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Abstract: Sustainable ammonia is one of the leading candidates in the search for alternative clean fuels
for marine applications. This paper aims to build a simulation model of a six-cylinder, four-stroke
diesel engine to investigate the effects of increasing the ammonia proportion in methanol–ammonia
fuel blends on engine performance and emissions. In the present study, the conditions of different
speeds and different proportions of ammonia in fuel blends are investigated. The results show that
the average effective pressure, brake power, and brake torque increase by about 5% with an increased
ammonia substitution ratio. In terms of economic performance, the changes under medium and low
speed conditions are not obvious. However, the change in high speed conditions is significant. The
brake specific fuel consumption (BSFC) is reduced by 6.6%, and the brake thermal efficiency (BTE) is
increased by 4%. It is found that the performance of the engine is best at medium speed. The best
performance is achieved with higher efficiency and lower emissions. The present results can provide
guidance for the optimization of ammonia–methanol blends and their applications in engines.

Keywords: diesel engine; simulation; methanol; ammonia

1. Introduction

Since the industrialization of human society, the excessive use of high-carbon energy
has caused environmental damage and frequent natural disasters, especially air pollution,
water pollution, waste disposal, etc. It is urgent that we save energy and protect the envi-
ronment [1,2]. Diesel engines are the internal combustion engines with the highest thermal
efficiency, and they are widely used because of their excellent performance, economic
viability, and durability. However, the high emissions of carbon dioxide, nitrogen oxides,
and particulate matter have harmful effects on human health, the environment, and the
atmosphere. These high emissions have become one of the major factors limiting diesel
engine development [3–6]. Governments around the world have adopted various policies
to protect the environment. In terms of engines, it is a common practice to limit the emission
levels in fuel vehicles. In the face of increasing emission limit standards, it is necessary to
increase capital investment [7,8]. The factors that need to be considered when investigating
alternative fuels for diesel engines include emissions, fuel stability, fuel availability, and
subsequent effects on engine durability [9,10].

Methanol is considered to be a possible alternative to conventional fuels for use in
engines [11]. Methanol has a high octane number and good explosion resistance, which
can appropriately increase the engine compression ratio and improve the combustion
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efficiency of mixed fuel [12]. Methanol is liquid at room temperature and pressure and
can be made from any carbon-containing material by thermochemical methods. The
preparation cost is low, the existing fuel storage and transportation equipment can meet
the basic requirements, and the transformation cost is low [13,14]. However, the latent
heat of vaporization is high, so it is difficult to start at low temperatures when it is used
in compression ignition engines. Ganesan et al. [15] studied the engine performance of
methanol as a main fuel and biodiesel as a combustion aid under different combustion
modes. The results show that adding a certain amount of methanol can improve the
thermal efficiency and cylinder pressure of the engine as well as reduce the emission of
NOx. Wang et al. [16] carried out experiments on diesel–methanol mixed fuel with a high
methanol substitution ratio in a high-speed light engine based on a dual direct injection
system. The results show that the emission performance and efficiency are better than
those of the original diesel engine when the average effective pressure is 0.55 Mpa. Adding
an accelerant to improve methanol combustion is the choice of most compression ignition
engine researchers [15–19].

Ammonia is another clean and renewable fuel which can replace conventional fu-
els [20]. It contains no carbon and produces water and nitrogen when fully burned, which
can be used as fuel to significantly reduce greenhouse gas emissions [21]. Ammonia can
be stored in a liquid state at room temperature and pressure and has a mature production,
transportation, and storage system. It has a low production cost and can be widely prepared
and popularized in a short time [22]. Table 1 shows the comparison of the physicochemical
characteristics of ammonia, methanol, and diesel oil. However, the low combustion rate
and high spontaneous combustion temperature of ammonia lead to a poor combustion
effect of pure ammonia. And, ammonia easily produces harmful NOx under lean com-
bustion conditions [23–25]. The use of exhaust gas recirculation or the addition of other,
more reactive fuels as combustion aids, that is, the dual fuel combustion mode [26], can
improve ammonia combustion, thereby improving fuel efficiency and reducing emissions.
Wei et al. [27] studied the optimization direction and emission reduction potential of an
ammonia–natural gas engine. The results show that, with the increase of NH3, the peak
value of in-cylinder pressure and the heat release rate decrease, the NOx emission first
increases and then decreases, and the CO2 emission decreases. Xu et al. [28] studied the
possibility of using ammonia as a carbon-free fuel for marine propulsion in ammonia–diesel
dual-fuel engines with reactivity controlled compression ignition. The results show that,
in order to ensure the efficient operation of the engine, diesel needs to account for at least
24% of the total fuel, thus reducing greenhouse gas emissions by 70%. Currently, ammonia
has proved feasible for blending with diesel fuel to achieve a low spontaneous combustion
temperature and fast combustion in CI engines.

Table 1. Comparison of physicochemical properties of ammonia, methanol, and diesel oil.

Characteristics Ammonia Methanol Diesel

Density/g·cm−3 0.77 (Liquid) 0.79 0.84

Spontaneous combustion temperature/◦C 650 464 316

Vaporization latent heat/kJ·kg−1 1370 1100 260

Low calorific value/kJ·kg−1 18,610 19,660 42,700

Octane number 110 110 N/A

As methanol and ammonia are both assessed as alternative fuels, there have been a
number of studies on the combustion of ammonia–methanol blends. Li et al. [29] measured
the ignition delay time of the NH3–CH3OH mixture using a fast compressor. The results
show that the NH3–CH3OH mixture becomes more reactive with an increase in methanol
content. Lu et al. [30] numerically studied the effects of methanol addition on ammonia
combustion and emissions under different equivalence ratios. The results show that the
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addition of methanol significantly improves the chemical reaction activity of ammonia but
leads to higher NOx emissions. Li et al. [31] studied the effect of methanol on ammonia’s
spontaneous combustion by using a shock tube. The results show that the ignition delay
time of an ammonia–methanol mixture can be shortened by more than 60% by adding 5%
methanol. However, there is little research on the application of ammonia–methanol mixed
fuel in compression ignition engines at home and abroad, so it is of great significance to
explore the feasibility of burning methanol–ammonia mixed fuel. However, most of the
studies are fundamental investigations of the combustion of ammonia–methanol blends.
Practical engine studies on the application of methanol–ammonia blends are still lacking.

In the present study, a simulation model of a six-cylinder diesel engine is established to
investigate the effect of ammonia–methanol blended fuel on practical engine performance.
For 11 ratios of ammonia to methanol, the changes in engine performance characteristics
(power, torque), economic characteristics (BSFC, BTE), and emission characteristics (CO,
CO2, HC, NOx emissions) are analyzed. The optimum operating conditions of the engine
using ammonia–methanol blended fuel are analyzed. This study can enrich the simula-
tion research of ammonia–methanol mixed fuels and provides a reference for the related
experimental and simulation research of compression ignition engines.

2. Simulation Principle and Model

Simulation technology plays a very important role in combustion engine performance
research. By using numerical simulation software, it is possible to make a relatively
reasonable experimental design and reduce the time and material costs. In addition, it is
possible to pre-simulate the engine to give some guidance on the optimization direction
of the engine through simulation. Due to the complexity of the working process of the
internal combustion engine, it is necessary to simplify the combustion process of the engine
when using simulation software to simulate the working process in a relatively quick and
accurate way [32].

GT-Power is mainly used to calculate the one-dimensional gas flow process, which
mainly involves the Navier–Stokes equation.

The continuity equation is as follows:

dm
dt

= ∑bound m f lx (1)

The momentum equation is as follows:

d(me)
dt

= pdV + ∑bound (m f lx·H)− hg A(Tgas − Twall) (2)

The energy conservation equation is as follows:

d(m f lx)
dt

= [dpA + ∑bound (m f lx·u)− 4C f
ρν2

2
dxA

D
− Cp

(
ρν2

2

)
A]/dx (3)

where m represents the mass, mflx represents the mass flow through the boundary, e
represents the internal energy, p represents the pressure, V represents the volume, H
represents the total enthalpy, hg represents the heat transfer coefficient, A represents the
flow area, u represents the boundary velocity, Cf and Cp represent the surface friction and
the pressure loss coefficient, and D represents the equivalent diameter.

The model can predict the transient and steady-state behaviors of the engine system,
and its computational performance has been confirmed by researchers in relevant scientific
research institutes and enterprises.

2.1. Basic Parameters and Model Establishment

The experimental data of the engine are from Li et al. [33]. The engine prototype
is a six-cylinder, in-line, four-stroke diesel engine. Its main parameters are shown in
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Table 2 [33]. The working environment settings are 1 ATM and 300 K, and the fuels are
diesel and methanol, both of which are injected directly into the cylinder by the nozzle.
The ignition sequence of the engine is 1-5-3-6-2-4, the combustion model is EngCyl Comb
DI Wiebe, and the heat transfer model is Woschni GT. The model is shown in Figure 1.

Table 2. Basic parameters of diesel unit.

Parameter Value

Compression ratio 16.5
Bore/mm 105

Stroke/mm 125
Connecting rod length/mm 220

Fuel supply advance angle/(◦) 12
Rated speed/(r/min) 2800

Rated power/kW 95.6
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2.2. Model Verification and Optimization
2.2.1. Model Verification

To verify the accuracy of the simulation model with reference to experimental data,
different fuel injection amounts are set for 10 groups of speed conditions from 1100 rpm to
2900 rpm (Table 3). The model is verified by the output power and the torque change curve.
As can be seen from Figures 2 and 3, the simulation of braking power and braking torque
of pure diesel and M15 fuel (methanol mass fraction is 15%) is basically consistent with the
actual value and trend [33], and the errors in most data are less than 5%. Therefore, it can
be considered that this model can be used.

Table 3. Fuel injection at each speed.

Speed (r/min) 2900 2700 2500 2300 2100 1900 1700 1500 1300 1100

Fuel injection quantity (mg) 48 47.5 47 46.5 46 45.5 45 44.5 44 43.5

2.2.2. Model Optimization

The cylinder temperature is reduced due to the high latent heat of methanol vapor-
ization. It can cause starting difficulties, combustion deterioration, and other problems,
which results in a sharp increase in fuel consumption. Therefore, in order to improve the
efficiency of the engine fueled with a high methanol ratio, appropriate measures must be
taken. The method of increasing turbocharging is adopted in this paper. The engine model
with a turbocharging module is shown in Figure 4.
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Figure 5 shows the changes in power and BTE of diesel–methanol blends with different
methanol blends when the engine is turbocharged, or not, at 2000 rpm. Both power and
BTE increased by approximately 15%, and by 19% with the highest methanol blends.
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3. Results and Discussion

The latent heat of the vaporization of ammonia and methanol is higher, the rate of
combustion of ammonia is slow, and the temperature of spontaneous combustion is higher.
The calorific value of both is less than half that of diesel. However, the hydrogen element in
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ammonia and the high oxygen content of methanol can promote combustion. Therefore, to
reduce the negative effect of the excessive latent heat of ammonia and methanol evaporation
on combustion, the fuel setting of the simulation model retains diesel fuel with a mass
fraction of 5% as the igniter. The intake nozzle is set based on the model with turbocharging
components (the model is shown in Figure 6). Methanol and ammonia are premixed and
injected into the intake. A total of 11 groups are set to replace methanol with ammonia (in
mass fraction) from 0% (N0) to 50% (N50) with an interval of 5% for each group. Three
groups of engine speeds and their respective fuel injection amounts are set with reference
to the relevant data of the prototype diesel engine, as shown in Table 4.
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Table 4. Rotational speed and fuel injection.

Speed (r/min) 1000 2000 3000

Fuel injection quantity (mg) 43.5 46 48.5

3.1. Dynamic Performance
3.1.1. Brake Power

Figure 7 shows the variation in brake power with an ammonia blend ratio under three
speed conditions. The power value at low speed shows a fluctuating increase, and the
power of the N50 fuel is about 2.5% higher than that of N0.The changes at medium and
high speeds are more obvious, the power increase at medium speed is slightly lower, about
3.5%, and the total power is higher than that at high speed. The power increase is the
largest at high speed, which is 7%. The overall trend shows increases as the ammonia
mixture ratio increases.

When the engine is fueled with the same fuel, the main factors that affect the power
are the engine speed, the amount of fuel injected, and the effective fuel consumption. The
amount of fuel injected at high speed is more than that at medium speed, but the power is
lower. Therefore, it is possible that the combustion of fuel in the cylinder could deteriorate,
resulting in a significant increase in fuel consumption.
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3.1.2. Brake Torque

The changes in brake torque with an ammonia blend ratio under three speed conditions
are shown in Figure 8. Compared with the N0 fuel, the torque under low, medium, and
high speed conditions with the N50 fuel increases by 2.5%, 3.5%, and 7%, respectively. The
overall trend is that it increases with an increase in the ammonia blending ratio, and the
increase range increases with an increase in engine speed, which is basically consistent
with the power.
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3.1.3. Mean Effective Pressure

The mean effective pressure of an engine is the average pressure of the gas in the
cylinder acting on the piston during each work cycle. It directly reflects the power output of
the engine. As shown in Figure 9, the overall trend of the mean effective pressure changing
with the increase in the ammonia mixture ratio is basically consistent with the torque
change. In comparison with the N0 fuel, the average effective pressure increases by about
2%, 2.4%, and 3.7%, respectively, at low, medium, and high speed conditions when the N50
combusts. The range of increase expands slightly with the increase in rotational speed, but
the overall range of increase is lower. The use of an ammonia–methanol inlet premixed
injection, the use of a small amount of diesel ignition, and the addition of turbocharged
components greatly improve the combustion of fuel in the cylinder. This offsets the negative
effect of low ammonia calorific value on engine power performance. However, due to the
slow combustion rate of ammonia, the effect of low combustion pressure is still limited.
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The relative values of mean effective pressure and torque (both of which are closely related
to engine cylinder pressure) under three speed conditions are low speed > medium speed
> high speed. When the fuel is the same and other parameters are constant, the cylinder
pressure of the engine is mainly affected by the speed. As its value decreases as the speed
increases, increasing the engine speed causes the average effective pressure and torque
to decrease.
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3.2. Economic Performance
3.2.1. Brake-Specific Fuel Consumption

The change in engine BSFC as a function of the ammonia blend ratio for three speed
conditions is shown in Figure 10. When burning the same fuel, the BSFC at high speed
is obviously higher than that at medium and low speeds. The average value is more
than 200% higher than that at low speeds and about 170% higher than that at medium
speeds. The BSFC of the three speed conditions decreases with the increase in the ammonia
blending ratio, and the decrease increases with the increase in the speed. Compared with
the N0 fuel, the BSFC of low, medium, and high speed conditions decreases by 3.1%, 3.5%,
and 6.6%, respectively. The BSFC of high speed conditions decreases by about twice as
much as that of low and medium speed conditions.
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With all other factors being similar, engine power is positively correlated with the
lower calorific value of the fuel. It can be seen from Table 1 that the net calorific value
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of methanol is slightly higher than that of ammonia, and both ammonia and methanol
decompose upon heating. However, with the participation of oxygen in the air, methanol
decomposes into CO2 and H2O, which causes combustion deterioration, and a small
amount of hydrogen can be formed. The combustion improvement depends mainly
on the hydrogen obtained by ammonia decomposition, which reduces the effective fuel
consumption, so the power is slightly increased. This is consistent with the trends shown
in the curves of Figures 7 and 10.

3.2.2. Brake Thermal Efficiency

Figure 11 shows the changes in brake thermal efficiency of the engine with an ammonia
mixture ratio at three speed conditions. In the case of burning the same fuel, the relative
effective thermal efficiency of the three speeds is low speed > medium speed > high speed.
The overall trend increases with the increase in ammonia content, and the increase in high
rotational speed is larger, which is opposite to the change of effective fuel consumption.
Compared with the N0 fuel, the BTE at low, medium, and high speed conditions with the
N50 increases by 0.26%, 0.66%, and 4.07%, respectively. Although the BTE at high speed
is greatly improved, the overall thermal efficiency is still lower than that of conventional
engines. The thermal efficiency of the brake is mainly affected by the fuel combustion when
the other engine parameters remain unchanged. When the combustion is improved, the
thermal efficiency increases, which is consistent with the trend of the curve changes in
Figures 10 and 11.
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3.3. Emission Performance
3.3.1. CO2 Emission

The variations in the engine’s CO2 emissions as a function of the ammonia blend ratio
at three speed conditions are shown in Figure 12. When burning the same fuel, the relative
CO2 emissions of the three speeds are high speed > medium speed > low speed, and the
total decreases with the increase in ammonia content. Compared with the N0 fuel, the CO2
emissions of low, medium, and high speed conditions decrease by 44%, 45%, and 45%,
respectively, when burning the N50, which is basically the same. Wang et al. [34] simulated
the effect of premixed natural gas–ammonia and diesel ignition on engine combustion.
The results showed that the emission of CO2 decreased significantly with an increase in
ammonia content. Other studies also show similar conclusions [35,36].
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3.3.2. CO Emission

The variations in the engine CO emission ratios with an ammonia mixture ratio under
three speed conditions are shown in Figure 13. It can be seen that, as the ammonia content
increases, the relative magnitude of CO emissions under the three speeds is high speed
> medium speed > low speed. Compared with the N0 fuel, the CO emissions in the low,
medium, and high speed conditions of the N50 decrease by 44%, 45%, and 45%, respectively.
This is basically consistent with the change in CO2 emissions. The sharp decreases in CO2
and CO emissions are related to the decrease in the carbon content of the fuel, which
decreases by about 3.3% for every 10% increase in ammonia content. Similar conclusions
can be found in the study of the performance of diesel-ignited ammonia–hydrogen blends
in engines by Wang et al. [37].
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3.3.3. HC Emission

The variations in the HC emission ratios of the ammonia-blended engine under three
speed conditions are shown in Figure 14. Compared with the N0 fuel, the HC proportions
decrease by 44%, 55%, and 55% under low, medium, and high speed conditions, respectively.
The overall change trend and range of the HC emission percentage is basically the same as
those of CO2 and CO emissions. The decrease in the proportion of HC emissions indicates
a decrease in the proportion of unburned and incompletely burned fuels. As confirmed
by the change in effective fuel consumption, its essence is an improvement in combustion.
Previous studies have mixed ammonia with fuels such as gasoline and methane and tested
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it in a single-cylinder engine with a maximum replacement rate of 50%. The results by
Vinod et al. [38] show that the addition of ammonia improves the combustion stability of
gasoline and methane, and HC emissions can be increased.
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3.3.4. NOx Emission

The variations in the NOx emission ratios of the engine with an ammonia mixture ratio
under three speed conditions are shown in Figure 15. With an increase in the ammonia
blending ratio, the emission at each speed is basically unchanged, and the rate of increase
or decrease is about 0.01%. In this study, ammonia and methanol were premixed with air,
injected into the intake pipe, and then mixed with diesel fuel in the cylinder. The charging
efficiency and the air temperature are improved by turbocharging, which is beneficial to the
full combustion of ammonia and methanol. The N2O in the tail gas thermally decomposes
into NO, which reduces greenhouse gas emissions. However, with an increase in the
ammonia blending ratio, the emission proportion of unburned ammonia also increases.
In particular, the addition of turbocharged modules exacerbates this trend, which can
also explain why the nitrogen in the fuel increases while NOx emissions remain basically
unchanged. With the increase in the ammonia ratio, the emission densities of CO and CO2
in the engine exhaust decrease by about 50%. The HC emissions decrease significantly,
and the total amount of NOx remains basically unchanged. This indicates that the use of
ammonia–methanol blends is expected to improve the greenhouse effect emissions from
the engine. Wang et al. [35] studied the effects of using the best mixing method and mixing
ratio of ammonia–diesel fuel on the combustion and the emission performance of an engine.
The results from Wang et al. [35] also show that the emissions of NOx can be reduced using
ammonia–diesel fuel in engines.

3.4. Application Prospect

Methanol and ammonia are both renewable energy sources with low production costs.
They also have a good impact on reducing carbon emissions. The existing system for
storing and transporting fuels is perfect and can better adapt to using new fuels. The input
cost of the aftertreatment system is reduced because only the fuel supply system of the
engine needs to be reformed. The transformation cost is low. It is convenient for large-scale
popularization. The model of this study improves the combustion efficiency of mixed fuel
to a great extent. It ameliorates the negative effect of the increase in fuel consumption due
to the decrease in the calorific value of the fuel. The frequency of replenishing the fuel
is reduced, the transportation costs and emissions are reduced, and the feasibility of its
practical application is improved. In marine transportation, land transportation, and even
power generation, it has wide application prospects.
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4. Conclusions

In the present study, a numerical model of a six-cylinder diesel engine is established.
Different ammonia blending ratios (mass fractions 0–50%) and speed conditions are set up.
To improve the combustion in the cylinder, an ammonia–methanol inlet premix injection
strategy, a small amount of diesel ignition, and the addition of turbocharging components
are set up. The main conclusions of the study are as follows:

(1) The engine power performance parameters can be improved to a certain extent with
an increase in the ammonia blending ratio. The brake power and torque of each speed
condition increased by 2.5% and 7%. The increase in the mean effective pressure was
small.

(2) The increases in the effective fuel consumption and effective thermal efficiency at each
speed condition were between 3% and 6% with an increase in the ammonia blending
ratio. These increased significantly at high speeds. However, its fuel consumption
and thermal efficiency were poor.

(3) The emissions of CO and CO2 in the engine exhaust decreased up to approximately
50% with an increase in the ammonia blending ratio. HC emissions were significantly
reduced. The total amount and NOx remained generally unchanged.

(4) The overall performance of the engine at medium speed was the best. The power
output was maximized while maintaining low emissions and high efficiency.

(5) In the simulation, simplified treatments were applied to the heat transfer and the
combustion model of the engine. More in-depth studies of chemical reaction mecha-
nisms are needed to further improve the simulation. More experiments are needed
for further model calibration.
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Nomenclature
N0 mass fraction of ammonia is 0%
N50 mass fraction of ammonia is 50%
BSFC brake-specific fuel consumption
BTE brake thermal efficiency
CO carbon monoxide
CO2 carbon dioxide
HC hydrocarbon
NOx oxides of nitrogen
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6. Karatuğ, Ç.; Tadros, M.; Ventura, M.; Soares, C.G. Strategy for ship energy efficiency based on optimization model and data-driven

approach. Ocean Eng. 2023, 279, 114397. [CrossRef]
7. Axsen, J.; Wolinetz, M. What does a low-carbon fuel standard contribute to a policy mix? An interdisciplinary review of evidence

and research gaps. Transp. Policy 2023, 133, 54–63. [CrossRef]
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