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Abstract: During the last decade jacket-frames have emerged as the main kind of substructure for
bottom-mounted offshore wind farms in intermediate water depths. With the offshore wind industry
moving towards deeper waters, the predominance of jacket-frames is expected to increase in future
years. Multipurpose platforms combining wind and wave energy are proposed as an innovative
solution to enhance the sustainability of offshore wind energy. In this research, a multipurpose
platform is investigated with a novel feature in its oscillating water column (OWC) wave energy
converter—a variable geometry skirt. A comprehensive physical modelling campaign was carried
out using a 1:50 scale model. The performance of the OWC and its interaction with the wave field
were investigated under four different skirt aperture angles. It was found that the skirt aperture angle
plays a significant role in the capture-width ratio and the pneumatic mean power of the OWC. The
best performance was obtained with a skirt aperture angle of 140 deg. More generally, these results
prove that the variable-geometry skirt is a promising innovation for hybrid wave-wind systems
mounted on jacket-frame substructures.

Keywords: hybrid wind-wave energy; oscillating water column (OWC); offshore wind; physical modelling

1. Introduction

In the global effort towards mitigating climate change [1], the adoption of a clean
energy system based on harnessing renewable energy resources is fundamental [2]. These
efforts have seen exceptional development in the offshore wind industry in recent years [3].
However, if the ambitious objectives of the Paris Agreement [4] are to be achieved, to
keep global temperature rise this century below 2 degrees Celsius above pre-industrial
levels, the European offshore wind industry should fulfil its ambition of installing 460 GW
by 2050 [5].

To foster offshore wind energy while maintain its low impact on other marine re-
sources, it is important to consider its multiuse, combining exploitation with other ma-
rine resources such as wave energy [6], aquaculture, seaweed farming [7], and maritime
leisure [8]. It is in relation to this and on the various synergies that offshore wind energy
and wave energy conversion systems have that the combination of those technologies was
proposed [9–11]. Among these synergies, it is worth remarking the increased sustainability
that the combined exploitation of two marine resources would have in comparison with
independent offshore wind and wave energy projects. This is not only justified for the
shared costs due to the combined access to common infrastructures and facilities, but also
for the lower seabed footprint of a combined project [9,12]. Increasing the energy yield
per area of seabed used is a key parameter to reduce pressure on conventional marine
recourses users, such as fisheries [13]. Therefore, combined multiuse energy platforms are
expected to contribute to accelerate the deployment of offshore renewable energies and, at
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the same time, ensure the sustainability of multiple maritime sectors and their respective
economic activities.

Previous research on hybrid systems was initially led by some EU funded research
projects, including MARINA Platform [14], MERMAID [15], and ORECCA [16]. These
projects led to the definition of several hybrid concepts during the last decade. Dong
et al. [17] have recently identified more than 39 different hybrid concepts that were pro-
posed to date. Out of these, 27 combined an oscillating body (OB) type of wave energy
converter (WEC) into the foundation system of an offshore wind turbine (e.g., [18–21]),
while 12 utilised an oscillating water column (OWC) type of WEC (e.g., [22–28]). When
it comes to the integration of Wind-OWC (W-OWC) hybrid concepts into intermediate
waters offshore wind foundation systems [9], with typically greater than 30–40 m wa-
ter depth, the jacket-frame substructure is most commonly considered [29,30]. However,
jacket-frame substructures are among the most expensive to manufacture; they have a
higher load capacity combined with a reduced seabed impact and a larger water depth
range of installation (up to 80 m in recent projects) [31,32]. This has raised them among the
most common substructure types for these water depth ranges. With the offshore wind
industry pushing forward towards deeper water grounds and targeting intermediate and
deep-water projects, jacket-frame and floating substructures are the ones expected to pay a
leading role in the next couple of decades. This makes jacket-frame substructures a clear
candidate when considering a hybrid wind-wave energy system.

Among WEC technologies, OWCs are considered one of the most successful options,
partially due to the simplicity of the concept. These are formed by a hollow chamber
partially submerged in water with an open bottom and a trapped air volume, which is
driven in and out of the chamber through an air turbine by the action of the incoming
waves, and also for their low operational and maintenance costs [33]. When it comes to
increasing performance of an OWC, it is important to address the air turbine part of the
system, as evidenced by the fact that multiple air turbine designs have been investigated
in the last few decades, mostly self-rectifying air turbines [34]. The hydrodynamics of the
OWC chamber is also known to have a relevant effect on the overall system performance;
chambers should be designed to ensure a near-resonant condition for the incident waves
while at the same time avoiding energy losses [35,36].

The effects on the OWC geometry on its performance have been widely investigated
in previous literature. Boccotti [37] compared the effect of the front wall on an U-OWC with
a conventional OWC, finding an increase in the natural period of oscillation. Rezanejad
et al. [38] proposed the addition of a step at the front of the OWC chamber, increasing,
in this way, an additional resonant mechanism close to the frequency of the incident
waves. An L-shaped OWC geometry oriented in the wave propagation direction was
proposed by [39,40]. Furthermore, several publications have tackled the effects that specific
geometrical variations would have on the performance, for example, effects of the length
and the opening angle of harbour walls [41] and the slope of the chamber’s front and rear
walls [42]. In addition, when it comes to isolated OWC devices, cylindrical chambers are
the most often used, so that the wave direction does not affect performance [43], as has
been studied for nearshore sites [44,45]. It is in relation to this that the work preceding this
publication has proposed a patent application [46] of a variable geometry OWC chamber to
be installed as a hybrid wind-wave energy system. Among the different systems proposed
in such patent application, there is one proposing a variable aperture skirt, which aims to
increase the energy performance of the OWC by orienting the skirt aperture to the incident
wave direction.

The work presented in this paper aims to further understand the hydrodynamic
response of a jacket-frame mounted OWC (Figure 1), which has a novel skirt system that
can adjust its geometry to different aperture angles. This research explores a variable
aperture skirt system that extends the hybrid wind-wave energy converter previously
introduced in [47]. A thorough test campaign involving a 1:50 scale model of this device
was carried out, considering various skirt setups. Following this experimental campaign,
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the interaction between the OWC skirt aperture and the wave field was studied. The
performance of the different skirt aperture angles was assessed and compared with the
previous research.
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The remaining content of this article has been structured as follows. Section 2 outlines
the materials and methods employed in the experimental campaign. Section 3 details
the results derived from this campaign, subsequently analysed in Section 4. Ultimately,
Section 5 draws conclusions based on the findings.

2. Materials and Methods
2.1. The Model

The physical model used for this research (Figure 2) was built upon that used in [47].
Four different OWC configurations were considered, comprising an individual OWC
chamber configuration for each skirt aperture angle. Figure 3 and Table 1 outline the key
dimensions and parameters of the jacket-frame foundation, the OWC chamber, and its
skirt. Furthermore, the scale model was targeted for a site with a 50-m water depth [43];
geometrical similarity and Froude dynamic similitude criterion were considered for the
part of the chamber of the OWC below the mean free surface [48]. The Froude number (Fr)
is defined as the ratio between inertia (Fi) and gravity forces (Fg):

Fr =
Fi
Fg

=
v2

g L
, (1)

where, v is a characteristic velocity of the system, g is the gravitational acceleration, and L
is a characteristic length of the system.

Air compression forces have a significant role in an OWC system, and this requires a
different scaling of the pneumatic section of the chamber, the OWC chamber above the still
water level, to account for the air compressibility effects [49,50]. Hence, for this experiment
the volume of the pneumatic part of the chamber was scaled using scale ratio equal to λ2,
instead of the λ3 suggested by Froude, following [51–53]—i.e., this means that the volume
of the air part of the OWC chamber should be oversized, in comparison with a Froude
geometrical scaled model.
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Figure 3. The 1:50 scale model: (a) a cross-sectional view; and (b) a cut view displaying a horizontal
plane at the skirt level (partially reproduced from [47]).

Clear acrylic pipe was used to build the four bottom sections of the OWC chamber,
including the skirt. Therefore, a bottom part of the model was manufactured for each of
the three skirt aperture angles and a fourth one was built without the skirt. The remainder
of the model was kept as in the previous research [42]. The induced damping of the power
take-off (PTO) system on the OWC at full-scale was simulated by means of an orifice
plate [54,55], selecting the diameter of the orifice to match a value of the area coefficient of
1% (i.e., 15 mm) [56].
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Table 1. Model main parameters.

Parameter Symbol Dimension

OWC air part external diameter dres 450 mm
OWC air part external length lres−e 585 mm
OWC air part internal length lres−i 545 mm
OWC air part wall-thickness eres 1.5 mm
OWC chamber draught c 80 mm
OWC chamber external diameter dOWC 160 mm
OWC chamber length lOWC 200 mm
OWC chamber-reservoir link length llink 294 mm
OWC chamber wall-thickness eOWC 4 mm
OWC orifice diameter dOri f 15 mm
Jacket-frame length lj f 1438 mm
Jacket-frame base width wj f 525 mm
Skirt length lS 40 mm
Skirt angle α 140-180-220 deg
Distance to the floor a 884 mm
Water depth H 1000 mm

2.2. Experimental Set-Up and Testing Programme

The characterization of the influence of the skirt angle aperture on the performance of
the hybrid wind-wave energy converter was carried out through an experimental campaign
at the University of Plymouth’s COAST Laboratory, in the ocean basin. This is a 35 m long
and 15.5 m wide basin, with a variable floor depth, which was set to match the water depth
at the Wave Hub site (1.0 m at the model scale), the North Cornwall test center that was
used as reference to set the metocean conditions.

Figure 4 shows the layout of the experimental set-up, including the position of the
wave gauges, used to record the free surface displacement along the wave basin, and the
hybrid model. Table 2 provides additional details on the exact location of the wave gauges
and the model. The analysis of incident and reflected waves in the incoming wave field
was conducted using the three front wave gauges (WG1, WG2, and WG3), while the rear
wave gauge (WG4) recorded the transmitted wave. Additionally, a differential pressure
transducer (Omega PX2300-0.5BDI, Omega Engineering Inc., Manchester, UK) tracked the
pneumatic pressure difference at the OWC chamber. A sample rate of 128 Hz was set for
the data acquisition.
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Table 2. Position of model and the wave gauges (WG).

Parameter X [m]

WG1 9.430
WG2 9.870
WG3 10.120
WG4 14.100

WG5 (OWC) 12.590
Centre of the model 12.720

A total of 47 wave conditions were used for this experimental campaign. Follow-
ing [57], three different experimental test series were defined. Table 3 presents the regular
waves experimental programme (referend as Series A). Meanwhile, irregular waves ex-
perimental programmes are detailed in Table 4 (referred as Series B and Series C). The
duration of the tests for Series A was defined for a minimum of 100 waves, while ensuring
a minimum of 60 min at prototype scale for the irregular waves test series, following [58],
covering between 271 and 571 waves.

Table 3. Wave conditions for regular waves (wave period T and height H data in prototype values).

Series A
T [s]

6 7 8 9 10 11 12

H [m]

1.5 SA01 SA06 SA11 SA16 SA21 SA26 SA31
2.5 SA02 SA07 SA12 SA17 SA22 SA27 SA32
3.5 SA03 SA08 SA13 SA18 SA23 SA28 SA33
4.5 SA04 SA09 SA14 SA19 SA24 SA29 SA34
5.5 SA05 SA10 SA15 SA20 SA25 SA30 SA35

Table 4. Wave conditions for Series B and C, irregular waves (significant wave height HS and energy
TE, mean TZ and peak TP wave period data in prototype values).

Series Test Number HS TE TZ TP

Series B

SB01 0.5 m 6.05 s 5.04 s 7.06 s
SB02 1.5 m 6.49 s 5.41 s 7.57 s
SB03 2.5 m 6.98 s 5.82 s 8.14 s
SB04 3.5 m 8.00 s 6.67 s 9.33 s
SB05 4.5 m 8.48 s 7.05 s 9.87 s
SB06 5.5 m 9.10 s 7.58 s 10.62 s

Series C

SC01

3.5 m

6.60 s 5.50 s 7.70 s
SC02 7.20 s 6.00 s 8.40 s
SC03 8.40 s 7.00 s 9.80 s
SC04 9.00 s 7.50 s 10.50 s
SC05 9.60 s 8.00 s 11.20 s
SC06 11.40 s 9.50 s 13.30 s

The accuracy of the experimental set-up was ensured by means of a repeatability test
series, considering both regular and irregular waves. Four different wave conditions were
tested for regular waves, and two sea states were selected in the case of irregular waves.
Each one of the tests was repeated four times and data from the wave gauges, the inner free
surface oscillation inside the OWC chamber, and the pneumatic pressure were compared
by means of the cross-correlation coefficient (R2) and the normalised root mean square
error (NRMSE). Table 5 shows the mean values of both statistical indicators.
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Table 5. Mean values of the main statistical indicators of the repeatability tests series.

WG1 WG2 WG3 WG4 OWC ∆p

Regular waves R2 0.996 0.996 0.996 0.995 0.996 0.965
NRMSE 3.30% 3.04% 2.96% 3.27% 3.68% 5.10%

Irregular waves R2 0.972 0.971 0.971 0.957 0.957 0.951
NRMSE 3.28% 3.69% 3.38% 4.55% 4.18% 3.70%

3. Results
3.1. Reflection and Transmission Analysis

Signals recorded from the wave gauges (WG1, WG2, and WG3) were analysed follow-
ing the method proposed by [59,60] in order to derive the incident and reflected wave data.
Furthermore, data from WG4 were also used to determine the transmitted wave. Therefore,
by establishing the heights of incident, reflected, and transmitted waves, Equations (2) and
(3) were applied for regular waves, while Equations (4) and (5) were utilized for irregular
waves, enabling the calculation of reflection and transmission coefficients (KR and KT).

KR =
HR
HI

, (2)

KT =
HT
HI

, (3)

KR =

√
m0R
m0I

, (4)

KT =

√
m0T
m0I

, (5)

where, HR, HI , and HT refer to the reflected, incident, and transmitted wave height,
respectively, and m0i is the generic zero order moment,

Si =
∫ fmax

fmin

Si( f )d f , (6)

where, Si is the generic power spectral density.
Figure 5 illustrates regular waves data (Series A) and the four skirt angle configura-

tions plotted against the non-dimensional wave number (kh). Transmission and reflection
coefficients data obtained for irregular waves (Series B and Series C) are represented for the
four skirt configurations in Figures 6 and 7, respectively. Note that the dataset containing
the data from this and the remaining sections can be found in the Supplementary Materials.

It is clear from the results plotted in the figures that neither reflection nor transmission
coefficients (KR and KT) are affected by the variation of the aperture angle. Therefore, the
interaction of the device and the wave field is independent of the variation of the skirt angle.
KR increases, in general, with kh, and so decreases with the wave period for both random
and regular waves, ranging from around 0.07 to 0.38 for regular waves and between 0.13
and 0.50 for irregular waves. KT values are shown to be approximately constant at around
0.36 for regular waves, while the transmission coefficient is clearly increasing with kh for
random waves, ranging from 0.06 to 0.41. This behaviour is consistent with that previously
observed in [47].
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3.2. Hybrid Wind-Wave Device Performance

The performance of the hybrid wind-wave device can be determined based on the
incident wave height obtained from the reflection analysis, described in the section above,
and on the data from the free surface oscillation inside the OWC chamber (WG5) and the
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differential pneumatic pressure between the inner OWC chamber and the atmosphere (∆p).
The performance of the device can be then evaluated by using the capture-width ratio
(CWR) as defined in Equation (7).

CWR =
Pm

P b
, (7)

where, Pm is the mean pneumatic power of the OWC chamber defined by Equation (8), P
denotes the incident wave power per meter of wave front defined by (9) for regular wave
and (10) for random ones, and b is the OWC chamber width.

Pm =
1

tmax

∫ tmax

0
∆p q dt (8)

where, q is the volumetric air flow rate through the chamber’s orifice, t is time, and tmax is
the time that corresponds to the duration of the test.

P =
ρW g H2

I cg

8
(9)

P = ρW g
N

∑
i=1

Si
(
cg
)

i∆ f (10)

where, ρW is the density of the water, g stands for the acceleration of the gravity, cg is the
group velocity, HI is incident wave height, N is the number of frequency components (for
each frequency differential ∆ f ), and Si is the spectral density for the i-th component.

Capture-width ratio values are represented against the non-dimensional wave number
(kh), first for regular waves in Figure 8 and then for irregular waves in Figure 9. Overall,
CWR data range from 0.5% to 7.0% for regular waves and from 1.2% to 5.4% for irregular
waves. Mean values of the CWR are 2.6%, 3.1%, 2.2%, and 2.9%, respectively, for angles of
0-, 140-, 180-, and 220-degrees skirt aperture for regular waves and are, respectively, 2.3%,
3.6%, 2.8%, and 2.8% for random waves.
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It is clear from Figures 8 and 9 that the CWR is significantly influenced by the skirt
aperture angle. Though the maximum performance is found for the largest aperture, 7.0%
at α = 220 deg, the device with the smallest skirt aperture, α = 140 deg, presents not
only the best mean performance (3.1%) but also a broader area of heightened efficiency.
Moreover, data from regular waves (Figure 8) and irregular waves (Figure 9) highlight
the significant influence of the wave period on device performance. Generally, the CWR
tends to increase as the wave period decreases. From the regular waves data, different
performance peaks can be identified that clearly change for each aperture angle. For the
chamber without a skirt, the best performance is found at the wave periods of T = 8 and 6 s,
whereas for the 140-degrees aperture angle this is found at T = 9 and 6 s; for the 180-degrees
aperture angle this is found at T = 8 and 7 s, and for the 220-degrees aperture angle this is
found at T = 6 s.

To delve deeper into how wave height influences the device’s performance across
various skirt aperture angles, as hinted in Figure 8, the capture-width matrix is defined for
regular waves in Figure 10 for each of the three skirt aperture angles alongside the device
configuration without a skirt. The different skirt aperture angles notably impact the optimal
performance regions observed within each of the four OWC chamber configurations,
showing the largest area for the aperture angle of 140-degrees, the second largest area for
the angle of 220-degrees, then for the configuration without skirt and finally the smallest
area is shown for the 180-degrees configuration. Furthermore, it can be observed that the
increase in wave height, generally, implies an increase in the device performance.

Finally, the power matrix for regular waves is presented in Figure 11 in terms of the
wave height (H) and period (T) for each one of the three skirt aperture angles and the
device configuration without a skirt. The figure shows that the largest mean pneumatic
power (Pm) is found at the wave period of T = 11 s.
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4. Discussion

In this work, a novel variable aperture skirt system for an OWC WEC was studied
when this was mouthed as a hybrid wind-wave energy converter on a jacket-frame offshore
wind substructure system. A physical modelling test campaign was carried out on a 1:50
model of a geometrically scaled version of a jacket-frame prototype for a 50 m water depth
site. In order to ensure the full-scale application of the experimental data, best practices
were following when defining the experimental set-up. For example, by modifying the
pneumatic part of the OWC chamber so that air compressibility effects on the aerodynamical
damping are considered, the performance of the device is not overestimated. In addition to
this, repeatability tests were conducted to estimate the uncertainty on the data.
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The effect of the OWC’s skirt aperture angle was parametrically studied by defining
four different configurations of the hybrid wind-wave device, one chamber with three
different exchangeable skirts, each one with a different aperture angle from a smaller
to a larger aperture angle (α = 140 degree, 180 degree and 220 degree respectively). In
addition, and in order to set a reference, a chamber without skirt was also tested. From
the experimental data, it was observed that changes on the skirt configuration were not
modifying the interaction between the hybrid device and the wave field, i.e., differences on
the reflected and transmitted waves were neglectable for the four model configurations.
Furthermore, regarding the device performance, a clear influence of the skirt was observed,
identifying the smaller aperture angle (α = 140◦) as the best performing one, especially for
the larger wave periods (T = 9 to 12 s). This behaviour is observed for both the capture
width ratio (CWR) and the mean pneumatic power (Pm). It is worth remarking that the
larger aperture angle configuration (α = 220◦) has shown the best performance for the
shorter wave periods (T = 6 to 8 s).

A straightforward comparison exercise will be to compare the capture width matrices
of the model with the three skirt aperture angles, element by element, with the reference
model without skirt. Doing this, it can be appreciated that, on average, the best performing
skirt aperture angle (α = 140◦) increases the efficiency of the OWC by about 13%. One of the
characteristics defined by the patent of the skirt systems allows it to self-adapt its aperture
angle to better perform for the different wave conditions. Considering this would mean
that the device would select the best performing skirt configuration for each incident wave
condition. Applying this optimisation to the cases tested in this research would mean that,
on average, the variable skirt aperture OWC chamber would increase its efficiency by about
20%, 7% more than the best performing fix-aperture skirt. This increase in performance
justifies the use of variable aperture skirt systems on isolated offshore OWC systems.

The results obtained in this research show that multipurpose platforms have a poten-
tial to coexist under jacket-frame offshore wind substructure systems. This is especially
important as this type of substructure is aimed to be the leading one on the upcoming years,
as the industry is moving towards deeper waters. Although it is true that the rated power of
the offshore wind turbine is about two orders of magnitude larger than the OWC one (15 to
0.2 MW), when it comes time to analyse the temporal distribution of the energy yield, wave
energy production is, generally, delayed and has a lower variability [61]. However, for
multipurpose platforms to become a reality, there are still plenty of challenges to address;
for example, the structural response of the substructure including the OWC system requires
to be further studied, as well as the integration of the OWC generated energy with the
offshore wind electric grid.

5. Conclusions

This work further develops a hybrid wind-wave energy converter. In particular, the
research carried out here increases the understanding of a particular characteristic of this
hybrid device: its variable aperture skirt angle. On the basis of the results obtained from
the experimental campaign, two main outcomes can be drawn. First, the four different
OWC chamber configurations tested have been shown to produce a negligible effect on
both on the wave reflection and on the wave transmission. Then, it was found that the
skirt aperture angle of 140-degrees was found to exhibit the best performance in terms of
capture width ratio.

Based on the analysis of the performance of the hybrid wind-wave energy converter,
the following main conclusions may be drawn:

• The OWC skirt aperture angle configuration was shown to not influence the wave
field, meaning that the change in the skirt configuration would influence it.

• The hybrid device reflects between 7% and 50% of the incident waves, while between
6% and 41% is transmitted. It was also found that these values are similar to other
WECs and hybrid devices.
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• The energy conversion performance of the OWC was improved with a skirt in com-
parison with that of the device without a skirt.

• The best performance of the hybrid device in terms of capture width ratio occurs for
the skirt aperture angle of 140-degrees.

• The region of best performance in the capture-width matrix varies in size significantly
with the skirt aperture configuration, with the largest area observed for the 140-degrees
aperture angle.

In summary, the variable skirt aperture angle for the jacket-frame mounted OWC hy-
brid device developed in this work represents a viable approach to increasing performance
of OWC devices mounted as hybrid wind-wave energy converters. This work contributes
to better understanding the effects of a variable aperture skirt on an OWC device. Further
work is required to better understand the implementation of this kind of skirt system in
OWC design.
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