; LMD; wavelet energy spectrum; EOF; ENSO

1. Introduction

Sea level change, an important effect of global climate change, affects some aspects
including land area, the number of islands, natural climate, and disasters, and has signifi-
cant impacts on sustainable human being development. The South China Sea (SCS) is a
territorial sea within China located to the south of the Chinese mainland and is a sea area
in the Western Pacific, along with the Yellow Sea and East China Sea, collectively known as
the three major marginal seas of China [1,2].

Numerous studies have investigated global and regional sea level changes and have
identified the contributions of various factors (i.e., El Niño–Southern Oscillation, typhoons,
barometric pressure, ocean convection, and extreme weather events), which found that
there exists a significant correlation between sea level change and those factors at both
temporal and spatial scales [3–6]. For example, Wang et al. [7] utilized the Morlet wavelet
transform and the Estuary Coastal Ocean Model (ECOM) to analyze the characteristics
of sea level anomalies in the South China Sea from 1980 to 2014. The results revealed a
close relationship between sea level change and the ENSO phenomenon, with distinct
seasonal differences influenced by tropical cyclones during summer and autumn. Wang
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and Wu [8] studied the relative contributions of surface heat fluxes and ocean processes
to the development and formation of strong and weak climate Cold Tongue (CT) in the
South China Sea, and discussed the individual and combined roles of ENSO and East
Asian Winter Monsoon (EAWM) in the inter-annual variation in CT in the South China
Sea. Guo et al. [9] conducted an analysis of the seasonal characteristics associated with
the intrusion of the Kuroshio Branch (KB) into the surface layer of the South China Sea,
providing insights into the driving mechanisms that contribute to its formation.

The SCS sea level change could be studied through geophysical signals and the envi-
ronment, making its variation patterns difficult to discern. The commonly used traditional
decomposition methods mainly focus on studying the long-term trend in sea level change
and ignore the significance of its physical impact. For example, the Empirical Mode Decom-
position (EMD) and Ensemble EMD (EEMD) methods have been used to isolate oscillations
and provide robust acceleration estimates for satellite altimetry and tide gauge data in the
South China Sea over the period of 1993–2016 [10–12], with a linear trend of 4.3 ± 0.3 mm/a.
Tang et al. [13] employed the least squares, Ensemble Empirical Mode Decomposition
(EEMD), and Autoregressive Integrated Moving Average (ARIMA) methods to study the
spatiotemporal characteristics of SCS sea level change from 1993 to 2019, and found that
the response of the SCS sea level change to ENSO events exhibits spatial differences. Yu
et al. [14] analyzed the temporal–spatial distribution sea level changes in the South China
Sea from 1993 to 2017 using linear regression, the Winters index smoothing method, and
Empirical Mode Decomposition (EMD), obtaining a rise rate of 4.0 mm/a for the South
China Sea with significant inter-annual and decadal changes, and a significant influence of
ENSO on the SCS sea level change. Unlike the EMD and EEMD method, the local mean
decomposition (LMD) method, based on Fourier transform, does not generate negative fre-
quencies through the Hilbert transform of the Intrinsic Mode Function (IMF) components,
and can better process nonlinear time series with less influence from the endpoint effect.
The LMD method has good adaptability and represents a theoretical innovation in the field
of time–frequency analysis, which makes it very suitable for analyzing nonstationary sea
level change series. Few studies have applied LMD to analyze sea level change, except
for Chi, who simply employed the LMD method to analyze global mean sea level change
series and then extracted the long-term trend signal by filtering the high-frequency noise
components [15].

In view of the relatively limited application of the LMD method for studying sea level
change, in this paper, the LMD method is combined with wavelet analysis, least squares
estimation, and the EOF method to analyze the spatiotemporal pattern of sea level change
in the SCS over the past 27 years, which is of great significance for understanding the
causes of SCS regional sea level change. The rest of this paper is organized as follows:
the materials and methods are briefly described in Section 2. The results and analysis are
presented in Section 3. Concluding remarks are given in Section 4.

2. Materials and Methods
2.1. Adopted Datasets

The South China Sea is located in the center of the Asian–Australian monsoon region,
serving as a link between the South Asian monsoon, East Asian monsoon, Northwest
Pacific monsoon, and Australian monsoon subsystems. It covers an area of 350,000 square
kilometers, with an average depth of 1212 m. To the east, it is adjacent to the Philippines,
Palawan, and Kalimantan, and is separated from the Pacific Ocean. To the south, it
neighbors the Malay Peninsula, the Natuna Islands, and Kalimantan, and is separated from
the Indian Ocean. The South China Sea is the largest tropical marginal sea in the Western
Pacific and an important passage connecting the Pacific and Indian Oceans [16–21].

The Copernicus Marine Environment Monitoring Service (CMEMS) is the marine
component of the European Union’s Copernicus program, providing global data in-
formation from satellite observations and remote sensing data worldwide and region-
ally. This paper uses multi-source satellite gridded fusion altimetry data provided by
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https://resources.marine.copernicus.eu/ (accessed on 1 May 2021), including data from
satellites such as ERS-1/2, TOPEX/Poseidon, GFO, Jason-1/2/3, Envisat, and Sentinel-
3A, which have undergone orbit error correction between satellite altimeters and other
error corrections, including atmospheric and tidal corrections. The spatial resolution is
1◦ × 1◦, and the time range is from January 1993 to February 2020. The satellite altimetry
data within the SCS region range from 110◦ E to 119◦ E and 14◦ N to 23◦ N (Figure 1).
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Figure 1. The map of the South China Sea area studied in this paper.

The LMD method was employed to preprocess the spatiotemporal series of fused
satellite altimetry data in the South China Sea region. This involved removing the high-
frequency components and subsequently reconstructing a 27-year spatiotemporal series to
derive the multi-year average variation in both space and time. To obtain the 27-year time
series of sea level change in the entire South China Sea region, the latitudinal weighted
method was applied to the temporal and spatial variation series. This approach accounts
for the varying latitudinal influence on sea level changes across the region. By performing
a periodic analysis of the wavelet energy spectrum, it is possible to extract the periodic
characteristics of sea level changes over multiple years. To further investigate the modes
of sea level change in the South China Sea, the EOF analysis method was employed to
calculate the time coefficients and spatial distributions of different modes. This approach
allows for a more comprehensive exploration of the underlying patterns and variations in
sea level within the region (Figure 2).

https://resources.marine.copernicus.eu/
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2.2. Local Mean Decomposition Method

Geophysical signals related to sea level change are often nonlinear, nonstationary,
and contain multiple frequency components, which are affected by various factors over
time [22–25]. Smith proposed the local mean decomposition (LMD) method in 2005, a
method for decomposing data that can analyze the local characteristics of nonlinear, non-
stationary signals and better reflect the changing patterns of multiple modes contained in
oscillation processes over time and their interrelationships [26]. Considering the charac-
teristics of physical signal changes related to sea level change, this paper adopts the LMD
method to extract the signals of sea level change. In this study, the related geophysical
signals are denoted as abnormal sea level, and the mentioned signals can also be considered
as time series.

The local extremum points and their corresponding time values of the time series, as
well as the average values of two adjacent extremum points, are calculated to extract the
characteristic information of the data [27]. For the local mean decomposition process of the
original signal x(t), the local extremum points are denoted as ni and their corresponding
time values as ti, while the average values of two adjacent extremum points ni and ni+1 are
denoted as mi, with the expression given by [28]

mi =
ni + ni+1

2
(1)

where mi represents the local mean of the time series, and by extending the mi average
value linearly between its corresponding time points, m11(t) can be obtained. By linear
extension, the time series is divided into segments connected by different local means,
which are then smoothed. The moving average method is applied to smooth m11(t) and to
obtain the envelope estimation a11(t).

Modulation is an important concept in signal processing that can embed the infor-
mation contained in a signal into another signal. For complex nonstationary time series,
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the phenomena of amplitude modulation and frequency modulation coexist. Local ampli-
tudes are calculated and modulated, and then frequency modulation is applied to obtain
amplitude–frequency-modulated signals [28].

Using the local extremum point ai to calculate the local amplitude, its expression is

ai =
|ni − ni+1|

2
(2)

where ai is referred to as the amplitude-modulating signal. Separating the local mean
function m11(t) from the original time series x(t), we obtain [28]

q11 = x(t)−m11(t) (3)

Next, it is demodulated by dividing q11(t) by the envelope estimation function a11(t)
to obtain [28]

s11(t) = q11(t)/a11(t) (4)

To obtain the pure frequency-modulating signal, the envelope estimation function
a12(t) is computed for s11(t). If a12(t) is not equal to 1, the s11(t) above iteration process
is repeated until s1n(t) is a pure frequency-modulating signal, i.e., −1 ≤ s1n(t) ≤ 1, and
satisfies a1(n+1)(t) = 1. Then, we have [28],

q11(t) = x(t)−m11(t)
q12(t) = s11(t)−m12(t)

...
h1n(t) = s1(n−1)(t)−m1n(t)

(5)

The product of all envelope estimation functions generated by the iteration yields the
envelope signal a1(t), which is [28]

a1(t) = a11(t)a12(t) · · · a1n(t) = ∏n
q=1 a1q(t) (6)

Multiplying the function a1(t) represented by the envelope signal product by the pure
frequency-modulating signal s1n(t), we can express an amplitude–frequency-modulated
signal containing amplitude and frequency information. The first PF component can be
represented as [28]

PF1(t) = a1(t)s1n(t) (7)

In the above steps, the first PF component has been separated from the original time
series, and the remaining time series can be expressed as u1(t), with the loop steps repeated
until uk is a monotonic function [28]

u1(t) = x(t)− PF1(t)
u2(t) = u1(t)− PF2(t)

...
uk(t) = uk−1(t)− PFk(t)

(8)

Finally, the original time series can be represented as the sum of all PF components
and a residual component uk, which is [28]

x(t) = ∑k
p=1 PFp(t) + uk (9)

In summary, this method decomposes geophysical signals into a sum of a finite number
of PF components and a trend residue uk using LMD.

If the geophysical signal is a time series of sea level changes, the PF components
contain low-frequency and high-frequency components, which can be further studied in
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conjunction with geophysical phenomena. The trend component can be used to estimate
the rate of sea level rise.

2.3. Periodicity Analysis Method

The wavelet energy spectrum method can be used to explore the periodic change
characteristics of time series. In this paper, wavelet energy spectrum analysis is applied to
the sea level change time series [29]. The Morlet wavelet has a good balance in frequency
and time scales and is adaptive in multi-scale analysis, so this wavelet was chosen as the
basic wavelet [30], with the equation given by

ψ(t) = π−1/4
(

e−jw0t − e−w2
0/2
)

e−t2/2 (10)

where ω0 represents the initial phase angle of the signal, generally taken as ω0 = 6.
The equation for the wavelet transform of the time series is [30]

W f (a, b) =
∫

R
f (t)ψ

[
t− b

a

]
dt (11)

The equation for the wavelet energy spectrum is [30]

Ea,b = |W f (a, b)|2 (12)

2.4. Empirical Orthogonal Function (EOF) Analysis Method

Empirical orthogonal function (EOF) is a mathematical statistical method that de-
composes the spatiotemporal distribution of variable fields into a linear combination of
orthogonal functions called modes by analyzing the structural characteristics of variable
fields [31–33]. Its purpose is to estimate and interpret the original field using principal
component functions and their linear combinations with eigenvectors. The principal com-
ponents are arranged according to the size of variance contribution and are mutually
independent [34]. We suppose there are m variables in a determined range of an element
field, observed n times, with the corresponding matrix given by [31]

X =


X11 X12 · · · X1m
X21 X22 · · · X2m
...

Xm1

...
Xm2

...
· · ·

...
Xmm

 (13)

Decompose the elements into a linear combination of spatial and temporal functions,
with the expression given by [32]

Xij =
m

∑
k=1

likykj (14)

where ykj is called the temporal coefficient or the principal component. lik is called the
spatial function, or the coefficient of the principal component, and different spatial functions
are orthogonal to each other.

3. Results and Analysis
3.1. Spatial Analysis of Sea Level Change in South China Sea

Using satellite altimetry data ranging from 110◦ E to 119◦ E and 14◦ N to 24◦ N, the
spatial distribution pattern of sea level within the South China Sea region was analyzed.
A comprehensive analysis of the overall characteristics of the 27-year sea level spatial
distribution in the South China Sea from January 1993 to February 2020 was conducted, as
shown in Figures 3 and 4.
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From Figure 3, the spatial distributions of average multi-year SCS sea level change
can be seen, with a minimum value of 27.72 mm and maximum value of 41.96 mm. Coastal
areas, the southern part of the SCS, and the Mindoro Strait have notably greater annual
average values, and the SLA in coastal areas is generally greater than that in noncoastal
areas. The multi-year average is around 40 mm in the regions of 110◦ E to 113◦ E and 14◦ N
to 16◦ N, and 111◦ E to 114◦ E and 20◦ N to 22◦ N. In areas close to the central deep-sea
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basin, east of the Luzon Strait, the Paracel Islands, and the Spratly Islands, the value is
around 30 mm within the range of 114◦ E to 116◦ E and 16◦ N to 19◦ N, and 117◦ E to
118◦ E and 14◦ N to 17◦ N.

From Figure 4, it can be seen that the smallest multi-year mean sea level change rate in
SCS is 2.2 mm/a, and the highest is 4.9 mm/a. A slight decrease in sea level occurs near the
east of the Luzon Strait, and the sea level rise rate in coastal areas is faster, with the eastern
part of Vietnam experiencing a significant rise. In the regions of 110◦ E to 113◦ E and 14◦ N
to 17◦ N, the sea level change rate is generally greater than 4.0 mm/a, and in the regions of
114◦ E to 116◦ E and 16◦ N to 18◦ N, the multi-year mean rate is around 3.0 mm/a.

3.1.1. The Seasonal Spatial Patterns of Sea Level Change in the South China Sea

The SCS is the largest semi-enclosed marginal sea basin in the Western Pacific, with
significant seasonal change characteristics and prevailing monsoons throughout the year.
In the SCS region, the atmosphere transmits signals to the ocean through pressure, forming
coupled oscillations, and both influence each other. The seasonal changes in SCS are affected
by sea surface atmospheric stress, wind stress, sea surface temperature, the Kuroshio
Current, and the ENSO phenomenon. Different seasons have different trends, and there
are distinct regional change characteristics. The ENSO phenomenon affects the interaction
between the ocean and the atmosphere, forming an ENSO cycle, and can be manifested in
mid-to-high latitudes through changes in the Kuroshio Current. Coastal areas in the SCS
are usually affected by wind-driven accumulation and thermal expansion, while open sea
areas are mainly influenced by the thermal expansion of seawater [35–37].

Spring was defined as March to May, summer as June to August, autumn as September
to November, and winter as December to February. The spatial variation in the SCS seasonal
sea level change from January 1993 to February 2020 was analyzed using satellite altimetry
grid data, as shown in Figure 5.

The northeast and southwest monsoons enter the region and are influenced by the
Kuroshio Current during spring in the SCS [38]. According to Hung et al. [35], it has been
shown that during a warming phase in the spring season in the tropical Western Pacific,
the Western Pacific Subtropical High (WPSH) moves eastward. This phenomenon leads to
the occurrence of dual cyclones in the Bay of Bengal and the Sumatra region prior to the
onset of the summer monsoon in the South China Sea. It can be seen from Figure 5 that
in the central part of the South China Sea, the multi-year mean sea level shows a rising
trend, while the coastal area shows a negative sea level. The maximum observed value was
98.98 mm and the minimum was −41.31 mm. In the range from 110◦ E to 115◦ E and 14◦ N
to 17◦ N, sea level generally exceeds 50 mm. This spatial distribution is closely related to
the effect of wind stress curl and heat flux on sea level pattern.

During the summer, the southwest monsoon has entered the entire SCS region, and
the spatial distributions are completely opposite to those of winter. This study examined
the anti-phase characteristics of sea level variations in the South China Sea during winter
and summer, which align with the conclusions obtained in Wu et al. [21]. This phenomenon
is associated with above-normal rainfall in the southern part of the South China Sea during
winter, while above-normal rainfall occurs in the northern part of the South China Sea
during summer. The deep-water areas of the SCS exhibit positive anomalies, while the
northwest and southwest shelf areas exhibit negative anomalies. Due to the influence
of the southwest monsoon on the SCS, the multi-year mean of summer is higher than
those of other seasons. The highest sea level change is 161.20 mm, while the lowest value
is −115.3 mm.
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During the monsoon transition season, the spatial distribution of the South China
Sea in autumn exhibits a contrasting pattern compared to that observed in spring. As the
southwest monsoon gradually weakens, the sea level in coastal areas gradually rises, and a
negative anomaly center appears in the deep-water areas of the central South China Sea.
Positive anomalies occur at 116◦ E to 118◦ E and 18◦ N to 21◦ N, and this phenomenon is
related to the seasonal changes in wind stress curl [39]. The highest overall value reaches
173.10 mm, while the lowest reaches 4.9 mm.

Influenced by the cold northeastern winds during winter in SCS, the spatial distri-
bution of sea level shows that the winter sea currents in the SCS should be the strongest
cyclonic circulation throughout the year. Huo and Yang [39] pointed out that the basin-scale
surface circulation in the SCS is predominantly marked by a negative sea surface height
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anomaly (SSHA), which is closely related to cyclonic activity during winter. In contrast,
during summer, the same area exhibits a positive SSHA resulting from anti-cyclonic condi-
tions. Moreover, the center of cyclonic force was situated in the northwestern part of Luzon
Island. Those findings from Huo and Yang [39] are consistent with the results shown in
Figure 5, which depict negative anomalies in both the deep-water regions of the South
China Sea and the Luzon Strait. The highest overall value is 121.30 mm, while the lowest
value is −106.7 mm. In the region of 116◦ E to 118◦ E and 16◦ N to 20◦ N, the multi-year
mean is generally higher than −50 mm. As revealed by Hu et al. [38], during the winter,
the circulation patterns in the South China Sea are primarily driven by monsoonal winds.
Additionally, these circulation patterns are influenced by various local structures, such as
warm currents in the western region, the intrusion of the Kuroshio, and small-scale local
eddies.

Overall, the sea level in coastal areas is higher in autumn and winter than in spring
and summer, and the spatial distribution in spring and autumn, as well as summer and
winter, presents largely opposite situations. The spatial distributions of SCS linear trend for
four seasons are shown in Figure 6.
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For four seasons, there exist some significant differences for the location of maximum
change rates. For example, the sea level rise rates near the Paracel and Spratly Islands
are higher than other areas in the SCS during the spring season, reaching a maximum of
5.32 mm/a. However, the sea level rise rates near Scarborough Shoal are relatively high,
with the highest reaching 5.89 mm/a. Moreover, the sea level rise rate is lower than in other
seasons during the winter season in the SCS. Based on a thorough review of the relevant
literature, we can observe that sea level changes in the SCS exhibit significant seasonal
variations. These variations are influenced by various factors, including topography, ocean
circulation patterns, and atmospheric condition [40–43], which was confirmed by Guo
et al. [9]. According to the reference, during winter, there is a positive sea level change in
the southwestern part of Taiwan Island, extending northwards, and a negative sea level
change in the northwest direction of Luzon Island, extending southwards, which acts as
a pumping effect. This phenomenon is related to the westward intrusion of the Kuroshio
into the SCS. By analyzing the spatial distribution of average altimetry change rates in each
season, it can be concluded that the sea level rise rates in spring and winter are normally
lower than summer and autumn, the coastal areas in the SCS have higher rise rates in
autumn than the other seasons, and multiple areas in the SCS exhibit rapid sea level rise in
the summer [44].

3.1.2. The Monthly Spatial Patterns of Sea Level Change in the South China Sea

Using multi-source satellite altimetry data from January 1993 to February 2020, the
spatial patterns of monthly mean sea level change in SCS are presented in Figure 7. We can
find that the spatial distributions of the SCS sea level change exhibited significant monthly
differences over the 12 months. In January, coastal cities near Hainan, Hong Kong, and
Macau generally had sea levels higher than 50 mm, with the highest value in these cities
being 118.2 mm and the lowest being −127.00 mm. The northeast wind in the southwest
direction raised the high sea level by 40 mm during February. With the intrusion of the
Kuroshio Current, there exist significant spatial patterns for the following two months:
March and April. However, the southeast monsoon contributed greatly to those spatial
patterns of sea level change in the South China Sea from April to November [45,46]. The
results comprehensively indicate that the 12-month multi-year mean spatial distribution
in the SCS region is influenced by the region’s seasonal changes. Due to the effect of the
Kuroshio Current, there are significant local changes in March, April, and May. Due to
temperature and climate influences, January, February, October, November, and December
have higher average values in coastal areas than other months and more negative average
values in the SCS region. Under the influence of the warm and humid monsoon, the overall
multi-year mean in June, July, August, and September is higher than in other months.

The results showed that the spatial distribution of SCS sea level change exhibited
some significant differences among the 12 months. Coastal cities near Hainan, Hong Kong,
and Macau generally had sea levels higher than 50 mm in January. The SCS sea level
near the Paracel Islands and Woody Island rose to more than 40 mm due to the northeast
wind moving in the southwest direction in February. The SCS sea level in coastal cities
near Hainan, Hong Kong, and Macau decreased several folds in February compared with
January. The area with negative SLA in the SCS region increased and the sea level of coastal
cities near Hainan, Hong Kong, and Macau increased to approximately 10 mm in March
and April due to the intrusion of the Kuroshio Current. The seawater moved towards the
northwest in May due to the southwest monsoon, resulting in an increase in the sea level
near the Zhongsha Islands. The southwest monsoon caused an increase in the sea level in
June to August. The effect of the southwest monsoon gradually weakened in September,
resulting in an overall decline in the sea level of the South China Sea region [47,48]. The
sea level of coastal cities near Hainan, Hong Kong, and Macau was generally higher than
150 mm in October, and the areas with negative values increased. The sea level in the
southwestern region declined in November and December due to the effect of the northeast
monsoon.
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Figure 7. Spatial distribution of monthly multi-year mean in South China Sea (unit: mm).

The results comprehensively indicate that the 12-month multi-year mean spatial
distribution in the SCS region is influenced by the region’s seasonal changes. Due to the
influence of the Kuroshio Current, there are significant local changes in March, April, and
May. Due to temperature and climate influences, January, February, October, November,
and December have higher multi-year means in coastal areas than other months and more
negative values in the SCS. Under the influence of the warm and humid monsoon, the
overall value in June, July, August, and September is higher than in other months.

3.2. A Temporal Analysis of Sea Level Change in the South China Sea
3.2.1. Monthly Mean Sea Level Change in the South China Sea

Monthly mean sea level change is calculated using the weighted average method
based on the cosine value of ϕ (latitude), and the change in monthly mean sea level is
obtained, as shown in Figure 8.
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The least squares fitting method is then used to estimate the linear trend in SCS
regional sea level change.

y = A + Bt + C cos(
2π

ω
t + β) (15)

where y represents the alteration in sea level; A denotes the constant component; B signifies
the long-term trend element; t symbolizes time; C embodies the amplitude; ω characterizes
the period; and β represents the phase.

By employing the local mean decomposition method to eliminate the influence of the
PF high-frequency component and retain the trend component and low-frequency compo-
nent, the yearly time series of the SCS regional mean sea level change was reconstructed,
and its linear trend was estimated. The results are shown in Figure 9.
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It was concluded that the average of SCS multi-year sea level change was 50.16 mm,
with a linear trend of 3.91 ± 0.12 mm/a during the period of 1993–2020, which is close
to 4.00 mm/a of the SCS regional mean sea level change rate for the period from 1993 to
2017 [14]. It reached a maximum of 100.18 mm in 2013 and a minimum of −7.23 mm in
2004 over the 27 years. According to Han and Huang [19], the low-frequency component
of sea level variations in the South China Sea is more significantly influenced by the El
Niño–Southern Oscillation (ENSO) at inter-annual scales. Therefore, we focused primarily
on examining the relationship between annual mean sea level changes in the SCS and
ENSO index.

The year 1998 was the mature period of a strong La Niña event, and a 32-month La
Niña phenomenon occurred from 1998 to 2001. The SCS sea level continuously declined by
50.33 mm from 2000 to 2004. A 23-month La Niña phenomenon occurred from 2010 to 2012,
and the SCS sea level continuously declined by 74.08 mm from 2013 to 2015. The results
indicate that a long-lasting La Niña phenomenon leads to a significant decline in the SCS,
and the change in SCS sea level has a certain lag in time.

The year 1997 was the mature period of a strong El Niño event, and a 13-month El
Niño phenomenon occurred from 1997 to 1998. The SCS sea level continuously rose by
47.75 mm from 1998 to 2000. A 13-month El Niño phenomenon occurred again from 1997 to
1998, and the SCS sea level continuously rose by 47.75 mm from 1998 to 2000. A 19-month
El Niño phenomenon occurred from 2014 to 2016, and the SCS sea level continuously rose
by 48.12 mm from 2015 to 2017.

The comprehensive results demonstrate that a long-lasting El Niño phenomenon leads
to a significant increase in SCS, with the changes in sea level exhibiting a certain time lag.
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This suggests that the method adopted in this study to obtain the yearly SCS mean sea level
change series in the SCS is superior to traditional methods for extracting the low-frequency
components of sea level change. The analysis of sea level changes and predictions of future
sea levels are of practical significance.

3.2.2. Seasonal Mean Sea Level Change in the South China Sea

The multi-year mean SCS sea level change and its rising rate can be obtained from
gridded data over the different timespans. Therefore, examining the multi-year changes
in the four seasons of the South China Sea enables a more comprehensive analysis of
the underlying causes by considering the seasonal differences. To analyze the temporal
variations and linear trends in the seasonal sea level change series in the SCS, the local
mean decomposition method was employed to remove the influence of PF high-frequency
components while retaining low-frequency components and trend components. The LMD
method can decompose the low-frequency components with physical significance, which
are the important components related to geophysical information in sea level change. The
trend component represents a nonlinear time series of persistent sea level rise. The yearly
SCS mean sea level change series in the SCS of four seasons were obtained, respectively,
after the reconstruction of the trend component and the low frequency component, and
their linear trends were estimated. The results are shown in Figure 10.
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The results showed that the yearly mean changes in four seasons exhibited distinct
seasonal characteristics over the study period. The results obtained by fitting the least
squares method are shown in Table 1.

Table 1. The linear trend and annual amplitude of sea level changes over four seasons from 1993 to
2020.

Season Trend
(mm/a)

Annual
Amplitude

(mm)

Mean Value
(mm)

Maximum
Value (mm)

Time of
Maximum

(year)

Spring 3.70 ± 0.13 10.93 ± 0.15 −48.33 79.60 2012
Summer 3.66 ± 0.16 18.99 ± 0.19 47.71 130.67 2013
Autumn 3.49 ± 0.16 17.49 ± 0.08 44.66 166.62 2009
Winter 3.74 ± 0.33 18.27 ± 0.27 46.33 74.08 2012

The multi-year mean of the SCS sea level change was 48.33 mm, with a linear trend of
3.70 ± 0.13 mm/a during the spring season. The multi-year mean was −73.07 mm in
the spring season of 1993, whereas the sea level change exhibited a maximum value of
79.60 mm in 2012, with an increase in SCS sea level change of 152.67 mm. The sea level
exhibited a sudden and significant rise during the spring season in 1998, 2005, and 2011,
followed by a continuous decline from 2012 to 2015.

The average SCS sea level change was 47.71 mm, with an increase rate of 3.66± 0.16 mm/a
during the summer season. The maximum sea level change during the summer period
was 130.70 mm in 2013, with an overall increase of 152.93 mm. The sea level exhibited a
sudden and significant rise in 2005 and 2011 during the summer, and a continuous increase
from 1994 to 1998. The average SCS sea level change was 44.66 mm during the autumn
season, with a rising rate of 3.49 ± 0.16 mm/a. The sea level changes exhibited a sudden
and significant increase in the autumn of 1995 and 2004, followed by a consistent increase
from 2004 to 2008 during the autumn season. The average SCS sea level change was
46.33 mm during the winter season, with an increase rate of 3.74 ± 0.33 mm/a.

The comprehensive results indicate that, influenced by climate changes such as tem-
perature and precipitation, sea levels in winter and spring are generally lower than those in
summer and autumn. Among these, the rate of increase in sea level is the lowest in autumn,
and the average value range of sea level changes is the lowest in winter. To analyze the
period and amplitude changes of the monthly SCS mean SLA time series, the local mean
decomposition method was employed to remove high-frequency components and trend
components, followed by anomaly transformation and time series reconstruction, with the
results shown in Figure 11a. Wavelet analysis was conducted on this reconstructed time
series, with the results shown in Figure 11b,c.

Figure 11 reveals that the wavelet energy spectrum reflects the presence of significant
annual fluctuation signals with strong energy in SCS monthly mean SLA time series
containing obvious periodic signals. Between 2009 and 2011, there are more prominent
annual periodic signals with strong energy. The main periodic terms are 1 year and
1.5 years.

3.3. Modal Analysis of Mean Sea Level Change in the South China Sea

The EOF method describes the space of each mode by decomposing the data of
the spatiotemporal distribution variable field into the linear combination of orthogonal
functions of the corresponding modes. To study the structural features of the SCS multi-
year mean from January 1993 to February 2020, the empirical orthogonal function (EOF)
method was utilized to analyze the first three modes that contain 71.33% of the information
in the SCS multi-year mean. The results are shown in Figure 12.
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Figure 12 illustrates the spatial distribution of the modes and their corresponding time
coefficients for the SCS mean sea level. The first mode accounts for 34.09% of the variance
in SCS mean changes, the second mode accounts for 28.84%, and the third mode accounts
for 8.40%. In terms of the modes’ shapes, the first mode is usually the ENSO mode, with
its spatial distribution indicating that the ENSO phenomenon mainly affects the region
from 116◦ E to 120◦ E and 14◦ N to 20◦ N. Comparing this with the spatial distribution of
sea level in the SCS region shown in Figure 5, it can be inferred that the second mode is
related to the seasonal changes in monsoons, rainfall, and the Kuroshio Current within the
SCS region [49]. The spatial distribution of the third mode exhibits a certain similarity to
the double-gyre structure of the SCS sea surface temperature, with an increase in sea level
in the northeastern region and a declining trend along the coast and in the southwestern
region [50–52].
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4. Conclusions

From 1993 to 2020, the multi-year mean sea level in the SCS was 50.16 mm, with a rate
of rise of 3.91 ± 0.12 mm/a. Specifically, during spring, the mean value was 48.33 mm with
a change rate of 3.70 ± 0.13 mm/a; during summer, it was 47.71 mm with a change rate of
3.66± 0.16 mm/a; during autumn, it was 44.66 mm with a change rate of 3.49± 0.16 mm/a;
and during winter, it was 46.33 mm with a change rate of 3.74 ± 0.33 mm/a.

Spatial analysis of the multi-year mean, seasonal multi-year mean, and monthly multi-
year mean sea levels in the SCS revealed significant spatial variations in the patterns of
change. The lowest value observed in the SCS was 27.72 mm, while the highest was
41.96 mm. The lowest change rate recorded was 2.2 mm/a, while the highest was
4.9 mm/a. The sea level rising rates varied across different grid cells in the SCS, with
an overall positive change rate and multiple positive centers. During spring and winter, the
sea level rise was lower compared to summer and autumn. Coastal regions experienced
higher rising rates during autumn, while multiple areas exhibited rapid rises during the
summer. The spatial distribution of the 12 months within the SCS region was influenced by
regional seasonal climate variations and factors such as the Kuroshio Current, monsoons,
and ENSO events.
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Analysis of the periodic characteristics of the SCS sea level revealed a more pronounced
annual periodic signal with strong energy between 2009 and 2011, primarily driven by
terms of 1 year and 1.5 years. The first three modes contributed to the variance at rates of
34.09%, 28.84%, and 8.40%, respectively, representing modes associated with ENSO events,
seasonal changes, and the double-gyre structure of the SCS sea surface temperature.
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