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Abstract: The development of intelligent oceans requires exploration and an understanding of the
various characteristics of the oceans. The emerging Internet of Underwater Things (IoUT) is an
extension of the Internet of Things (IoT) to underwater environments, and the ability of IoUT to be
combined with deep learning technologies is a powerful technology for realizing intelligent oceans.
The underwater acoustic (UWA) communication network is essential to IoUT. The thermocline with
drastic temperature and density variations can significantly limit the connectivity and communication
performance between IoUT nodes. To more accurately capture the complexity and variability of ocean
remote sensing data, we first sample and analyze ocean remote sensing datasets and provide sufficient
evidence to validate the temporal redundancy properties of the data. We propose an innovative
deep learning approach called Ocean-Mixer. This approach consists of three modules: an embedding
module, a mixer module, and a prediction module. The embedding module first processes the location
and attribute information of the ocean water and then passes it to the subsequent modules. In the
mixing module, we apply a temporal decomposition strategy to eliminate redundant information
and capture temporal and channel features through a self-attention mechanism and a multilayer
perceptron (MLP). The prediction module ultimately discerns and integrates the temporal and channel
relationships and interactions among various ocean features, ensuring precise forecasting. Numerous
experiments on ocean temperature and salinity datasets show that Mixer-Ocean performs well in
improving the accuracy of time series prediction. Mixer-Ocean is designed to support multi-step
prediction and capture the changes in the ocean environment over a long period, thus facilitating
efficient management and timely decision-making for innovative ocean-oriented applications, which
has far-reaching significance for developing and conserving marine resources.

Keywords: thermocline; deep learning; Internet of Underwater Things (IoUT); multi-step prediction;
temperature prediction; salinity prediction

1. Introduction

The Internet of Underwater Things (IoUT) aims to create an interconnected network
of underwater systems that facilitates real-time monitoring and data transfer within marine
ecosystems. Developing a comprehensive oceanic wireless 3D observation grid enables
extensive surveillance of the marine environment but also plays a pivotal role in disaster
preparedness, resource exploration, and national defense. Challenges arise due to the
distinct nature of aquatic and aerial communication mediums and the adverse conditions
prevalent in marine settings [1]. These challenges manifest as increased complexity in the
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communication channels spanning air and sea, as well as diminished efficiency in the data
transmission capabilities of underwater networks.

Underwater Acoustic Communication (UAC) emerges as a pivotal technology within
underwater wireless communication, offering a means to transmit data across substantial
distances. It is capable of facilitating transmission over several kilometers at rates of hun-
dreds of bits per second (bps) and across hundreds of meters at tens of kilobits per second
(kbps) [2]. This capability establishes it as the preeminent communication technology uti-
lized in underwater wireless sensor networks. Despite its efficacy, the marine environment
introduces considerable temporal and spatial variability, marked by intricate and mutable
periodic variations. Such dynamics engender pronounced spatio-temporal uncertainty,
which presents substantial challenges to effective communication in these aquatic realms.

In underwater settings, various factors, including currents, temperature shifts, and
salinity changes, can adversely affect signal transmission, potentially leading to significant
attenuation and distortion. The oceanographic characteristics’ distribution is pivotal in
dictating the attenuation, reflection, refraction, and scattering of acoustic waves. This
interaction results in the creation of complex convergence and shadow zones within the
IoUT [3,4]. The elaborate distribution of these zones is critical in determining the con-
nectivity and communication performance among IoUT nodes. Moreover, it significantly
influences the network topology, thereby impacting the reliability and stability of com-
munications. This multifaceted interplay underscores the challenges and necessitates a
nuanced understanding of the marine environment to enhance and innovate underwater
wireless communications.

The oceanic thermocline, located between the surface and deeper layers of the ocean,
is a layer of water whose temperature decreases significantly with depth. The depth and
thickness of the thermocline varies according to geographic location, season, and climatic
conditions. The thermocline is particularly pronounced in temperate and tropical waters [5].
Within the thermocline, the temperature drop is very rapid and can drop dramatically by
tens of degrees over a vertical distance of a few tens of meters. This rapid temperature
change significantly affects the speed of sound, causing the speed of sound waves to change
as they pass through the thermocline. If the angle of incidence and temperature difference
for sound wave propagation reaches certain conditions, the sound wave will also undergo
a total reflection phenomenon [6]. The total reflection phenomenon may lead to limited
connectivity of the hydroacoustic network. It also affects the communication between
different nodes in the IoUT. Hence, the precise forecasting of crucial oceanic characteristics
is imperative for formulating routing strategies in underwater acoustic networks.

In the oceanic thermocline, key parameters such as temperature, salinity, and density
vary significantly depending on ocean depth, geographic coordinates, and time factors.
In a dynamic ocean environment, these variations pose challenges for sensor deployment
and network optimization and have significant implications for achieving effective data
transmission and communication maintenance. While providing routing and media access
control strategies for designing underwater network topology nodes, current prediction
techniques still fail to meet the demand for longer-term and more accurate predictions
for underwater communication systems. Specific challenges in the current prediction
task include the following: (1) Oceanographic features display seasonal and cyclical variations.
Long-term changes and trends in the ocean, such as global climate-induced shifts in sea
temperature and ocean acidification, can impact the nature of the thermocline. Only
multi-step temporal forecasting can trace the evolution of thermocline characteristics over
extended time scales. (2) The process of collecting ocean data involves significant data redundancy.
Temporal forecasting tasks in such intricate marine environments require extensive data
collection and analysis. Insufficient or excessive data can both negatively impact the
accuracy of thermocline predictions, thereby compromising the reliability of the final
forecasting outcomes.

Our research objective is to leverage the historical states and patterns of the ocean
to conduct multi-step, high-accuracy investigations into the temporal dynamics of the



J. Mar. Sci. Eng. 2024, 12, 446 3 of 18

thermocline. Current methodologies for temporal forecasting predominantly encompass
numerical techniques grounded in mathematical or statistical principles, as well as models
derived from deep learning paradigms [7]. Within this spectrum, the numerical approaches
relying on mathematical or statistical foundations typically employ polynomials, differ-
ential equations, and other mathematical constructs to approximate the patterns of ocean
temperature variations [8]. Although these methods are straightforward to implement and
facilitate rapid prediction generation, they often fail to accurately represent the ocean’s
inherently nonlinear characteristics, leading to suboptimal model fittings.

In oceanographic research, the application of deep learning methodologies has gained
significant traction in recent years, particularly in analyzing temporal characteristics of
marine environments. This transition from rudimentary neural network architectures to
more sophisticated deep learning frameworks has proven efficacious in accurately model-
ing ocean temperature variations’ intricate, nonlinear dynamics. Notably, convolutional
neural networks (CNNs) exhibited remarkable proficiency in abstracting spatial features,
a pivotal capability for predicting future states, as elucidated in [9]. Similarly, recurrent
neural networks (RNNs) were adeptly employed for deciphering temporal dependencies
in traffic speed prediction at discrete locations, drawing upon historical traffic data series,
as expounded in [10]. Despite these advancements, it remains a challenge for a singular
deep learning model to comprehensively assimilate the nuanced characteristics inherent in
a diverse dataset, often resulting in an inability to concurrently address both spatial and
temporal correlations effectively.

To better understand temporal and channel characteristics, the researchers developed
an approach integrating feature vectors, encapsulating spatial dependencies, into recurrent
neural network (RNN) sequences [11]. This integration aims to learn all spatio-temporal
dependencies synergistically. Furthermore, Qin et al. [12] introduced a predictive model for
red tide disasters, amalgamating the autoregressive integrated moving average (ARIMA)
model with Deep Belief Networks (DBNs). This innovative model is employed to meticu-
lously analyze the temporal correlations and spatial heterogeneity inherent among factors
sensitive to red tides.

While existing methodologies demonstrate remarkable efficacy in concurrent spatio-
temporal forecasting, their primary utility is confined to two-dimensional terrestrial land-
scapes, rendering them inadequate for the intricacies of three-dimensional marine en-
vironments characterized by latitude, longitude, and depth dimensions. As elaborated
in [13], the proposed multilayer ConvLSTM (M-convLSTM) framework aims to prognostify
internal oceanic temperatures. Nonetheless, the challenge of effectively parsing interde-
pendencies within expansive and intricate datasets persists. Song et al. [14] innovatively
employed SKYLINE’s three-dimensional geospatial information technology to forge an
interactive, tri-dimensional marine disaster forecasting system. This system, pioneering in
its field, capitalizes on synchronized spatio-temporal monitoring principles and leverages
a holistic approach to data management underpinned by data synchronization techniques.
However, a critical examination of contemporary research shows a significant reliance on
single-step forecasting methods in marine data forecasting. In contrast to past approaches,
multi-step forecasts provide a broader window of time to understand the future state of the
marine environment, thus providing an essential buffer for proactive marine environmental
management strategies.

In this paper, we introduce Ocean-Mixer, an advanced deep learning framework engi-
neered to predict oceanic feature distributions precisely. This innovative model comprises
three integral components: an embedding module, a mixer module, and a prediction module.
This paper delineates the intricate architecture and the operational efficacy of the Ocean-Mixer
model, setting a new benchmark in oceanographic data analysis and prediction.

A rigorous and representative task demonstrated the efficacy of Ocean-Mixer: the
model achieved time-series predictions of ocean features using raw observational data. We
initiated our study by undertaking an analytical assessment of a genuine oceanic thermocline
dataset, providing robust evidence to substantiate the redundant nature of temporal data.
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Additionally, we engaged in the comprehensive, multi-step forecasting of the thermocline’s
temporal progression in select maritime regions. These regions exhibit variations in the
thermocline’s position and configuration, influenced by geographic coordinates (longitude
and latitude), depth, and temporal factors. Our investigation encompassed an evaluation of
oceanic temperature and salinity fluctuations across different stages and depths. Through
this, we deduced the positioning of the oceanic thermocline by projecting the associated
temperature profiles. This paper delineates its principal contributions as follows:

(1) We observe a notable redundancy in the existing oceanic time series data, where both
the original and down-sampled series demonstrated parallel temporal characteristics.
This finding led us to mitigate the influence of redundant material information by
decomposing the time sub-series, thereby enhancing the accuracy of oceanic time
series forecasts.

(2) We employ the Mixer module, as proposed in this study, to achieve high-accuracy tem-
poral predictions. Addressing the redundant attributes of oceanic data, we enhanced
prediction precision and efficiency through strategic temporal series sub-sampling
and sub-sequence integration.

(3) We utilize the Mixer module proposed in this paper to implement multi-step time
series prediction, which captures long-range temporal information and predicts the
future state and change trend by fixedly superimposing the decomposed temporal
subsequence to the self-attention module, and the Mixer module retains the valid
material information throughout the prediction process.

(4) We innovate a predictive methodology for oceanic time series, dubbed ‘Ocean-Mixer,’
which proficiently captures temporal and channel dependencies. This method distin-
guishes itself by its capacity to effectively utilize original, multi-step historical ocean
data observations, enabling a broad spectrum of applications.

(5) We demonstrate the effectiveness and superiority of the proposed method Ocean-
Mixer in ocean time-series prediction by extensive comparison with classical and
state-of-the-art baseline methods.

The remainder of this paper is organized as follows: In Section 2, we summarize
related works. In Section 3, we analyze data to motivate our work and give detailed
problem definitions. In Section 4, we present the details of our proposed Ocean-Mixer
approach. In Section 5, we conduct a series of experiments to demonstrate the effectiveness
and superiority of our proposed method. Finally, we conclude this paper.

2. Related Works

Traditional methods for predicting ocean remote sensing data include linear, logistic, and
support vector regression (SVR) [15]. Cornejo [16] implemented combined genetic algorithms
and extreme learning techniques to forecast critical information in marine energy contexts.
Jiang [17] utilized SVR for the regression prediction analysis of ocean temporal characteristics.
Gou et al. [18] tackled the KNN algorithm for the task of predicting critical attributes of the
ocean. Such algorithms tend to consider only one of the temporal and channel dependencies
of the sea, ignoring the potential relationship between the two features.

In recent developments, deep learning has become the dominant method for predicting
the state of the marine environment. This dominance is attributed to its powerful nonlinear
computational ability to extract temporal and spatial features from unprocessed data.
Schuckmann et al. [19] proposed a methodology for a simple modeling scheme, which used
historical ocean data to build a global ocean routine monitoring system. Cornejo et al. [16]
used population genetic algorithms and extreme learning machine methods to predict
effective wave heights and wave energy fluxes for ocean energy applications. Although
these methods can solve the limitations of traditional prediction methods and obtain higher
prediction accuracy, there are still many shortcomings in feature capture for sequence data.

Sequential datasets are processed effectively using recurrent neural networks (RNNs)
and long short-term memory (LSTM) structures. These techniques found significant
applications in forecasting ocean water temperatures in deep learning. In their study,
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Zhang et al. [20] approached the prediction of sea surface temperatures as a sequential
data problem, employing the LSTM model. Yang integrated a fully connected LSTM layer
with a convolutional layer, effectively merging spatial and temporal data for enhanced
forecasting accuracy [21]. This research presents an advanced methodology tailored for
marine time series forecasting. It integrates the intricacies of spatio-temporal dynamics with
the interplay of diverse oceanographic features, thereby markedly elevating the accuracy
of the forecasts.

Recent research activities have increasingly concentrated on the thermocline. They [22]
discuss wind stress’s role in affecting the thermocline’s depth through processes like Ekman
pumping. It also explores the impact of wind-driven circulation in the North Pacific
concerning thermocline variability. Meanwhile, utilizing the sea temperature dataset, Jiang
and colleagues successfully identified the depth of the upper thermocline in the South
Sea. Additionally, their research provides new insights into the seasonal variations of the
thermocline [23].

To the best of our understanding, Mixer-Ocean represents a pioneering approach in
multi-step time series forecasting models that tackle the redundancy in oceanic data. This
innovative model captures the inherent connections among various oceanic features and
simultaneously addresses temporal and spatial dependencies. In addition, it is compelling
research to realize a multi-step thermocline position prediction.

3. Preliminary
3.1. Motivation

The researchers established monthly mean temperature, salinity, and current datasets
for the surface bottom of the Bohai Sea, Yellow Sea, and East China Sea based on the
Regional Ocean Modeling System (ROMS). During the data collection process, there may be
situations where the distribution of measurement methods or equipment is not reasonable,
resulting in the possibility of producing similar, repetitive results at different ocean locations
or collection times. All these operations will likely generate additional copies of data,
significantly increasing the redundancy of time series data. To ensure data quality, although
data workers will carry out quality control, cleaning, and the conversion of data several
times during the data integration process, it is difficult to effectively eliminate the high
similarity data generated by the digital mining equipment in similar environments and the
redundancy of time series data still exists.

As observed in Figure 1, the original sequence and the down-sampled sequence
maintain an astonishing consistency in trend, illustrating the redundancy present in ocean
time information. To further enhance the accuracy of the time series prediction model, it
is necessary to reduce the time redundancy information and minimize the interference
of correlation between neighboring samples on multi-step predictions. To this end, we
propose a multi-step, generalized time series prediction framework called Ocean-Mixer.
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3.2. Problem Definition

We consider the following instance of a historical ocean data sequence,
x = (xlongitude, xlatitude, xdepth, torder), where xlongitude, xlatitude, xdepth, and torder represent
ocean time series variables for longitude, latitude, depth, and the variables to be predicted,
respectively. The corresponding variable set is denoted as s(x, t) =

{
stemperature, ssalinity

}
.

Ocean-Mixer selects variables such as stemperature and ssalinity as channels, with each channel
having its time series data that vary over time. For a given sequence Sh = [s1, s2, . . . , sn] with
the length of n, the objective is to perform a prediction task aiming to forecast the time
series S f = [sn+1, sn+2, . . . , sn+m] for the next m steps, where the prediction task involves
learning a mapping C : Sn

h → Sm
h where Sn

h and Sm
h are continuous.

4. Methodology

This section introduces Ocean-Mixer, an advanced architecture designed for predictive
analysis of multi-step oceanic time series using remote sensing data. We first submit the
overall architecture of Ocean-Mixer in Section 4.1. Subsequently, in Section 4.2, we elaborate
on the modeling process of Ocean-Mixer from three perspectives: the embedding module,
the mixer module, and the prediction module.

4.1. Overview

Figure 2 illustrates the proposed Ocean-Mixer’s overall architecture, divided into the
embedding module, mixer module, and prediction module from bottom to top.
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In the thermocline time series feature prediction scenario, where the input data consists
primarily of data samples with varying temporal and spatial scales, our embedding module
is designed to use the Conv1D mechanism to obtain the embedding output corresponding
to a specific observation. These outputs are then fed into the upper module for further
interactive learning.

As a critical part of the framework, the mixer module first down-samples the original
time series to generate interleaved subsequences. Subsequently, temporal feature extraction
is performed on these subsequences using a self-attentive mechanism, which reduces
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temporal redundancy while efficiently extracting temporal features from short to long
distances in the time series. The obtained information is then systematically integrated into
the original sequence order. This approach facilitates the effective extraction of temporal
features over various time series, covering both short-range and long-range dependencies.

Based on the MLP architecture and carefully designed to maintain the integrity of
the input–output relationships, the prediction module is responsible for accomplishing
the information fusion and multi-step output mapping of ocean features. Integrating
the features learned from the previous module can provide more accurate and reliable
predictions than traditional methods.

4.2. Modeling
4.2.1. Embedding Module

In the thermocline time-series feature prediction scenario, the input data are mostly
data samples with different time scales and spatial scales, and to further transform them into
numerical data, our embedding module adopts. One-dimensional Convolution (Conv1D)
is pivotal in scenarios where intricate yet unidentified correlations exist between input
and output variables [24]. Figure 3 shows the structure of the embedding module. In
Conv1D, n convolutional kernels are slid over the entire sequence, an element-by-element
multiplication operation is performed on the input sequence, and the results are summed
to obtain a single element of the output sequence.
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In the embedding module, we employ S1
h to symbolize the matrix encompassing

historical observations. This matrix is systematically divided into two distinct submatrices:
a feature submatrix x and a variable submatrix t. Here, s(x, t) means a spatial-temporal
coordinate within S1

h, containing both temporal and channel information and serving as a
unique identifier for an oceanographic feature embedding s(x, t) ∈ S1

h.
The input matrix s(x, t) is composed of elements that represent the quantity of obser-

vations. It encapsulates the total temporal and channel features present in each statement.
The variable submatrix

{
SC

h , ST
h
}
∈ SH encompasses nnum × q aspects characterizing the

temporal and channel feature number. Conv1D can capture periodic and trend patterns in
a sequence, making it suitable for training subsequent deep-learning models.

Let the set F represent all the convolutional transformation functions learned from
input Sh to the matrix SH, where each vector si undergoes the pooling function f̂i in the set F .

We aim for the convolutional transformation function F (·) : Sh → SH to better capture
the temporal dependencies from spatial dependencies. The module is designed to obtain
an embedding output ŷ corresponding to a specific observation ŷ ∈ si. The term SH sym-
bolizes the higher dimensional dataset created by the embedding module, which contains
nhigh × (p + q) elements. Notably, the embedding module employs Conv1D to generate
higher-dimensional data for all variables V, which are then leveraged for data forecasting
in the concluding module.
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In common with numerous neural network algorithms, optimizing learning perfor-
mance entails incorporating additional hidden layers and neurons. However, this augmen-
tation concurrently amplifies the probability of encountering overfitting issues. To mitigate
this concern, we introduced L2 regularization as a penalization mechanism. Specifically,
we integrated θ = 1

2∥w∥2 into the objective function, aiming to enhance model robustness
and reduce model generalization error.

4.2.2. Mixer Module

This section introduces the Mixer module, a crucial component we proposed for
predicting ocean time series. It effectively captures temporal dependencies and channel-
specific information separately. The purpose of the mixer is to learn the mapping between
the input SH and the output Sm

h . It is important to note that the module’s input is derived
from the embedding module. For better comprehension, the self-attention filter component
is condensed into a module to capture temporal interactions. Subsequently, another MLP
component is applied to capture channel information. Equation (1) illustrates this simplified
time series forecasting process.

ST
h = Temporal(norm(Sh))
SC

h = Channel(Sh + ST
h )

S f = Linear(ST
h + SC

h )
(1)

Temporal mixing. Given the temporal redundancy discussed in Section 3 for time
series data, we introduce factorized sub-sampling strategies for both temporal and channel
dimensions to capture dependencies efficiently with minimal redundancy. For time series
data with temporal redundancy, we extract dependencies using Equation (2):

Sh,1, . . . , Sh,a = Sampled(norm(Sh)),
ST

h,i = Temporal(Sh,i), i ∈ [1, a]
ST

h = merge(ST
h,i, . . . , ST

h,a)
(2)

where we first downsample the original time series to generate a interleaved subsequences
and Sh,1, . . . , Sh,a denote the generated subsequences. Subsequently, a subsequences are
placed into the temporal feature extraction component Temporal. Finally, the subsequences
are merged in their original positions.

Equation (2) is employed for dependency extraction in time series analysis. Specifically,
we perform equidistant down-sampling on the initial time series, generating s interleaved
subsequences. Subsequently, self-attention mechanisms are applied to these subsequences
for temporal feature extraction to reduce temporal redundancy while capturing tempo-
ral information from the subseries. The acquired information is then systematically in-
tegrated following the original sequence order. This approach facilitates the effective
extraction of temporal features across diverse time series ranges, encompassing short- and
long-range dependencies.

Self-attention component. Equation (3) incorporates sinusoidal positional encoding to
generate the input embedding S̃h. Subsequently, multi-head self-attention is employed to
capture temporal dependencies within S̃T

h .

S̃T
h = norm(Sh) + PE(Sh)

S̃T
h,i = Attention(S̃h,1, S̃h,2, . . . , S̃h,i), i ∈ [1, a]

S̃T
h = merge(S̃T

h,i, . . . , S̃T
h,a)

(3)

Parallel sampling and interleaved subsequence processing pass through the self-
attentive component [25]. By implementing the self-attention component, the spectrum of
temporal features in the time series can be efficiently extracted from short to long distances.
Eventually, we merge these subsequences’ outputs in the original sequence order.
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MLP component. To enhance the capture of channel characteristics in oceanic data, we
employ MLP as a solution to address this issue. As illustrated in Figure 4, MLP is funda-
mentally a feedforward neural network with multiple neurons organized into input, output,
and n hidden layers, each comprising p hidden neurons. This architectural framework en-
ables MLP to model and extract intricate patterns embedded in the data adeptly, facilitating
a more comprehensive comprehension of channel-specific features within oceanic datasets.
Formally, the first layer input SC

h of MLP can be represented as follows:

SC
h+1 = Relu(WlSC

h + bl) (4)

where l denotes the depth of the neural network layer. W and bl , respectively, represent the
weight matrix and bias of the first layer. ReLU serves as an activation function to capture
intricate relationships among channel attributes. This architectural configuration enables
the deep neural network to effectively learn and model complex patterns within the data,
facilitating a nuanced understanding of the interplay among channel-specific properties.
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4.2.3. Prediction Module

Unlike MLP-like architectures used for channel feature extraction, our approach em-
phasizes learning high-level representations of time series data, thus significantly reducing
the number of model parameters. This approach greatly enhances the model’s immunity to
interference, leading to robust prediction results.

Throughout the time series forecasting process, we preserve all spatial information and
interactions between variable observations. Our framework exhibits strong characterization
capabilities by eliminating temporal redundancy and capturing the underlying channel
information while demonstrating excellent multi-step prediction performance. Section 5
provides a detailed empirical evaluation and discussion.

5. Experiments

To fully validate the effectiveness of our proposed method on the problem of predicting
ocean thermocline, in this section, comprehensive experiments are conducted on real
oceanic datasets to answer the following research question (RQ):

RQ1: Does our proposed Ocean-Mixer method outperform classical and state-of-the-
art baseline methods?

RQ2: Can Ocean-Mixer proficiently execute multi-step predictions?
RQ3: How does the choice of different parameters affect the prediction accuracy of

Ocean-Mixer?
RQ4: Can the proposed Ocean-Mixer method adapt to time series prediction scenarios

beneath the thermocline?
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5.1. Preparation

(1) Datasets. The data used in this experiment are derived from the monthly average
temperature and salinity dataset of the bottom layer of the Bohai Sea, Yellow Sea, and
East China Sea [26]. The dataset covers the ocean from 117.01◦ E to 131.66◦ E and from
29.04◦ N to 42.09◦ N for the years 1997 to 2016, spanning a total of 20 years. The spatial
resolution is (1/24)◦ × (1/24)◦, and the vertical stratification ranges from 0 to 75 m with
30 standard layers. Different oceans are marked and distinguished using different data,
such as longitude and latitude, and the overall data are stored in a unified format.

To enhance the efficiency of model training, we delineated an experimental area
spanning from 110.5◦ E to 130.5◦ E and from 30◦ N to 40◦ N, with a depth range of 0–80 m,
based on the dataset. This region is in the temperate zone, characterized by a notable
temperature disparity between the surface and deep sea, resulting in a distinct thermocline.
The collected sample data encompass multiple dimensions, such as longitude, latitude,
water depth, collection time, temperature, and salinity. The selected samples have a wide
spatial distribution and time span, which is advantageous for studying and analyzing the
characteristics of the oceanic thermocline.

(2) Metrics. In the context of time prediction tasks for ocean temperature and salinity,
we employed two widely used evaluation metrics, Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE), to assess the predictive accuracy of all methods. The definitions
of MAE and RMSE are as follows:

MAE(s, ŝ) =
1

nsamples

nsamples−1

∑
i=0

|si − ŝi| (5)

RMSE =

√√√√√√
nsamples

∑
i=1

(si − ŝi)
2

nsamples
(6)

where si and ŝi present the actual value and the predicted value of the i − th sample, MAE
and RMSE convey the average prediction error.

(3) Settings. All the experiments are carried out on a 64-bit Windows server equipped
with an Intel (R) Core (TM) i9-13900HX processor running at 2.20 GHz and featuring 64G
of RAM.

5.2. Performance Comparison with Other Baseline Models (RQ1)

To assess the efficacy of our proposed Ocean-Mixer, we compared it with four different
methods, including three baseline models, RR [27], LSTM [28], and KNN, as well as one
advanced model, SCINet (Liu et al., 2022a) [29].

To maintain the neutrality and integrity of our experimental results, we employ the
cross-validation method to optimize the parameters for each algorithm in the comparative
algorithm experiments. We randomly divide the historical data into 60% training and
40% testing sets. We further divide the training set into 10 mutually exclusive subsets
of similar size to be used as validation sets. For each experiment, we randomly select
two of these subsets as validation sets, with the remaining eight subsets serving as the
training set, ensuring that there are five different combinations of training and validation
sets. Cross-validation enhances the model’s ability to generalize to unknown data and
better reflects the optimal performance of each algorithm.

Ridge Regression (RR): This method is employed in multiple regression analysis to
address multicollinearity issues.

Long Short-Term Memory Network (LSTM): LSTM can preserve long-term dependencies
while avoiding the problem of vanishing gradients caused by these long-term dependencies.

K-Nearest Neighbors (KNN): The KNN approach, based on regression, estimates the
target value using the k closest neighbors. Through cross-validation, the optimal values
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selected for parameter k during the temperature and salinity prediction analysis were 16
and 6, respectively.

SCINet is a neural network model for time series forecasting based on dilated
causal convolution.

We conducted a detailed comparison with four other methods to assess the effective-
ness of our proposed Ocean-Mixer method in predicting ocean temperature and salinity
time series. Specifically, our experiments were carried out on ocean salinity and tempera-
ture datasets, with a fixed prediction step length of 5, varying the ocean depth from 20 to
80 during the experiment.

Figure 5 shows that our proposed Ocean-Mixer achieves lower MAE and RMSE in
ocean temperature and salinity prediction tasks than KNN. Although the KNN model can
capture temporal features, it fails to capture channel features simultaneously. This further
substantiates the superiority of our proposed Ocean-Mixer method. Moreover, the RR
model struggles to make accurate predictions when faced with complex and redundant
information. Additionally, while SCINet demonstrates good predictive performance in
predicting thermocline salinity, it is less effective than Ocean-Mixer in predicting ther-
mocline temperature, probably because ocean salinity does not change as drastically as
temperature [30].
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Figure 5. Performances of Ocean-Mixer and the baselines. During the experiment, the prediction step
was fixed at 5.

As observed from Figure 5, the overall distribution of predicted values by our proposed
method, Ocean-Mixer, is closer to the actual values. In addition, we found that when
predicting the temperature of the ocean thermocline, the deeper the seawater, the lower
the accuracy of the prediction. One of the reasons may be that it is still challenging to
make long-term, continuous, and high-resolution observations of the temperature change
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at the bottom of the thermocline due to the limitation of the ocean observation equipment,
which implies that the model based on the observational data may have some uncertainty
in predicting the temperature change at the bottom of the thermocline.

5.3. Multi-Step Ocean Time Series Prediction (RQ2)

Multi-step prediction helps to understand the potential future state of the marine
environment, aiding in assessing long-term trends and seasonal variations. To evaluate the
effectiveness of our proposed Ocean-Mixer method for multi-step time series forecasting,
we conducted a detailed comparison with four other methods. Specifically, we conducted
multiple experiments on ocean temperature and salinity datasets, with the fixed depth of
the ocean set at 15 m. The prediction step lengths were set to 2, 4, 6, and 12 for comparison
purposes. Table 1 shows the forecasting accuracy of different models at various step lengths.

Table 1. The impact of different step sizes on the accuracy of prediction models. During the
experiment, the ocean depth was fixed at 15 m.

Metric Method
Multi-Step (Temperature) Multi-Step (Salinity)

2 4 6 12 2 4 6 12

M
A

E

RR 0.284 0.334 0.465 0.512 0.205 0.281 0.455 0.601
LSTM 0.304 0.416 0.481 0.598 0.351 0.387 0.485 0.531
KNN 0.344 0.416 0.502 0.711 0.296 0.388 0.436 0.591

SCINet 0.274 0.304 0.382 0.477 0.264 0.299 0.401 0.418
Ocean-Mixer 0.112 0.138 0.194 0.288 0.107 0.113 0.186 0.286

R
M

SE

RR 0.301 0.351 0.481 0.522 0.215 0.291 0.417 0.588
LSTM 0.299 0.422 0.463 0.515 0.386 0.394 0.471 0.527
KNN 0.313 0.408 0.496 0.681 0.277 0.354 0.412 0.574

SCINet 0.251 0.299 0.365 0.435 0.251 0.287 0.349 0.412
Ocean-Mixer 0.108 0.143 0.188 0.216 0.123 0.132 0.176 0.275

Table 1 presents the MAE and RMSE comparison results on the ocean thermocline
temperature and salinity dataset at different step lengths. From Table 1, we observe
the following:

(1) With the help of sub-sampling and self-attention mechanisms, the Ocean-Mixer‘s
MAE on the temperature dataset is 0.02 higher than the best baseline LSTM. For the
salinity dataset, the forecasting accuracy of Ocean-Mixer decreases as the step length
increases, but it still performs better than other models.

(2) As the forecasting step length increases, our proposed Ocean-Mixer method consis-
tently maintains the highest accuracy in multistep-length forecasting tasks. This result
demonstrates the superior performance of the Ocean-Mixer method in adapting to a
variety of multistep-length forecasting tasks. Even minor improvements are signifi-
cant in critically studying ocean thermocline time series prediction. Such advances
have important implications for the routing design of underwater acoustic networks
and the application of media access control in the Industrial Internet.

5.4. Results of Different Ocean-Mixer Variants (RQ3)

The experimental results in Sections 5.2 and 5.3 show that the Ocean-Mixer method
proposed in this paper outperforms the existing techniques in time series forecasting and
especially demonstrates excellent performance when dealing with multi-step forecasting. In
order to explore, in-depth, the specific effects of different variable values on the forecasting
results, this section demonstrates the process of model parameter selection through two
variant experiments. These include the embedding length set in the generation module
and the length of the sampling sequence employed in the hybrid module. We maintained a
parameter setting of ocean depth = 15 and step = 12 during the experiment.
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Different sizes of embeddings. Previous studies confirmed that the size of the input
layer plays a decisive role in the overall performance of the model. While increasing
the dimensionality of the input layer improves the model’s ability to capture complex
features, this expansion significantly increases the time and cost required to run the model.
In addition, excessive growth may also weaken the model’s ability to generalize to new
datasets. Therefore, Figure 6 explores, in detail, how different embedding lengths affect
model performance.
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Figure 6. Performance of the proposed method with different sizes of embeddings. (depth = 15,
step = 12).

Figure 6 shows that embeddings that are too large and too small affect the ocean
time series prediction performance in the ocean temperature and salinity datasets. At
the same time, we observe that when embedding = 4, the model exhibits the most petite
MAE and RMSE. As the size of the embedding increases, the evaluation metrics show an
upward trend. These results intuitively demonstrate the optimal parameter selection of
Ocean-Mixer, which can better help achieve ocean time series prediction.

Different number of interleaved subsequences. Figure 7 illustrates the effect of the
hyperparameter Samples ∈ {32, 64, 128, 256, 512}, highlighting the influence of the number
of interlaced subsequences in data after downsampling on the predictive capabilities.
From the experimental results in Figure 7a, it can be seen that the prediction accuracy
improves as the number of interleaved subsequences increases. When the number of
interleaved subsequences equals 256, the prediction accuracy is the best, indicating that a
certain number of interleaved subsequences can effectively remove temporal redundancy
in the dataset. When the number of interleaved subsequences exceeds a certain threshold,
we should adjust other parameters to improve performance. Similar results were also
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observed on the salinity dataset in Figure 7c,d. Therefore, selecting an appropriate number
of interlaced subsequences is crucial during the application of the model.
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(depth = 15, step = 12).

5.5. Prediction of the Thermocline (RQ4)

In the Yellow and East China Seas, the thermocline emerges as a critical hydrographic
feature within the continental shelf sea regions, exhibiting marked seasonal variations.
This distinct layer demarcates the relatively warmer superficial waters from the cooler,
deeper waters. The attributes of the thermocline are subject to interpretation, influenced by
factors such as geographic positioning, seasonal dynamics, and additional environmental
variables. Notably, we define a thermocline as a column of thermoclines when it is above the
critical value δ. Equation (8) shows how to calculate the thickness of the thermocline Span,
where Hbottom denotes the upper term of the thermocline and Htop denotes the lower term
of the thermocline [31].

In the computation of the thermocline, the primary task is to ascertain the curvature
points G on the curve that delineates the vertical temperature distribution, which outlines
the top and bottom boundaries of the thermocline. Subsequently, it becomes essential
to determine the vertical span of the thermocline HSpan. Equation (8) gives a specific
calculation of the thickness of the thermocline HSpan, where Hbottom denotes the upper
term of the thermocline and Htop denotes the lower term of the thermocline. The final
step involves calculating the ratio of the temperature disparity between the upper and
lower boundaries of the thermocline to this vertical span, which indicates the thermocline’s
strength |GH |. When the temperature gradient is higher than the critical value δ, we define
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a thermocline, and Equation (9) represents the gradient value |GH | that meets the definition
of a thermocline.

G(◦C/m) =
△temperature(◦C)

△depth(m)
(7)

HSpan(m) = Hbottom − Htop (8)

|GH |(◦C/m) =

∣∣∣∣∣THbottom − THtop

HSpan

∣∣∣∣∣ ≥ δ (9)

The marine environment, a complex system of ocean currents, tides, and atmospheric
circulation, presents a high challenge for prediction, especially in predicting thermocline
temperature changes. Seasonal thermocline variations are not only affected by climate
variability but also constrained by regional environmental conditions, which makes the
prediction of its temperature change more complex and challenging. Given these inter-
twined and complex processes, an accurate forecast of thermocline temperature change
becomes challenging. In this section, the effectiveness of the Ocean-Mixer model in predict-
ing thermocline temperatures in different months is explored in detail to provide further
insights into our understanding of this complex ocean system.

The Ocean-Mixer utilizes historical observations to achieve accurate predictions of
ocean temperature in a 3D scenario by capturing the correlation between the time dimension
and channels. Figure 8 illustrates the temperature prediction for the next 12 months (from 14
January to 14 December) using data from the previous 36 months, with a prediction step 12.
Figure 8 covers data from 0 to 80 m from ocean depths, where the red curve represents the
investigated period’s observed temperature values, and the blue curve shows the predicted
temperature values.
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Figure 8. Comparison of predicted and investigated period temperatures over the last year.

In Figure 9, the red and blue lines indicate the investigated period and predicted
temperature gradients G, respectively. Combining Figures 8 and 9, the ocean temperature
does not vary much with water depth during January, February, March, and December.
However, from April onwards, the temperature fluctuations gradually increase with deeper
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water depth, especially in July, August, and September, when the temperature fluctuations
peak, consistent with the real-world behavior of seasonal variations in the temperate ocean
thermocline. This phenomenon also confirms the efficiency of our Ocean-Mixer model in
capturing long-term time-series information and temperature trends, as well as its ability
to fit nicely into real-world data.
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Figure 9. Comparison of the predicted temperature gradient G with the investigated period tempera-
ture gradient over the last year.

6. Conclusions

In this paper, we propose Ocean-Mixer, a deep learning framework for ocean time series
sensing data prediction, which can efficiently capture the correlation between temporal
dimensions and channel features by removing redundant temporal information. We first
provide an in-depth analysis of the ocean dataset, thus elucidating the importance of
eliminating temporal redundant information. Then, the article introduces the three core
modules of Ocean-Mixer in detail and describes the entire prediction process in detail. In
the experimental section, we apply Ocean-Mixer to the task of thermocline prediction on
an ocean dataset and compare it with other models. The results show that Ocean-Mixer
performs better on the ocean time series sensing data prediction task and is particularly good
at capturing long-term features of the ocean. In addition, we conducted related thermocline
experiments, which provide valuable insights and implications for future research.

In future work, we plan to make appropriate improvements to our method and apply
it to the classification and prediction of underwater sonar images, as well as to assist in
formulating routing strategies for underwater acoustic networks. One possible approach is
to integrate convolutional neural networks to handle image information, thereby further
capturing the spatial and temporal dependencies in the ocean.

Author Contributions: S.W.: Conceptualization; Data curation; Formal analysis; Methodology;
Project administration; Writing—original draft; Writing—review & editing. G.F.: Data curation;
Formal analysis; Resources; Methodology. Y.S.: Data curation; Formal analysis; Resources. J.W.:
Data curation; Resources; Methodology. T.G.: Data curation; Formal analysis; Methodology. H.Z.:
Data curation; Methodology. T.W.: Conceptualization; Data curation; Formal analysis; Funding



J. Mar. Sci. Eng. 2024, 12, 446 17 of 18

acquisition; Writing—review & editing. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was financially supported by Key Research and Development Project of
Hainan Province (Nos. ZDYF2022SHFZ034 and ZDYF2022SHFZ032), National Key Research and
Development Program of China (No. 2022YFD2401301), National Natural Science Foundation of
China (No. 42367054), Hainan Provincial Natural Science Foundation of China (Nos. 421QN196 and
421QN195), Open Project of State Key Laboratory of Marine Resource Utilization in South China
Sea (Nos. MRUKF2023005 and MRUKF2023002), Collaborative Innovation Center Project of Hainan
University (No. XTCX2022HYC11), and Hainan University Start-up Funding for Scientific Research
(Nos. KYQD[ZR]-21015 and KYQD[ZR]-21033).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Yongduo Song was employed by the company Hainan Qingxiao
Environmental Testing Co., Ltd. Author Jing Wen was employed by the company Hainan Qianchao
Ecological Technology Co., Ltd. The remaining authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

References
1. Qiu, T.; Zhao, Z.; Zhang, T.; Chen, C.; Chen, C.L.P. Underwater Internet of Things in Smart Ocean: System Architecture and Open

Issues. IEEE Trans. Ind. Inform. 2020, 16, 4297–4307. [CrossRef]
2. Chitre, M.; Shahabudeen, S.; Freitag, L.; Stojanovic, M. Recent advances in underwater acoustic communications & networking.

In Proceedings of the OCEANS 2008, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–10.
3. Qiu, T.; Chen, N.; Li, K.; Atiquzzaman, M.; Zhao, W. How can heterogeneous Internet of Things Build our future: A survey. IEEE

Commun. Surveys Tut. 2018, 20, 2011–2027. [CrossRef]
4. Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The future of industrial communication: Automation networks in the era of the

Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [CrossRef]
5. Yang, L.; Yang, S.; Plotnick, L. How the internet of things technology enhances emergency response operations. Technol. Forecast.

Soc. Chang. 2013, 80, 1854–1867. [CrossRef]
6. Heesemann, M.; Insua, T.; Scherwath, M.; Juniper, K.; Moran, K. Ocean networks Canada: From geohazards research laboratories

to smart ocean systems. Oceanography 2014, 27, 151–153. [CrossRef]
7. Sharifi, E.; Saghafian, B.; Steinacker, R. Downscaling satellite precipitation estimates with multiple linear regression, artificial

neural networks, and spline interpolation techniques. J. Geophys. Res. Atmos. 2019, 124, 789–805. [CrossRef]
8. Yi, X.; Zheng, Y.; Zhang, J.; Li, T. ST-MVL: Filling missing values in geo-sensory time series data. In Proceedings of the 25th

International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016.
9. Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning traffic as images: A deep convolutional neural network for large-scale

transportation network speed prediction. Sensors 2017, 17, 818. [CrossRef]
10. Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote

microwave sensor data. Transp. Res. C Emerg. Technol. 2015, 54, 187–197. [CrossRef]
11. Kim, Y.; Wang, P.; Mihaylova, L. Structural recurrent neural network for traffic speed prediction. In Proceedings of the ICASSP

2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019;
pp. 5207–5211.

12. Qin, M.; Li, Z.; Du, Z. Red tide time series forecasting by combining ARIMA and deep belief network. Knowl.-Based Syst. 2017,
125, 39–52. [CrossRef]

13. Zhang, K.; Geng, X.; Yan, X.-H. Prediction of 3-D ocean temperature by multilayer convolutional LSTM. IEEE Geosci. Remote Sens.
Lett. 2020, 16, 1303–1307. [CrossRef]

14. Song, L.; Zheng, Y.; Cheng, H.; Du, M. A three-dimensional marine disaster warning auxiliary analysis system based on spatial
and temporal synchronized monitoring. Mar. Ocean. Environ. Sci. 2015, 34, 763–768.

15. Zhang, Y.; Gao, Q. A prediction method of seawater Chla concentration based on extreme learning machine regression. Mar.
Environ. Sci. 2015, 34, 107–111.

16. Cornejo-Bueno, L.; Nieto-Borge, J.C.; García-Díaz, P.; Rodríguez, G.; Salcedo-Sanz, S. Significant wave height and energy flux
prediction for marine energy applications: A grouping genetic algorithm—Extreme Learning Machine approach. Renew. Energy
2016, 97, 380–389. [CrossRef]

17. Jiang, Y.; Zhang, T.; Gou, Y.; He, L.; Bai, H.; Hu, C. High-resolution temperature and salinity model analysis using support vector
regression. J. Ambient Intell. Humaniz. Comput. 2018, 15, 1517–1525. [CrossRef]

18. Gou, Y.; Liu, J.; Zhang, T. KNN regression model-based refinement of thermohaline data. In Proceedings of the 13th International
Conference on Underwater Networks & Systems, Shenzhen, China, 3–5 December 2018; p. 44. Available online: https:
//link.springer.com/article/10.1007/s12652-018-0896-y (accessed on 10 November 2023).

https://doi.org/10.1109/TII.2019.2946618
https://doi.org/10.1109/COMST.2018.2803740
https://doi.org/10.1109/MIE.2017.2649104
https://doi.org/10.1016/j.techfore.2012.07.011
https://doi.org/10.5670/oceanog.2014.50
https://doi.org/10.1029/2018JD028795
https://doi.org/10.3390/s17040818
https://doi.org/10.1016/j.trc.2015.03.014
https://doi.org/10.1016/j.knosys.2017.03.027
https://doi.org/10.1109/LGRS.2019.2947170
https://doi.org/10.1016/j.renene.2016.05.094
https://doi.org/10.1007/s12652-018-0896-y
https://link.springer.com/article/10.1007/s12652-018-0896-y
https://link.springer.com/article/10.1007/s12652-018-0896-y


J. Mar. Sci. Eng. 2024, 12, 446 18 of 18

19. von Schuckmann, K.; Le Traon, P.-Y. How well can we derive Global Ocean Indicators from Argo data? Ocean. Sci. 2011, 11,
783–791. [CrossRef]

20. Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of sea surface temperature using long short-term memory. IEEE
Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [CrossRef]

21. Yang, Y.; Dong, J.; Sun, X.; Lima, E.; Mu, Q.; Wang, X. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geosci.
Remote Sens. Lett. 2018, 15, 207–211. [CrossRef]

22. Jo Ann, L.; Deser, C. Wind-Driven Thermocline Variability in the Pacific: A Model–Data Comparison. J. Clim. 2002, 15, 829–845.
23. Jiang, B.; Xin-Rong, W.U.; Ding, J.; Zhang, R. Comparison on the methods of determining the depths of thermocline in the South

China sea. Mar. Sci. Bull. 2016, 35, 64–73.
24. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning. arXiv 2017,

arXiv:1705.03122.
25. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
26. Zhang, H. Monthly Mean Temperature; Salinity, and Current Dataset of the Surface Bottom Layer of the Bohai-Huangzhou-East

China Sea from 1997 to 2016, 2021. Available online: http://msdc.qdio.ac.cn (accessed on 2 June 2023).
27. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

arXiv 2013, arXiv:1311.2524.
28. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
29. Liu, M.; Zeng, A.; Chen, M.; Xu, Z.; Lai, Q.; Ma, L.; Xu, Q. Scinet: Time series modeling and forecasting with sample convolution

and interaction. Adv. Neural Inf. Process. Syst. 2022, 35, 5816–5828.
30. Hao, Z.; Li, W.; Zhang, Q. Efficient Clustering Data Collection in AUV-Aided Underwater Sensor Network. In Proceedings of the

OCEANS 2023—MTS/IEEE U.S. Gulf Coast, Biloxi, MS, USA, 25–28 September 2023; pp. 1–6.
31. Gou, Y.; Zhang, T.; Liu, J.; Wei, L.; Cui, J.-H. DeepOcean: A General Deep Learning Framework for Spatio-Temporal Ocean

Sensing Data Prediction. IEEE Access 2020, 8, 79192–79202. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5194/os-7-783-2011
https://doi.org/10.1109/LGRS.2017.2733548
https://doi.org/10.1109/LGRS.2017.2780843
http://msdc.qdio.ac.cn
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1109/ACCESS.2020.2990939

	Introduction 
	Related Works 
	Preliminary 
	Motivation 
	Problem Definition 

	Methodology 
	Overview 
	Modeling 
	Embedding Module 
	Mixer Module 
	Prediction Module 


	Experiments 
	Preparation 
	Performance Comparison with Other Baseline Models (RQ1) 
	Multi-Step Ocean Time Series Prediction (RQ2) 
	Results of Different Ocean-Mixer Variants (RQ3) 
	Prediction of the Thermocline (RQ4) 

	Conclusions 
	References

