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Abstract: The efficient coverage of underwater wireless sensor networks (UWSNs) has become
increasingly important because of the scarcity of underwater node resources. Complex underwater
environments, water flow forces, and undulating seabed reduce the coverage effect of underwater
nodes, even leading to coverage holes in UWSNs. To solve the problems of uneven coverage
distribution and coverage holes, a three-dimensional iterative enhancement algorithm is proposed
for UWSN coverage hole recovery using intelligent search followed by virtual force. Benefiting from
biological heuristic search algorithms, improved particle swarm optimization is applied for node
pre-coverage. With the change in iteration times, the adaptive inertia weight, acceleration factor,
and node position are constantly updated. To avoid excessive coverage holes caused by search
falling into local optimum, underwater nodes are considered as particles in the potential field whose
virtual forces are calculated to guide nodes towards higher coverage positions. In addition, based
on the optimal node location obtained by the proposed algorithm, the monitoring area is divided
based on the clustering idea. The underwater routing protocol DBR based on depth information is
subsequently used to optimize node residual energy, and its average is calculated comprehensively
and compared with the other three coverage algorithms using the DBR routing protocol. Based on
the experimental data, after 100 iterations, the coverage rates for BES, 3D-IVFA, DABVF, and the
proposed algorithm are 83.28%, 88.85%, 89.31%, and 91.36%, respectively. Moreover, the proposed
algorithm is further verified from the aspects of different node numbers, coverage efficiency, node
movement trajectory, coverage hole, and average residual energy of nodes, which provides conditions
for resource development and scientific research in marine environments.

Keywords: UWSNs; node three-dimensional deployment; iterative enhancement; coverage hole
recovery; node action force

1. Introduction

With the continuous exploitation of marine resources, underwater wireless sensor
networks (UWSNs) composed of underwater nodes have made great achievements in
disaster warning, target tracking, and other fields [1]. In the target region of the UWSNs,
nodes obtain the required data through the Internet of underwater devices [2]. These
underwater nodes have data acquisition, transmission, and communication capabilities for
the interaction of physical and logical information via hydroacoustic signals [3]. The ability
of underwater acoustic communication is correlated with channel, transmission power,
array, etc., and the quality of underwater acoustic communication is usually measured as
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the product of underwater communication rate and distance. According to statistics from
the US Naval Research Laboratory, the product of most underwater acoustic communication
rates and distances is 40 kbps × km, which means the maximum communication distance
at a communication rate of 40 kbps is 1 km. In 2020, Zhejiang University reported a
communication distance of 6.2 km and a communication speed of 42.8 kbps under a ship
speed of 4–6 knots, with a product of 265.36 kbps × km long-distance communication. It is
well known that hydroacoustic perception is superior to other sensing methods [4]. Hence,
reasonable deployment of underwater nodes based on hydroacoustic communication is the
basis of realizing efficient network monitoring [5]. Usually, random deployment results in
a poor distribution density balance of nodes, resulting in coverage holes in UWSNs that
cannot be effectively connected. When the network is not connected, the ground receiving
station and the underwater node cannot communicate normally, and the data cannot be
obtained, thus causing partial paralysis of the UWSNs [6]. Limited by the actual cost of
underwater hardware, deploying as few sensors as possible to collect more information
is an ideal option that has usually been pursued [7]. Underwater node location is crucial
to the network coverage effect, and it needs to be updated constantly to complete the
monitoring task. Achieving a maximum coverage rate for carrying out online monitoring
is very important for improving the quality of services in UWSNs [8].

Some scholars have conducted a series of in-depth research on node coverage con-
trol. Considering the covering angle of nodes, a dynamic node deployment model with
two-dimensional distribution was proposed to transmit the aggregated data, but it did
not consider how the sensor node drift would be affected by water flow in dynamic open
waters [9]. To address the coverage black hole caused by node drifts, a virtual force is
introduced to drive the underwater sensor node to repair the covering black hole, and
the boundary of the black hole is obtained using a geometric solution [10]. However, the
motion of the sensor node perpendicular to the ground is ignored. Zhang et al. used the
depth direction mobility of nodes for topology optimization and designed corresponding
optimization criteria [11]. Wang et al. anchored the nodes randomly on the seabed; the
nodes can move in the depth direction. On the premise of ensuring mutual communica-
tion, a weighted complete bipartite graph is generated to simulate the coverage of each
node [12]. The scheme with the minimum number of nodes obtained using the cooperative
path topology achieved target optimization, and a coverage strategy of limited and full com-
munication redundancy was obtained [13]. Considering the coverage black hole problem
in three-dimensional environments, Wei et al. used the semicircular plate rotation method
to transform the two-dimensional coverage problem into a three-dimensional coverage
problem [14]. The proposed strategy is feasible within the aquatic boundary. Given the
three-dimensional environment, especially when there exists water flow and obstacles
underwater, it is necessary to consider the optimal coverage scheme of underwater nodes in
three-dimensional space under the condition of balanced network coverage performance.

Intelligence optimization algorithms have prompted researchers to propose innovative
techniques capable of improving coverage performance [15]. After transforming node cov-
erage and energy problems into octahedral task allocation problems, Zhao et al. proposed
a vampire bat optimizer method, which enhanced coverage efficiency and reduced energy
consumption [16]. As the water moves, the nodes change position, making UWSNs prone
to dynamic topology drifts. To solve the coverage problem in an underwater dynamic
environment and with depth information as the preferred selection condition, the opti-
mal deployment was selected using a strategy of obtaining the optimal solution step by
step; this was also effective for irregularly distributed underwater nodes [17]. To directly
improve the global search capability for obtaining global optimal coverage, Zhang et al. uti-
lized an enhanced fruit fly optimization algorithm to reasonably adjust node positions [18].
Fattah et al. combined the advantages of adaptive multi-parent crossover and fuzzy domi-
nance to balance UWSN performance, including coverage rate [19]. However, it is difficult
for the UWSNs to achieve a balance in coverage, node energy consumption, and execution
time. Kapileswar et al. adopted a bald eagle search (BES) to optimize the entire UWSN
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performance [20]. Node battery replacement is challenging and demanding in changing
underwater environments. We need to pay attention to the loss of energy generated by
nodes in the networks in the flow to maintain its stability. Overly complex optimization
algorithms are prone to falling into local optima and cannot maximize coverage rates.

Many scholars regard underwater nodes as particles and adjust their locations by
calculating the forces between particles, thereby reducing the coverage holes. Consider-
ing the limited underwater node resources, Jiang et al. conducted a three-dimensional
redeployment of underwater mobile nodes based on virtual forces between nodes and
utilized water flow forces to reduce energy consumption [21]. Unlike the conventional
calculation of attraction and repulsion between nodes, some scholars proposed a three-
dimensional improved virtual forces algorithm (3D-IVFA) by introducing central gravity
and equilibrium force. The algorithm was proved to be effective in terms of coverage and
uniformity [22]. One NP problem for achieving optimal network coverage performance
with fewer nodes is the K-coverage problem. Wang et al. propose an improved virtual force
algorithm (VFA) combined with the radius method of the same utility to solve a variety of
K-cover optimization problems with varying coverage densities [23]. Due to the inability
to predict underwater node locations, centralized node deployment makes it difficult to
achieve effective coverage. A distributed algorithm based on virtual forces (DABVFs) was
utilized to enhance the coverage rate of regions of interest, while the issue of coverage holes
caused by underwater faulty nodes was also considered [24]. Of course, some scholars have
also focused on the issue of a relatively small number of underwater nodes covering key
areas of interest and proposed the focus virtual force field method [25]. Some scholars tried
to combine particle swarm optimization algorithms with virtual force to enhance UWSN
coverage performance. Hu et al. used the virtual forces between particles to guide particle
optimization, accelerating particle convergence to the best overall solution and achieving
the best coverage value [26]. All the above methods can improve the UWSN coverage,
but these algorithms are prone to oscillations in the later stages and uneven coverage due
to poor stability. As discussed, this study reviews the research on coverage of wireless
sensor networks in 2D and 3D environments using intelligent optimization algorithms and
compares coverage algorithms in the literature. The results are shown in Table 1.

Table 1. Comparisons of coverage optimization algorithms.

Surveyed Works Proposed Method Solved Problem Advantages

So-In, C., 2019 [10] CHHA Coverage holes Apply virtual force under Delaunay triangulation.
Yao, Y., 2022 [15] VF-IMFO Coverage holes Analyze virtual force for node path optimization.

Zhao, X.Q., 2019 [16] VBO Energy consumption Multi-energy optimization during redeployment.
Yi, J., 2023 [17] IGS Node coverage Transform coverage problem into multiple local optimal.

Zhang, Y., 2017 [18] UFOA Node coverage Optimal coverage under drosophila foraging behavior.
Jiang, P., 2018 [21] VFRBEC Node coverage Correct node displacement underwater flow force.

Wang, W., 2019 [23] k-ERVFA k-coverage An uneven coverage for k-coverage requirements.
Liu, C., 2019 [24] DABVF Node coverage Node virtual force and fault judgment mechanism.
Hu, Y., 2022 [26] VF-PSO Node coverage Optimize network coverage and distance threshold.

Given the non-universal seawater environment, nodes in the underwater environment
are generally difficult to replace; their power supplies are also generally difficult to charge.
The energy problem directly affects the service life of the entire sensor network. At present,
many reliable and energy-saving underwater communication routing protocols are applied
to solve energy loss by UWSNs. Peng et al. designed a routing protocol with the help
of vector position information. By obtaining node coordinate information, packets are
forwarded in the virtual channel established between the sending node and the receiving
node. However, when the distribution of nodes is sparse, there may be a next receiving
node in the pipeline that cannot meet the forwarding conditions, leading to an interruption
of the communication path [27]. In response to this problem, Wang et al. put forward an
improved HH-VBF scheme, which re-establishes a vector pointing to the destination node
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on each hop forwarding node, calculates its distance to the vector hop by hop, and compares
it with a specified threshold to determine whether to forward the packet. The strategy of
changing the routing vector by hop number alleviates the problem of unbalanced energy
consumption of network nodes to some extent [28]. However, since a routing pipeline is
still used, it is still possible that the next hop node does not exist. Ref. [29] used depth
information as a condition for routing and forwarding. However, since node depth is the
only forwarding parameter, nodes with smaller depths will forward packets most of the
time and their energy will soon run out, causing them to die. To address the energy loss
by DBR, an energy-saving protocol was designed [30]. This protocol takes energy as one
of the conditions of routing and forwarding to extend the running cycle of the network.
All the methods discussed above can reduce network energy loss, but they ignore the
distribution position of nodes in actual situations, resulting in network communication
interruptions, unbalanced energy consumption in the process of data forwarding, and
waste of node resources.

In summary, unlike the modeling environment on the ground, the underwater envi-
ronment is an open dynamic area. There are many difficulties in constructing the UWSNs
due to the undulating terrain of the seabed and the hydraulic effects of water flow. To
solve the coverage control problem of nodes, the following problems need to be addressed:
(1) The limited energy carried by underwater nodes and the mobility of underwater nodes
cause deformation of the topology of UWSNs, leading to coverage holes in some areas,
thus affecting the quality of service. (2) The existing covering research involves mainly
the geometric method or the use of node force between particles. The former has poor
operability in the underwater environment, while the latter is prone to some coverage
fluctuations during final network operation. (3) To ensure that the UWSNs cover as few
holes as possible, it is necessary to introduce artificial intelligence optimization algorithms
to drive underwater nodes to appropriate positions.

Given that there are many covered holes in underwater networks in the dynamic open
underwater environment, this study makes full use of the combination of particle swarm
optimization (PSO) and VFA to propose a three-dimensional iterative enhanced underwater
covered hole recovery method. For this article, we make the following contributions: (1) Put
forward the improved PSO strategy for complete underwater node deployment, design
the iterative steps for nonlinear decreases, and automatically adjust the inertia weight and
acceleration factor. It can achieve a balance between local and global search capabilities.
(2) To avoid the problem of local optima in the search algorithm, underwater nodes are
considered as particles to calculate their mutual forces, driving them to move towards
positions that can increase coverage rate. Disturbance operations are carried out in the later
stages of iteration to weaken the oscillations of coverage rate. (3) Experimental studies
on network topology, coverage rate, coverage efficiency, coverage holes, and average
remaining energy before and after utilization of the proposed coverage algorithm were
conducted. In terms of enhancing UWSN coverage, the proposed coverage algorithm was
verified to be superior to BES, 3D-IVFA, and DABVF.

The remainder of this article is structured as follows. Section 2 presents a three-
dimensional iterative enhancement coverage algorithm; Section 3 evaluates multiple exper-
iments for various performance metrics; Section 4 gives the conclusions.

2. Proposed Coverage Enhancement Modeling

Using the advantages of particle swarm optimization and virtual force, we proposed a
three-dimensional iterative enhancement for coverage hole recovery in UWSNs, as shown
in Figure 1. First, the initial deployment of underwater nodes adopts an improved opti-
mization search algorithm, and then virtual force is introduced to make underwater sensors
move towards positions of greatest coverage. To avoid oscillations in the late iteration, the
global interference mechanism is used to change the direction of particle motion.
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Figure 1. The overall architecture of the proposed coverage algorithm. 
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Figure 1. The overall architecture of the proposed coverage algorithm.

2.1. Coverage Description and Node Motion Model

To make the problem easier to solve, the monitoring area is defined as L×W × H,
with several M cubic grids. The center point of each cubic grid corresponds to a grid
dot, and all grid dots constitute the UWSNs. Defining Gw as the wth grid point, the sets
of all grid dots is represented by G = {G1, G2, · · ·Gw, · · ·GM}, where Gw = (xw, yw, zw).
There are N underwater nodes deployed in the UWSNs. Defining Si as the ith underwater
node, the sets of all underwater nodes are expressed as S = {S1, S2, · · · Si, · · · SN}, where
Si = (xi, yi, zi). The sphere-sensing area of each underwater node has the same sensing
radius whose sphere center is the node coordinates. The Euclidean distance d(Si, Gw)
between the underwater node Si and the grid dot Gw is expressed as

d(Si, Gw) = ‖Si − Gw‖ (1)

where ‖·‖ is a binary norm indicating the distance between points. Based on the Boolean
perception model, the probability PGw(Si) that the grid point Gw is perceived by the under-
water node Si is expressed as

PGw(Si) =

{
1
0

d(Si, Gw) ≤ Rs
d(Si, Gw) > Rs

(2)
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where Rs is the sensing radius of the underwater node. If PGw(Si) is equal to 1, the grid
point Gw is covered by the underwater node Si; otherwise, the grid point Gw is a coverage
hole. Hence, the joint sensing probability PGw(S) by all underwater nodes S is expressed as

PGw(S) = 1−∏N
i=1(1− PGw(Si)) (3)

In UWSNs, the underwater nodes are affected by environmental factors such as
underwater currents, tides, and wind, and their positions change, to some extent [31].
Therefore, it is crucial to analyze the movement of underwater nodes. The oceans in
Physical Oceanography and Pure Kinematics are viewed as homogeneous fluids of rotation
that manifest themselves as layers in terms of density. Horizontal flows occur in nearly
unperturbed fashion at every point due to vertical flows; thus, such motions display a finite
damp behavior. When the node moves in UWSNs with node drift, the coverage of the node
also changes. Therefore, it is necessary to introduce a water flow model that conforms to
the actual situation. As deep-sea environments are often highly complex, the meandering
current mobility model (MCM) [32] is used to establish the motion model for underwater
nodes under ocean currents, tides, and other marine environmental conditions. All plane
motions that cannot be compressed can be represented by the fluid equation ϕ(x, y, t). This
model was also used in this study to predict the velocity of point i and the coordinate
positions (xi, yi, zi) in the horizontal direction at time t. Nodes are initially distributed
unevenly in the surveillance zone, and their positions change in the mobility model given
in the following equation [33]:

ϕ(x, y, t) = −tanh

 y− B(t) sin(k(x− ct))√
1 + k2B(t)2 cos2(k(x− ct))

 (4)

B(t) = A + ε cos(ωt) (5)

where A is the average meander width; k is the number of bends per unit length; c is the
displacement rate of ocean current in direction Y; B(t) is the width of the control curve; ε
is used to control the amplitude of the entire ocean current field; and ω is the frequency
of the ocean current in the flow field. In general, attention is only paid to the movement
of nodes in the X and Y directions, and the variability in the vertical direction is ignored.
Therefore, the following analytical formulae are used to define the speeds of motion in the
X and Y directions:

vX = −∂ϕ(x, y, t)
∂y

(6)

vY =
∂ϕ(x, y, t)

∂x
(7)

To simplify the formula, a = y− B(t) sin(k(x− ct)) and b = 1 + k2B(t)2 cos2(k(x− ct)).
The two velocity components of the node motion to the east and north can be simplified to

vX =
[
1− tanh

( a
b

)]
· (b)0.5 (8)

vY =
[
1− tanh2

( a
b

)]
·
[

B(t)k cos(k(x− ct))
b0.5 − k3B2(t) sin(2k(x− ct)) · a

2 · b1.5

]
(9)

Based on the above node motion model, when the time passes ∆t, the node moves
∑t

1 vX · ∆t m in the X direction and ∑t
1 vY · ∆t m in the Y direction. The node is mainly

affected by gravity and buoyancy in the Z direction. Initially, the gravity of the node is
greater than its buoyancy, and the node is in a sinking state. However, considering that the
final state of the node is located in water, that is, gravity equals buoyancy, the displacement
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of the node in the Z direction does not change under the strong impact of the horizontal
direction flow. After ∆t, the position of underwater node i is(

x′ i, y′ i, z′ i
)
=
(

xi + ∑t
1 vX · ∆t, yi + ∑t

1 vY · ∆t, zi

)
(10)

2.2. Enhanced Coverage and Protocol Modeling

The distribution of underwater nodes can get too dense or too sparse when affected
by the random distribution of sensor nodes and water flow force, leading to poor coverage
and more coverage holes in the sensor networks. Therefore, underwater nodes need to be
deployed to improve coverage rate and reduce coverage holes in as many grid points as
possible [34]. With the expansion of the application of artificial intelligence algorithms to
UWSNs, the underwater nodes are considered as particles and the improved PSO is used
for UWSN deployment. Each particle is guided to the optimal path and its particle best
(pbest) and global best (gbest) positions are obtained in the solution set to discover a better
position. To search for more accurate particle positions, the entire population is divided
into several groups and the particle with the best fitness in several groups is called lbest.
At the kth iteration, the particle velocity is determined by the optimal position of the ith

particle search Pk
i , the locally best position within several groups Pk

l , and its overall best
position Pk

g [35]. The formula for updating the velocity of a particle is

vk+1
i = ωkvk

i + c1r1

(
Pk

i − xk
i

)
+ c2r2

(
Pk

g − xk
i

)
+ c3r3

(
Pk

l − xk
i

)
(11)

where r1, r2, and r3 are random numbers in the interval [0, 1]; c1, c2, and c3 are acceleration
coefficients; vk

i and xk
i are the particle velocity and position at the kth iteration; vk+1

i is the
updated particle velocity and position at the (k + 1)th iteration; ωk is the inertia weight
factor that affects the particle inheritance proportion of current velocity. Particles with
high speeds are beneficial for enhancing the global search ability, while particles with low
speeds can improve the local search performance. To balance the local and global abilities,
a nonlinearly decreasing adaptive inertia weight factor needs to be designed [36]. In the
early iteration stage, it is possible to search large regions. In the later iteration stage, the
local convergence needs to be enhanced to the global optimum. The inertia weight factor is
expressed as

ωk = ωmin +
ωmax −ωmin

1 + e−(0.2×(K−k)−10)
(12)

where ωmin denotes the minimum inertia weight factor, usually set to 0.9; ωmax denotes
the maximum inertia weight factor, usually set to 0.4; K is the maximum iteration number;
and k denotes the current iteration number. In addition to the inertia weight factor, the
acceleration coefficients can cause particles to cluster within a certain phase or cause
premature convergence to a local optimum. As a result, different particles are generated,
resulting in particles with different search capabilities. To improve the convergence speed,
c1 and c3 gradually decrease with iteration number while c2 gradually increases with
iteration number. This can be expressed as [37]

c1 = c1min − (c1min − c1max)
k
K

c2 = c2min + (c2max − c2min)
k
K

c3 = c3min − (c3min − c3max)
k
K

(13)

where c1min and c1max denote the minimum and maximum values of acceleration coefficient
c1; c2min and c2max denote the minimum and maximum values of acceleration coefficient
c2; c3min and c3max denote the minimum and maximum values of acceleration coefficient c3.
Different position update strategies can search for better solutions with higher efficiency,
and an adaptive position update strategy is designed based on the ratio Ei of the particle
current fitness to the population average fitness. When the ratio Ei is small, the particle
performance is higher than the population average performance, while when the ratio
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Ei is large, the population average performance is higher than the particle performance.
Therefore, the adaptive position update strategy can be expressed as

xk+1
i =

{
ωkxk

i +
(

1−ωk
)

vk+1
i + rand · Pk

g ·ωk

xk
i + vk+1

i

Ei > rand
otherwise

(14)

where the ratio Ei is written as
exp(fit(xk+1

i ))

exp

(
∑n

i=1 fit(xk+1
i )

n

) ; fit(·) is the particle fitness function; and

n is the number of particle populations. However, underwater node coverage based on
artificial intelligence search is prone to falling into local optimal. Virtual forces are used to
mutate the optimal position and the underwater node position is updated by comparing the
optimal values before and after the mutation. Underwater nodes are abstracted as particles
in the potential field, and corresponding repulsive and attractive forces are generated by
comparing the geometric distance of the nodes with the threshold. At the same time, there
is a repulsive force between the underwater node and the boundary region. Under the
combined action of three forces, underwater nodes distributed in dense or sparse areas
are driven to move in the direction of a higher coverage rate. Based on Coulomb law, the

virtual force
→
F ij between the ith and jth nodes is expressed as

→
F ij =


(
εa
(
dij − dth

)
, αij
)
, if dth < dij ≤ Rc

0, if dij > Rc or dth = dij(
εr

(
1

dth
2 − 1

dij
2

)
, αij + π

)
, if dij < dth

(15)

where εr is the repulsive force coefficient; εa is the attractive force coefficient; dij is the
geometric distance between nodes; dth is the distance threshold; Rc is the communication
radius of the underwater node; and αij is the azimuth angle between nodes. The distribution
density of underwater nodes causes the distance between nodes to be too far or too close,
resulting in corresponding repulsive or attractive forces between nodes. It is easy to reduce
the node coverage efficiency when there are many underwater nodes clustered in the

boundary area. The repulsive force
→
F ib between underwater nodes and the boundary can

be calculated as
→
F ib =


(

εb
(dthb−dib)

2 , αib + π

)
, if dib < dthb

0 , otherwise
(16)

where dthb is the distance threshold between the underwater node and the boundary area;
dib is the geometric distance between the underwater node and the boundary area; εb is the
repulsive force coefficient; and αib denotes the azimuth angle. When the geometric distance
between the underwater node Si and the grid point Gw is larger than the sensing radius Rs
and smaller than

√
3Rs, the attractive force is generated and expressed as

→
F SiGw =

{
εd(‖Si − Gw‖ − Rs), if Rs ≤ ‖Si − Gw‖ <

√
3Rs

0, otherwise
(17)

where ‖Si − Gw‖ is the Euclidean distance between the underwater node Si and the grid dot

Gw; εd is the attractive force coefficient; and
→
F SiGw is the attractive force from underwater

node Si to the grid dot Gw. The combined force
→
F SiG of all grid points on the underwater

node Si is expressed as
→
F SiG =

M

∑
w=1

→
F SiGw (18)
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In summary, the total virtual force
→
F on underwater node Si is expressed as

→
F =

N

∑
j=1,j 6=i

→
F ij +

→
F ib +

→
F SiG (19)

where j represents neighboring underwater nodes. Virtual forces act on randomly dis-
tributed underwater nodes, causing them to move towards sparse areas from dense areas,
thereby maximizing the coverage rate. The underwater node moves from its initial position
to the final position under the action of virtual forces, which can be expressed as

xnew =


xold, if

∣∣∣∣→F i

x

∣∣∣∣ ≤ →F th

xold +
→
F

i
x
→
F i

× η × e
− 1
→
F i , if

∣∣∣∣→F i

x

∣∣∣∣ > →F th

(20)

ynew =


yold, if

∣∣∣∣→F i

x

∣∣∣∣ ≤ →F th

yold +

→
F

i
y
→
F i

× η × e
− 1
→
F i , if

∣∣∣∣→F i

x

∣∣∣∣ > →F th

(21)

znew =


zold, if

∣∣∣∣→F i

x

∣∣∣∣ ≤ →F th

zold +
→
F

i
z
→
F i

× η × e
− 1
→
F i , if

∣∣∣∣→F i

x

∣∣∣∣ > →F th

(22)

where xk+1
i = (xold, yold, zold) are the optimal coordinates of underwater nodes generated by

improved particle swarm optimization; x
′
i = (xnew, ynew, znew) are the final coordinates of

underwater nodes after using virtual force;
→
F

i

x,
→
F

i

y, and
→
F

i

z are the virtual force components
on the nodes i; η is the moving step coefficient. The optimization tends to fall into the local
optimal in the late iteration, thus global interference is introduced to change the particle
motion mode [38]. The optimal particle position is defined as [39]

x
′′
i = rand · x′i + (1− rand) ·

(
x
′
i −
(

Pk
u

))
(23)

x
′′′
i =

{
x
′′
i

x
′
i

fit
(

x
′′
i

)
< fit

(
x
′
i

)
otherwise

(24)

where Pk
u is any individual particle position, u = rand([0, n]); x

′′
i is the new particle position

generated; and x
′′′
i is the particle position updated by the interference mechanism.

To find out more about how well the algorithm performs in terms of energy, based on
the node location obtained by the coverage algorithm, the energy efficiency of UWSN nodes
is analyzed using the clustering algorithm and the routing protocol with depth information
as the forwarding condition. To better judge whether the node has the forwarding condition,
the depth threshold parameter is introduced. When the sensor node receives a packet,
the node first compares its depth difference with the previous hop node. If the candidate
node is near the receiving node, that is, the depth difference is less than the threshold,
the candidate node is considered qualified to forward packets; otherwise, the candidate
node discards the packet directly. To prevent redundant packet transmission, the packet
forwarding priority method is adopted. The packet forwarding priority depends on the
estimated packet sending time ST; the earlier the estimated packet sending time of a
node, the higher the packet forwarding priority. The estimated packet sending time ST
is associated with the packet retention time HT and the packet receiving time RT, that is,
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ST = RT + HT. When a candidate relay node comes across the information package, it
delays forwarding it until it compares its holding period HT, that is, the forwarding delay
of the packet. Packets are scheduled for forward forwarding based on their retained times
at each node. Shorter holding times result in greater forwarding priority for nodes, thus
packets are forwarded first. The HT calculation is associated with the depth difference, ∆d,
between nodes [29]:

HT =
2τ

δ
(R− ∆d) (25)

where ∆d is the depth difference between the candidate node and the previous hop node;
R is the maximum communication range of the node; τ = R

v , v represents the acoustic
velocity in water; and δ is the global constant. When δ is small, node HT is longer, fewer
nodes participate in packet forwarding, and less energy is consumed.

In the traditional DBR routing protocol, all nodes keep working and are ready to
receive data packets at any time; this wastes a lot of node energy. This study proposes a
DBR routing protocol based on location clustering. Considering the distribution of node
positions, the monitoring area is divided into four equal small areas based on clustering.
First, in each local small area, the routing protocol is used to transmit data packets to a
relay node, and the remaining energy of each node is calculated at the end of the network
operation. The data packets received by the relay nodes in each local small area are then
sent to the sink node. Finally, the average remaining energy of the nodes is calculated. The
average residual energy of nodes can be calculated as

Eaverage =
∑(Einitial − Econsume)

N
(26)

where Eaverage is the average remaining energy; Einitial is the initial energy; Econsume is the
energy lost by the node; and N is the number of nodes.

3. Numerical Evaluations and Experimental Analyses
3.1. Parameter Settings

This study used the MATLAB R2021b software platform to implement the proposed
algorithm, which was validated using simulated experimental validation. The length L,
width W, and height H of the monitoring area are 500 m; the sensing radius Rs of the
node is 100 m; the radius Rc of node communication is 200 m; the maximum number
K of iterations is 100; the number n of particles swarm is 50; the number N of nodes is
25–50; the maximum inertia weight wmax is 0.9, the minimum inertia weight wmin is 0.4;
acceleration factors c1min = 0.25, c1max = 2.75, c2min = 1.25, c2max = 2.5, c3min = 0.25,
and c3max = 2.75; the maximum step length of sensor node movement under the action
of grid point is max_step = 2.5/2; the maximum step length of sensor node movement
under the action of sensor node is max_sensor = 3.5/2; node initial energy is 100 J; and
the transmitting power, receiving power, and idle power of the node are 2 w, 0.75 w, and
0.001 w, respectively. To verify the effectiveness of the algorithm, the proposed algorithm
was compared with the BES [20], 3D-IVFA [22], and DABVF [24] algorithms under the
same parameter conditions. The simulation performance of the proposed algorithm was
compared with those of BES-DBR, 3D-IVFA-DBR, and DABVF-DBR on the NS-3 software
platform. The results verified that network energy loss can be effectively reduced.

3.2. Simulation Results and Analysis

Figure 2 shows the coverage effect of 45 nodes randomly distributed within the
monitoring range. The number of nodes randomly placed in each part of the network
is not equal, resulting in poor network coverage, with a coverage rate of only 72.02%.
Figure 3 shows the network coverage optimization effect of node redeployment by the
proposed algorithm. The nodes of a more balanced density distribution are obvious. The
optimized network coverage rate reached 91.36%, with the coverage rate increasing by
19.34%. The main reason lies in node pre-coverage using the improved particle swarm
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optimization algorithm and then using virtual force to drive nodes to move toward the
coverage blind spot, improving the balanced distribution of underwater wireless sensor
nodes and effectively reducing the coverage hole.
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Figure 4 shows the comparisons of changes in coverage ratios of different coverage
algorithms as the node number changes. When the node number increases from 25 to 50
in increments of 5, the network coverage increases successively. The network coverage
of random node distributions increased from 43.80% to 53.05%, 57.12%, 57.96%, 72.02%,
and 72.10%. We can see from the figure that the underwater node number is directly
associated with network coverage. The network coverage value increases as the node
number increases, improving the coverage effect of the network and meeting its coverage
requirements. However, the cost of network coverage will also increase. With 45 under-
water sensor nodes deployed as the research object, the coverage rates for BES, 3D-IVFA,
DABVF, and the proposed algorithm are 83.28%, 88.85%, 89.31%, and 91.36%, respectively,
after 100 iterations. The proposed algorithm is better than BES, 3D-IVFA, and DABVF in
coverage by about 8.06%, 2.51%, and 2.05%, respectively. The above quantitative analysis
shows that the proposed algorithm can greatly increase the coverage rate, which is also the
embodiment of the superiority of the algorithm. The reason is that the algorithm combines
the improved PSO and VFA algorithms to make use of their complementary advantages so
that the layout of nodes can be adjusted quickly to obtain the best results and achieve the
best coverage of the network.
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In Figure 5, we can see that as the node number changes, both the initial coverage
and the final coverage of the algorithm in this study show the same upward or downward
trends. More nodes can achieve greater coverage, but if the nodes are randomly distributed,
the expected coverage results cannot be achieved. The reason for the improved coverage
after optimization of the proposed algorithm is that the improved PSO is used for node
pre-coverage and virtual force is then introduced to mutate the optimal coverage position.
In the subsequent iteration, the global interference mechanism is introduced to get a more
suitable node position. These strategies overcome the defect that the previous algorithm
easily falls into the optimal solution, accelerates the search speed of the target value, and
achieves higher coverage.
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Figure 5. The relationship between coverage rate and node number in the proposed algorithm.

In Figure 6, we can see that the node number and coverage efficiency show opposite
upward or downward trends. The reason is that the more the number of nodes, the greater
the probability of overlap between nodes, resulting in network coverage redundancy
increases, which reduces the utilization rate of the node. With 45 underwater sensor nodes
deployed as the research object, the node coverage efficiency of the proposed algorithm
is significantly better than those of BES, 3D-IVFA, and DABVF algorithms, which are
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improved by 1.36%, 1.67%, and 5.36%, respectively. From the above quantitative analysis,
the proposed algorithm performs better, especially in making full use of the nodes.
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Figure 6. The relationship between coverage efficiency and node number in the four algorithms.

In Figure 7, With 45 underwater sensor nodes deployed as the research object, figure
(a1–a3), (b1–b3), (c1–c3) and (d1–d3) shows the moving trajectories, final node positions,
and final node coverage effects of the four algorithms: BES, 3D-IVFA, DABVF, and pro-
posed algorithm. In the figure, dots represent the random distribution positions of nodes,
pentagons represent the positions of nodes after optimization, the line between the point
and the five-pointed star represents the movement trajectory of nodes from the random
distribution position to the optimized position, and the area shaped by the ball represents
the perception range of underwater nodes. We can see that the proposed algorithms show
excellent performance of nodes distributed uniformly compared with the other three meth-
ods. This is because the proposed algorithm uses an adaptive position update mechanism
that can autonomously choose the most suitable strategy to update the particle positions.
The global exploration ability of the algorithm is enhanced while at the same time, the local
development ability of the algorithm is ensured. In addition, the VFA algorithm is used
to drive nodes to the optimal position using the force between nodes, which reduces the
coverage blind area of the network and optimizes the coverage effect of the network.

In Figure 8, 3D-IVFA has the best average iteration step performance. Because 3D-
IVFA extends the traditional law of virtual force, the use of the center of gravity and balance
force makes the deployment of sensor nodes more reasonable, reducing the movement
of large distances between nodes. The proposed algorithm has worse performance in the
average iteration step than the BES, 3D-IVFA, and DABVF algorithms. This is because
the algorithm constantly updates the node position in the running process and adopts the
greedy strategy to select the node position again through the global interference mechanism
in the late iteration, resulting in large moving distances between nodes. This is because of
the constant update of node positions constantly seeking the optimal position, improving
the balance of distribution density, and achieving the best coverage effect.

In Figure 9, moving displacements of 45 underwater sensor nodes are projected from
three mutually perpendicular directions. The dots represent the random distribution posi-
tions, the pentagrams represent the optimized positions, and the lines between the points
and the pentagrams represent the 3D views of the moving displacements from the random
distribution position to the optimized position. Figure (a1), (b1), (c1), and (d1) shows the
front views of the node motion trajectories of BES, 3D-IVFA, DABVF, and the proposed al-
gorithm, respectively. Figure (a2), (b2), (c2), and (d2) shows the right elevations of the node
motion trajectories of BES, 3D-IVFA, DABVF, and the proposed algorithm, respectively.
Figure (a3), (b3), (c3), and (d3) shows the top views of the node motion trajectories of BES,
3D-IVFA, DABVF, and the proposed algorithm, respectively. We can see that, compared
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with the other three algorithms, the proposed algorithm is better when an equal distribution
of nodes is considered from a three-dimensional perspective. This is because the proposed
algorithm uses strategies such as improved PSO and global interference mechanism to
constantly update the location of nodes to make their distribution more uniform and realize
optimal deployment of the network.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 20 
 

 

Figure 6. The relationship between coverage efficiency and node number in the four algorithms. 

In Figure 7, With 45 underwater sensor nodes deployed as the research object, figure 
(a1–a3), (b1–b3), (c1–c3) and (d1–d3) shows the moving trajectories, final node positions, 
and final node coverage effects of the four algorithms: BES, 3D-IVFA, DABVF, and pro-
posed algorithm. In the figure, dots represent the random distribution positions of nodes, 
pentagons represent the positions of nodes after optimization, the line between the point 
and the five-pointed star represents the movement trajectory of nodes from the random 
distribution position to the optimized position, and the area shaped by the ball represents 
the perception range of underwater nodes. We can see that the proposed algorithms show 
excellent performance of nodes distributed uniformly compared with the other three 
methods. This is because the proposed algorithm uses an adaptive position update mech-
anism that can autonomously choose the most suitable strategy to update the particle po-
sitions. The global exploration ability of the algorithm is enhanced while at the same time, 
the local development ability of the algorithm is ensured. In addition, the VFA algorithm 
is used to drive nodes to the optimal position using the force between nodes, which re-
duces the coverage blind area of the network and optimizes the coverage effect of the 
network. 

 
Figure 7. Node motion trajectory and final coverage diagram.

Figure 10 shows the comparison of k-coverage before and after the optimization of
the proposed algorithm using different node numbers. After optimization of the proposed
algorithm, the coverage of multiple repetitions decreases while the coverage of low repeti-
tions increases. For example, with 45 underwater sensor nodes deployed as the research
object, the 1-coverage and 2-coverage during the initial deployment are only 43.09% and
22.14%, respectively, and the coverage hole is 27%. After 100 iterations, 1-coverage and
2-coverage reaches 63.03% and 26.34%, respectively, while the covered hole is reduced to
8.62%. When node numbers increase from 25 to 50 in increments of 5, the coverage hole is
55.26%, 46.19%, 41.81%, 40.83%, 27%, and 27.19%, respectively. After 100 iterations, the
coverage hole decreased from 33.38% to 23.05%, 17,72%,13.69%, 8.62%, and 5.40%. Data
analysis shows that the proposed algorithm can expand the effective coverage area and
improve the overall performance and service level of the network. This is because the
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algorithm is based on the virtual force applied to the node, which promotes the underwater
node to move to the uncovered area, reduces the probability of overlapping node coverage,
makes it reach the optimal position effectively, and improves the node utilization rate.
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In addition to validating the proposed algorithm using different node numbers, cover-
age efficiencies, node motion trajectories, coverage holes, and other aspects, the complexity
of the algorithm is also an important performance index for evaluating the quality of the
coverage algorithm. The computational complexity of BES, 3D-IVFA, DABVF, and the
proposed algorithm in this study is O(KN), O

(
KN2), O

(
KN2), and O

(
KN2), respectively,

where K represents the number of iterations the algorithm runs, and N represents the
number of sensor nodes. Compared with 3D-IVFA and DABVF, the proposed algorithm
improves the coverage of the network without increasing the complexity of the algorithm.

Figure 11 shows changes in the average residual energy of nodes of the proposed
algorithm and the other three algorithms as network time changes. We can see that the
network running time and the average residual energy of nodes increase and decrease in
the same direction. With 45 underwater nodes as the research object, the average residual
energy of BES-DBR, 3D-IVFA-DBR, DABVF-DBR, and the proposed coverage algorithm
are 57.67 J, 48.59 J, 45.30 J, and 72.74 J, respectively, when the simulation time is 200 s. The
proposed algorithm is significantly better than BES-DBR, 3D-IVFA-DBR, and DABVF-DBR
in terms of the average residual energy performance of nodes during network operation.
At the same time, it also extends the network life cycle. This is because the algorithm
adopts the DBR routing protocol, which is based on location clustering. Based on the
location of nodes obtained using the coverage algorithm, the monitoring area is divided
into four equal areas using clustering. To reduce information transmission energy loss
between nodes, the method is first used to optimize the residual energy of nodes in each
local small area. The average residual energy of nodes is then taken as the standard for
comprehensive calculation.
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4. Conclusions

Due to limited node resources, intelligent oceans require the highest possible coverage
rate to ensure reliable networks in UWSNs. This study proposed a three-dimensional
coverage hole recovery algorithm using improved PSO and VFA in UWSNs. To avoid the
problem of search optimization algorithms falling into local optima and slow improvement
of coverage in the later stages of iteration, pre-coverage of underwater nodes is first
performed under improved particle swarm optimization; the nodes are then moved to a
position with higher coverage under the action of virtual forces, including global mutation
operations. The analysis of experimental data generated from 45 nodes showed that
the coverage rate increased from 72.02% to 91.36% after using the proposed algorithm,
effectively reducing the coverage hole. With 50 nodes deployed, the coverage rates for
BES, 3D-IVFA, DABVF, and the proposed coverage algorithm increased to 87.69%, 90.08%,
89.80%, and 94.60%, while their corresponding coverage efficiencies were 53.62%, 53.79%,
52.36%, and 56.49%. In addition, we also verified that the clustering routing method based
on the optimal location of nodes obtained using the coverage algorithm had the effect of
prolonging the network life cycle. Based on a series of experiments, the proposed algorithm
was shown to be superior to the relevant algorithms in terms of coverage and coverage
efficiency and effectively improved the performance of UWSNs. In future research work,
we plan to study sensor nodes with different sensing radii and networks with barriers to
further optimize and improve the deployment strategy for underwater wireless sensor
networks to meet more underwater sensor network design goals such as network lifetime
and network connectivity.
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