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Abstract: Electronic navigational charts (ENCs) are geospatial databases compiled in strict accord-

ance with the technical specifications of the International Hydrographic Organization (IHO). Elec-

tronic Chart Display and Information System (ECDIS) is a Geographic Information System (GIS) 

operated by ENCs for real-time navigation at sea, which is one of the key technologies for intelligent 

ships to realize autonomous navigation, intelligent decision-making, and other functions. Facing 

the urgent demand for high-precision and real-time nautical chart products for polar navigation 

under the new situation, the projection of ENCs for polar navigation is systematically analyzed in 

this paper. Based on the theory of complex functions, we derive direct transformations of Mercator 

projection, polar Gauss-Krüger projection, and polar stereographic projection. A rational set of dy-

namic projection options oriented towards polar navigation is proposed with reference to existing 

specifications for the compilation of the ENCs. From the perspective of nautical users, rather than 

the GIS expert or professional cartographer, an ENCs visualization idea based on multithread-dou-

ble buffering is integrated into Polar Region Electronic Navigational Charts software, which effec-

tively solves the problem of large projection distortion in polar navigation applications. Taking the 

CGCS2000 reference ellipsoid as an example, the numerical analysis shows that the length distortion 

of the Mercator projection is less than 10% in the region up to 74°, but it is more than 80% at very 

high latitudes. The maximum distortion of the polar Gauss-Krüger projection does not exceed 10%. 

The degree of distortion of the polar stereographic projection is less than 1% above 79°. In addition, 

the computational errors of the direct conversion formulas do not exceed 10−9 m throughout the 

Arctic range. From the point of view of the computational efficiency of the direct conversion model, 

it takes no more than 0.1 s to compute nearly 8 million points at 1′ × 1′ resolution, which fully 

meets the demand for real-time nautical chart products under information technology conditions. 

Keywords: polar navigation; ENCs; complex function; dynamic projection; multithread-double 

buffer 

 

1. Introduction 

With global warming causing the rapid melting of polar sea ice, the significance of 

the Arctic region in shipping, energy, and security has been increasingly highlighted. The 

Arctic route is poised to become the new major maritime artery [1–4]. Currently, there are 

several challenges in polar navigation, including rapidly changing marine environments, 

limited communication capabilities, and inadequate navigation safety measures [5–7]. 

There are potential risks associated with ships exploring the Arctic, such as the occurrence 

of extreme events, such as ship collisions leading to oil spills [8,9]. Hence, to ensure safe 

navigation or operations in polar regions, vessels must rely on high-precision charts as 

essential information support, which makes polar charts indispensable, serving as a key 

prerequisite for the realization of polar navigation and resource development. However, 

when encountering the unique environment of polar regions, the common Electronic 
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Chart Display and Information System (ECDIS) based on true heading reference is not 

fully applicable, which could cause systemic problems in navigation parameter defini-

tions, piloting, positioning, and calculations [10,11]. Among them, choosing the projection 

method for charts is a fundamental issue that urgently needs to be solved [12,13]. 

The projection of ENCs forms the cornerstone of research in navigation applications. 

The presentation of navigational information, the characteristics of navigational errors, 

and the implementation of navigational methodologies are determined. Since the middle 

of the 20th century, extensive research has been carried out on polar nautical charting by 

map cartographers such as Beresford, Snyder, Pearson, Smith, and others [14–18]. The 

availability of the modified Lambert projection, Gauss-Krüger projection, gnomonic pro-

jection, polar spherical projection, and azimuthal equidistant projection has been ana-

lyzed. With the development of ECDIS, the study of polar chart projection has entered a 

new stage. The projection to be used for Electronic Navigational Charts (ENCs) was the 

focus of [19,20]. However, the current international standards do not provide specific re-

quirements for map projection to be used in ENCs and ECDIS. The choice of projection is 

still up to the manufacturer, which leads to different systems using different methods and 

creating different problems. Based on the existing literature [15,16], it is considered that 

the development of a computer-based method for the projection of ENCs for polar navi-

gation should satisfy the following conditions: 

⚫ Conformal projection, in order to facilitate angle measurements and pilotage. 

⚫ Length and area distortions are kept as small as possible, in order to facilitate accu-

rate measurement of distance and area measurements. 

⚫ The grid lines of latitude and longitude should be simple, in order to facilitate the 

construction of grids and the measurement of headings. 

⚫ Great circle routes should be as straight as possible, in order to facilitate navigation 

along them. 

Therefore, Mercator projection, polar Gauss-Krüger projection, and polar stereo-

graphic projection are selected as projections that can be used for ENCs in the polar re-

gion. The Mercator projection is commonly used in low- and mid-latitude charts [21]. Fur-

thermore, a mature set of marine navigation techniques based on the Mercator projection 

has been developed, which is in line with the charting habits of mariners, but the projec-

tion has a large deformation in the polar region [22]. The polar Gauss-Krüger projection 

is divided into 3∘ or 6∘ zones [23], making it difficult to be fully represented. The existing 

studies related to polar stereographic projection are based on the sphere [24]. However, 

the high-precision earth model is a rotating ellipsoid, and inherent principle errors are 

inevitably present in the projections based on the sphere model when navigating in the 

polar region. 

Aiming at the problem of large distortion of the Mercator projection in the polar re-

gion, the selection of an appropriate reference latitude or mapping area in order to rea-

sonably control the degree of distortion has been proposed by scholars [25], which makes 

it possible to follow the Mercator projection within a certain range of distortion. To ad-

dress the problem of the poor availability of the Gauss-Krüger projection in the polar re-

gion, Bowring, using the inherent connection between complex (variable) functions and 

conformal mapping, derived the formula for the transverse Mercator projection without 

zones [26]. With the help of a computer algebra system, Shaofeng Bian provided formulas 

for the Gauss-Krüger projection complex function without band splitting, and the com-

plex function expressions of scale ratio and meridian convergence angle were derived 

[27,28]. The non-iterative formulas of forward and inverse solutions of the Gauss-Krüger 

projection based on Lee’s formula were derived by Jiachun Guo [29]. To some extent, the 

difficulty of applying the traditional Gauss-Krüger projection has been solved by the in-

troduction of the complex function. In most cases, polar stereographic projection has been 

studied based on the sphere. Drawing on the method established by the ellipsoidal sun-

dial projection formula, the double polar stereographic projection was proposed by 

Chaojiang Wen [30]. That is, the ellipsoidal surface is first conformally projected onto a 
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suitable transition sphere, and then that sphere is projected onto the plane in the manner 

of polar stereographic projection. 

All of the above solutions effectively address the shortcomings of the three projec-

tions in practice to a certain extent. Nevertheless, in navigation, nature entails a process 

of constant position change, especially in marine navigation. The use of a single projection 

makes it often difficult to meet the accuracy requirements of map representation, and it is 

necessary to design an adaptive map projection according to the specific characteristics of 

the navigation to satisfy the needs of high-precision and high-reliability applications in 

polar navigation [31–34]. In addition to this, how to make the map visualization system 

better meet the needs of the users and ensure its more effective utilization is also an issue 

that needs to be put into focus. 

Therefore, in order to improve the accuracy of map representation in navigation ap-

plications, this paper introduces complex functions, considering their unique role and ob-

vious advantages in conformal transformation. On the basis of existing research, complex 

function expressions for three projections are given, and direct conversion formulas based 

on the complex functions of these three projections are derived. In addition, a dynamic 

projection of the ENCs oriented towards polar navigation is proposed, the conversion ac-

curacy and efficiency of the three projections are analyzed, and a visualization algorithm 

based on multithread-double buffer is designed. The results show that the constructed 

dynamic projection method of the ENCs for polar navigation can improve the accuracy of 

map expression in polar navigation applications and can provide a reference for the com-

pilation and application of high-precision polar electronic nautical charts. 

This article is organized as follows. Section 2 includes the complex function expres-

sion of the conformal projection of a polar chart based on the ellipsoid. In Section 3, a 

design approach to the dynamic projection of the ENCs is presented. In Section 4, the 

distortions and their availability within each latitude band are elaborated, the most suita-

ble navigation-oriented projections within that range are given, and the transformations 

between the different projections are analyzed. Section 5 presents a visualization idea for 

an ENC-based multithread-double buffer, and Section 6 discusses the results of the anal-

ysis, followed by the conclusions. 

2. Complex Function Expression of Conformal Projection of Polar Charts Based on  

the Ellipsoid 

2.1. Mercator Projection Coordinates in Complex Form 

According to the general formula for normal cylindrical projection, combined with 

the properties of complex functions, the complex function expression for the forward so-

lution of the Mercator projection is as follows: 

𝒛𝟏 = 𝑥1 + 𝑖𝑦1 = 𝑟0𝒘 (1) 

In Formula (1), 𝒛𝟏 represents the Mercator projection complex coordinates; 𝑥1 is the 

ordinate, which is the southbound coordinate; and 𝑦1 represents the abscissa, that is, the 

east coordinate. 𝒘 = 𝑞 + 𝑖𝑙 is the expression for isometric latitude in the field of complex 

functions, where 𝑞 is the isometric latitude, corresponding to the expression of geodetic 

latitude B, and 𝑙 is the longitude difference. In addition, 𝑟0 =
𝑎cos𝐵0

√1−𝑒2 sin2 𝐵0
 represents the 

cylindrical radius, 𝑎 represents the semi-major axis of the ellipsoid, and 𝐵0 refers to the 

reference latitude. 

The simple shape of the latitude and longitude gridlines of the Mercator projection 

makes it easy to map and calculate. In addition, rhumb lines are projected as straight lines, 

which allows marine navigation users to visualize the shape and direction of the routes 

when planning the routes, so that accurate navigation can be carried out. Hence, the Mer-

cator projection is the most commonly used method in nautical charts. However, the large 

distortion at high latitudes becomes a major factor limiting the application of Mercator 

projection in the polar regions. 
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The expression for the complex function of the inverse solution of the Mercator pro-

jection is obtained by a slight change in Equation (1): 

𝒘 = 𝑞 + 𝑖𝑙 =
𝑥1 + 𝑖𝑦1
𝑟0

 (2) 

The Mercator projection is a conformal projection, meaning that the angles are not 

distorted. The scale distortion 𝑢1 of the secant Mercator projection at the reference lati-

tude 𝐵0 and latitude 𝐵 can be expressed as follows, where e represents the first eccen-

tricity: 

𝑢1 =
cos𝐵0
cos 𝐵

√
1 − 𝑒2sin2⁡ 𝐵

1 − 𝑒2sin2⁡ 𝐵0
− 1 (3) 

It is clear that the secant projection is a similar variation to the tangent projection in 

the theoretical study of map projections. The scale factor of the Mercator projection can be 

determined by the reference latitude. According to a previous report [35], the reference 

latitude is generally determined by minimizing the distortion at the maximum defor-

mation, with the purpose of reducing the distortion and making the deformation uni-

formly distributed in the region. 𝐵0 is given by 𝐵̄ =
𝐵𝑁+𝐵𝑆

2
 and Δ𝐵 =

𝐵𝑁−𝐵𝑆

2
, with 𝐵𝑁 and 

𝐵𝑆 being the southern and northern latitudes of the region, respectively: 

𝐵0 = 𝐵̄ +
(12 − (4 − 7𝑒2) cos 𝐵̄ − 𝑒2(cos 2 𝐵̄ − cos 3 𝐵̄ − 2 cos 4 𝐵̄))

8 sin 2 𝐵̄
Δ𝐵2 (4) 

2.2. Polar Gauss-Krüger Projection Coordinates in Complex Form 

According to the literature [36], the expression of the complex function of the non-

singular polar Gauss-Krüger projection for the forward solution in the polar region is 

given below: 

𝒛𝟐 = 𝑥2 + 𝑖𝑦2 = 𝑎𝛼0𝜽 + 𝑎∑(−1)𝑘−1𝛼2𝑘 sin 2 𝑘𝜽

5

𝑘=1

 (5) 

Similarly, a sketch of the Gauss-Krüger projection is drawn in Geocart, as shown in 

Figure 1. 

 

Figure 1. Sketch of Gauss-Krüger projection. 

Given that power series expressions based on the third flattening n have a more com-

pact form and better convergence [37,38], the coefficients can be expressed in terms of n 

as follows: 
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 𝛼0 = −1 + 𝑛 −

5
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𝑛2 +

5

4
𝑛3 −

81

64
𝑛4 +

81

64
𝑛5

𝛼2 =
1

2
𝑛 −

7

6
𝑛2 +

77

48
𝑛3 −

1111

720
𝑛4 +

2281

1920
𝑛5

𝛼4 =
13

48
𝑛2 −

209

240
𝑛3 +

3817

2880
𝑛4 −

6917

6720
𝑛5

𝛼6 =
61

240
𝑛3 −

1663

1680
𝑛4 +

14459

8960
𝑛5

𝛼8 =
49561

161280
𝑛4 −

221401

161280
𝑛5

𝛼10 =
34729

80640
𝑛5

  

In the polar Gauss-Krüger projection plane, 𝒛𝟐 represents the polar Gauss-Krüger 

projection complex coordinates and 𝑥2, 𝑦2 are the ordinate and abscissa, respectively. In 

order to eliminate singularities near the poles, the conformal co-latitude 

𝜽=2 arctan[exp(−𝒘)] is introduced. Two points need to be noted. One is that the coeffi-

cients of the expression in this paper are slightly different from those in the literature [36], 

which is due to the fact that the origin of the expression is moved to the pole for ease of 

mapping in the Arctic. The other is that Re(sin 𝑘 𝒛) = sin 𝑘 𝑥 cosh 𝑘 𝑦 and Im(sin 𝑘 𝒛) =

cos 𝑘 𝑥 sinh 𝑘 𝑦. These equalities hold for any complex number 𝒛 = 𝑥 + 𝑖𝑦 and any natural 

number 𝑘 ≥ 1 [39]. 

We obtain the expression for the complex function of the inverse solution by using 

the symbolic iteration method: 

{
 

 𝒘 =
𝒛𝟐
𝑎𝛼0

=
𝑥2 + 𝑖𝑦2
𝑎𝛼0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝜽 = 𝒘 +∑ 𝑏2𝑘 sin 2𝑘𝒘
5

𝑘=1

 (6) 

The coefficients in Equation (6) are expended in terms of n up to 𝑛5: 

{
 
 
 
 
 

 
 
 
 
 𝑏2 =

1

2
𝑛 −

2

3
𝑛2 +

37

96
𝑛3 −

1

360
𝑛4 −

81

512
𝑛5

𝑏4 = −
1

48
𝑛2 −

1

15
𝑛3 +

437

1440
𝑛4 −

46

105
𝑛5

𝑏6 =
17

480
𝑛3 −

37

840
𝑛4 −

209

4480
𝑛5

𝑏8 = −
4397

161280
𝑛4 +

11

504
𝑛5

𝑏10 =
4583

161280
𝑛5

  

A clerical error in the inverse solution coefficients 𝑏2 and 𝑏8, 𝑎𝑠⁡𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑⁡𝑖𝑛 the lit-

erature [36], is corrected here. 

Additionally, the angle of the polar Gauss-Krüger projection is not distorted. The 

length distortion 𝑢2 can be calculated as the derivative of the coordinate 𝒛𝟐 at a specific 

point. 

𝑢2 = |𝒛𝟐
′| − 1 = |

(1 − 𝑒2 sin2 𝐵)1/2 sin 𝜽 (−𝛼0 − ∑ 2𝑘𝛼2𝑘 cos 2 𝑘𝜽
5
𝑘=1 )

cos 𝐵
| − 1 (7) 

The Universal Transverse Mercator Projection (UTM) is a Gauss-Krüger projection 

with a central meridian projection length ratio of 0.9996. 

2.3. Polar Stereographic Projection Coordinates in Complex Form 
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According to the general formula for azimuthal conformal projection, the complex 

function expression for the forward solution of the double polar stereographic projection 

is as follows: 

𝑢2 = |𝒛𝟐
′| − 1 = |

(1 − 𝑒2 sin2 𝐵)1/2 sin 𝜽 (−𝛼0 − ∑ 2𝑘𝛼2𝑘 cos 2 𝑘𝜽
5
𝑘=1 )

cos 𝐵
| − 1 (8) 

In Formula (8), 𝒛𝟑 is defined as stereographic projection complex coordinates, 𝑥3, 

𝑦3 are the ordinate and abscissa, respectively, 𝜑0 stands for equiangular reference lati-

tude. Normally, the conformal spherical radius is considered as 𝑅𝜑(
π

2
) =

𝑎

√1−𝑒2
(
1−𝑒

1+𝑒
)
𝑒/2

. 

The Universal Polar Stereographic Projection (UPS) is a polar stereographic projection for 

𝜑0 = 81∘06′25′′. 3. 

Moreover, a sketch of the polar stereographic projection is drawn in Geocartv3.2.0, 

as shown in Figure 2. 

 

Figure 2. Sketch of polar stereographic projection. 

We obtain the complex function expression for the inverse solution of the double po-

lar stereographic projection from Equation (8): 

𝑒𝑥𝑝(−𝒘) = −
sec2 (

𝜋
4
−
𝜑0
2
)

2𝑅𝜑
(𝑥3 + 𝑖𝑦3) (9) 

Since the double polar stereographic projection is a conformal projection, the angular 

distortion is 0. The length distortion 𝑢3 is related to the geodetic latitude 𝐵 and the con-

formal reference latitude 𝜑0, independent of the longitude difference 𝑙, which can be ex-

pressed as follows [25]: 

𝑢3 =
2 cos2 (

𝜋
4
−
𝜑0
2
)√1 − 𝑒2 sin2 𝐵

√1 − 𝑒2(1 + sin𝐵)
(
1 − 𝑒

1 + 𝑒
⋅
1 + 𝑒 sin𝐵

1 − 𝑒 sin𝐵
)

𝑒
2
− 1 (10) 

3. Method Design for Dynamic Chart Projection 

The core objective of polar dynamic chart projection is to accurately represent maps 

in navigation applications by adopting suitable projection methods. Therefore, the design 

of the projection is key. In addition, solving problems based on trajectory points in real 

time is crucial. The specific method of dynamic chart projection designed in this paper is 

as follows: firstly, the inverse operation is carried out to calculate the latitude and longi-

tude according to the inverse solution expressions of the three projections, and then the 

latitude and longitude are converted to plane coordinates according to the forward solu-

tion expressions. The essence of the dynamic projection is the transformation between dif-

ferent projections. At present, the numerical transformation method and indirect 
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transformation method are mainly used for the translation between different projections 

under the ellipsoid model [40]. However, these methods are more complicated and ineffi-

cient in the calculation process, and both of them fail to establish a direct transformation 

between the projected coordinates. Therefore, the formulas for the direct conversion of the 

projections in this section are derived for fast visualization in the ENCs of the polar region. 

3.1. Transformation between Mercator Projection and Polar Gauss-Krüger Projection 

The Mercator projection coordinates (𝑥1, 𝑦1) are substituted into the complex func-

tion expression for the inverse solution of the Mercator projection (Equation (2)) to obtain 

the latitude and longitude coordinates. Subsequently, it is substituted into the complex 

function expression of the forward solution of polar Gauss-Krüger projection (Equation 

(5)), to obtain the complex function expression of the Mercator projection transformed to 

polar Gauss-Krüger projection as follows: 

{
 

 𝜽 = 2 arctan exp⁡(−
𝑥1 + 𝑖𝑦1
𝑟0

)

𝒛𝟐 = 𝑥2 + 𝑖𝑦2 = 𝑎𝛼0𝜽 + 𝑎∑ (−1)𝑘−1𝛼2𝑘 sin 2 𝑘𝜽
5

𝑘=1

 (11) 

The polar Gauss-Krüger projection coordinates (𝑥2, 𝑦2) are known. The latitude and 

longitude coordinates are obtained by substituting into Formula (6). Then, by substituting 

these coordinates into Formula (1), we obtain the expression of the complex function of 

the polar Gauss-Krüger projection transformed to the Mercator projection: 

{
 

 𝜽 =
𝑥2 + 𝑖𝑦2
𝑎𝛼0

+∑ 𝑏2𝑘 sin
2𝑘(𝑥2 + 𝑖𝑦2)

𝑎𝛼0

5

𝑘=1

𝒛𝟏 = 𝑥1 + 𝑖𝑦1 = −𝑟0 lntan
𝜽

2

 (12) 

It should be noted that the central meridian of the two projections derived from Equa-

tion (11) and Equation (12) should be the same, and if not, it should be corrected. 

3.2. Transformation between Polar Gauss-Krüger Projection and Polar Stereographic Projection 

Similarly, by substituting the polar Gauss-Krüger projection coordinates (𝑥2, 𝑦2) 

into Equation (6) to obtain the latitude and longitude, and later substituting into the ex-

pression of the complex function of the forward solution of the polar stereographic pro-

jection (Equation (8)), we obtain the expression of the complex function of the Gauss-

Krüger projection, transformed to the polar stereographic projection: 

{
 

 𝜽 =
𝑥2 + 𝑖𝑦2
𝑎𝛼0

+∑ 𝑏2𝑘 sin
2𝑘(𝑥2 + 𝑖𝑦2)

𝑎𝛼0

5

𝑘=1

𝒛𝟑 = 𝑥3 + 𝑖𝑦3 = −2𝑅𝜑 cos
2(
𝜋

4
−
𝜑0
2
) tan

𝜽

2

 (13) 

Given the polar stereographic projection coordinates (𝑥3, 𝑦3), we obtain the latitude 

and longitude by inverse solution, and then substitute into Formula (5) to obtain the ex-

pression of the complex function of polar stereographic projection, transformed to polar 

Gauss-Krüger projection: 

{
 
 

 
 
𝜽 = −2 arctan [

sec2(
π
4
−
𝜑0
2
)

2𝑅𝜑
(𝑥3 + 𝑖𝑦3)]

𝒛𝟐 = 𝑥2 + 𝑖𝑦2 = 𝑎𝛼0𝜽 + 𝑎∑ (−1)𝑘−1𝛼2𝑘 sin 2 𝑘𝜽
5

𝑘=1

 (14) 

3.3. Transformation between Polar Gauss-Krüger Projection and Polar Stereographic Projection 
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We obtain the expression for the complex function of the Mercator projection trans-

formed to polar stereographic projection by substituting (𝑥1, 𝑦1) into Equation (2) and 

then into Equation (8): 

𝒛𝟑 = 𝑥3 + 𝑖𝑦3 = −2𝑅𝜑 cos
2(
𝜋

4
−
𝜑0
2
)exp⁡(−

𝑥1 + 𝑖𝑦1
𝑟0

) (15) 

Substituting (𝑥3, 𝑦3) into Formula (9) to get the latitude and longitude and then sub-

stituting into Formula (1), we can get the expression of the complex function of polar ste-

reographic projection transformed to Mercator projection: 

𝒛𝟏 = 𝑥1 + 𝑖𝑦1 = −𝑟0 ln [−
sec2(

𝜋
4
−
𝜑0
2
)

2𝑅𝜑
(𝑥3 + 𝑖𝑦3)] (16) 

4. Evaluation of Dynamic Projection 

With the help of Mathematica and MATLAB, the China Geodetic Coordinate System 

2000 (CGCS2000) and the Arctic boundary data from the National Oceanic and Atmos-

pheric Administration (NOAA, https://www.noaa.gov/) are taken as examples for the nu-

merical analysis in this paper. We discuss and analyze the distortion of polar navigation 

projection from two aspects: length distortion and longitude and latitude grid line distor-

tion, focusing on the distortion in each latitude segment of 66.5∘~70∘, 70∘~75∘, 75∘~80∘, 

80∘~85∘, 85∘~90∘. Availability is analyzed and the most suitable navigation-oriented pro-

jection type for that projection range is given. The transition between different projections 

is translated using the direct transformation formulas derived in Section III, and the trans-

lation accuracy and efficiency are analyzed. The reference ellipsoid constants are 𝑎 =

6⁡378⁡137⁡m and 𝑓 = 1/298.257⁡222⁡101. 

4.1. Length Distortion 

Length distortion is a primary factor in determining which projection is used, and 

controlling length distortion is crucial in cartography. The variations of 𝑢1, 𝑢2, 𝑢3, with 

longitude difference l at different circles of latitude, ranging from the Arctic Circle 66.5∘ 

to the North Pole 90∘ are shown in Figure 3. To provide a more visual representation of 

the distortion within the polar regions, the length distortions calculated based on Equa-

tions (3), (7), and (10) are listed in Table 1. 
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Figure 3. Variation of length distortion with longitude difference 𝑙 ((a) Mercator projection; (b) po-

lar Gauss-Krüger projection; (c) polar stereographic projection). 

Table 1. Length distortions at significant nodes within 66.5∘ to 90∘ of three projections. 

𝑩/∘ 

Type of Projection 

Mercator Projection 

Polar Gauss-Krüger 

Projection 

(𝒍 = 𝟔𝟎∘) 

Polar Stereographic 

Projection 

66.5 −0.074787 0.065517 0.043240 

69 0.029360 0.051923 0.034335 

70 0.078520 0.046964 0.031079 

71 −0.089466 0.042272 0.027993 

74 0.075366 0.029762 0.019747 

75 0.145209 0.026102 0.017328 

76 −0.130658 0.022693 0.015073 

78 0.011497 0.016613 0.011045 

79 0.102135 0.013938 0.009270 

80 0.211028 0.011502 0.007653 

81 −0.232651 0.009304 0.006193 

83 −0.015044 0.005616 0.003741 

85 0.377225 0.002861 0.001906 

86 −0.838213 0.001830 0.001219 

88 −0.676627 0.000457 0.000305 

90 ∞ 0 0 

The results in Figure 4 and Table 1 show the following: 

(1) In the Mercator projection, there is no length distortion at the reference latitude, while 

the length distortion is greater than 0 beyond the reference latitude and less than 0 

within it. The length distortions are all less than 10% in the region up to 74∘, whereas 

in polar regions with very high latitudes, the maximum distortion can exceed 80%. 

This suggests that it is possible to control the degree of distortion of the Mercator 

projection by adjusting the reference latitude, but the Mercator projection is still sig-

nificantly distorted at high latitudes. 

(2) The length distortions for 𝑙 = 60∘ are listed in Table 1. In the polar Gauss-Krüger 

projection, the farther away from the standard meridian, the larger the length distor-

tion is for a fixed longitude difference. At the same latitude, the length distortion in-

creases and then decreases with the longitude difference, reaching a maximum at 𝑙 =

±90∘. The maximum distortion is calculated to be no more than 10%. This shows that 

the bandwidth can be broadened by using a complex function to represent the Gauss-

Krüger projection, which facilitates uniform representation of the land and nautical 

charts and provides an important reference for scientific research and nautical chart-

ing in the polar region. 

(3) The overall distortion of the double polar stereographic projection in the polar region 

is relatively small, especially above 79∘, where the distortion is less than 1%. It has 

been able to satisfy the compilation of large and medium scale marine charts, which 

is very important for the application of high-precision polar navigation. 
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Figure 4. Comparison of the two projections. (a) Schematic of the latitude lines at the Arctic; (b) 

schematic of the meridians at the Arctic, where the red solid curves represent the polar stereographic 

projection; the green dashed curves represent the polar Gauss-Krüger projection; and the gray line 

shows the boundary line of the Arctic. 

4.2. Distortions of Longitude and Latitude Grid Lines 

The establishment of latitude and longitude grids on the plane is the basis for deter-

mining the precise position of a ship  during polar navigation. The grid of latitude and 

longitude lines for the Mercator projection is widely known, so it will not be discussed in 

this paper. Based on the polar Gauss-Krüger projection and polar stereographic projection 

formulas, the latitude and longitude are plotted as shown in Figure 4. In this case, the 

meridian starts at 0∘ longitude, the interval longitude difference is 30∘, and the latitude 

circle starts at 90∘ latitude. The red solid curves represent the polar stereographic projec-

tion; the green dashed curves represent the polar Gauss-Krüger projection; and the gray 

line shows the boundary line of the Arctic. From Figure 4, it can be observed that the me-

ridians in the polar Gauss projection are radial straight lines centered on the poles, and 

the latitudinal lines are depicted as concentric circles centered on the poles, whereas the 

meridians in the polar Gauss-Krüger projection resemble an inverse hyperbola, and the 

latitudinal lines resemble an ellipse. 

To analyze specifically the differences between the latitude and longitude grids of 

these two projections at high latitudes, the distribution of the difference Δ𝑥 and Δ𝑦 be-

tween the x and y coordinates in the interval of latitude 87∘ to 90∘ and longitude differ-

ence −90∘ to 90∘ are shown in Figures 5 and 6. Figures 5 and 6 show that Δ𝑥 decreases 

with increasing longitude difference and Δ𝑦 increases with increasing longitude differ-

ence when latitude is fixed. In addition, Δ𝑥  and Δ𝑦  decrease with increasing latitude 

when the longitude difference is constant. Normally, in 1:1,500,000 nautical charts, the 

difference of coordinates on the charts within the region is negligible within 1 mm. Cor-

respondingly, the actual coordinate differences should be less than 1500 m. It is clear that 

the two projections only have coordinate differences near the poles simultaneously less 

than 1500 m under the ellipsoid model. Therefore, it is easier to use the dynamic projection 

to match other auxiliary navigation. 
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Figure 5. Distribution of Δ𝑥. (a) Distribution of Δ𝑥 in the latitude range of 66.5∘~90∘, longitude 

difference −90∘~90∘ ; (b) distribution of Δ𝑥  in the latitude range of 87∘~~90∘ , longitude differ-

ence−90∘~90∘; (c) distribution of Δ𝑥 as a function of longitude difference l for 𝐵 = 87∘; (d) distri-

bution of Δ𝑥 with latitude 𝐵 at 𝑙 = 30∘. The black solid line shows the curve of Δ𝑥 as a function 

of 𝑙 and 𝐵. The red dotted line indicates the maximum allowable distance (1500 meters) for Δ𝑥 in 

a 1:1.5 million chart. 

 

Figure 6. Distribution of Δ𝑦  (a) Distribution of Δ𝑦  in the range of latitude 66.5∘~~90∘ , longitude 

difference −90∘~90∘ ; (b) distribution of Δ𝑦  in the latitude range of 87∘~~90∘ , longitude differ-

ence−90∘~90∘; (c) distribution of Δ𝑦 as a function of longitude difference l for 𝐵 = 87∘; (d) distri-

bution of Δ𝑦 with latitude 𝐵 at 𝑙 = 30∘. The black solid line shows the curve of Δ𝑦 as a function 

of 𝑙 and 𝐵. The red dotted line indicates the maximum allowable distance (1500 meters) for Δ𝑦 in 

a 1:1.5 million chart. 
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Referring to the existing recommendations for the compilation of ENCs [41,42], the 

length distortion of berthing and harbor at scales of 1:22,000 and above should be limited 

to within 5%. The length distortions in the 1:22,000 to 1:90,000 approach are within 10%. 

The range of distortions in the general scale, ranging from 1:350,000 to 1:1,500,000, is con-

trolled to 40% or less. For overviews at 1:1,500,000 and smaller scales, the range of length 

distortion can be limited to about 50%. By this convention, the adoption of dynamic pro-

jection in the polar region is suggested in this paper. Based on the analysis of the length 

distortions and the longitude and latitude grid distortions, the projections oriented to-

wards polar navigation are listed in Table 2. It is recommended that the compilation scales 

for ENCs be based upon standard radar ranges in nautical miles. The smaller the se-

lectable range, the larger the scale of the ENCs, and the more detailed the geographic in-

formation displayed on the ECDIS screen. Maritime users can flexibly manage and browse 

chart information by adjusting selectable distances to suit different navigational needs 

and scenarios. Here, for the purpose of uniformity of units in the paper, we standardize 

nautical miles to meters, 1 n mile = 1852 m. 

Table 2. Projections facing polar navigation at different scales. 

Name Scale Range 
Selectable Range 

(m) 
Deformation Range of Latitudes Projection 

Berthing >1:4000 463 <5% 

66.5∘~69∘ Mercator Projection 

69∘~79∘ Polar Gauss-Krüger Projection 

79∘~90∘ Polar Stereographic Projection 

Harbor 1:4000~1:22,000 2778 <5% 

66.5∘~69∘ Mercator Projection 

69∘~79∘ Polar Gauss-Krüger Projection 

79∘~90∘ Polar Stereographic Projection 

Approach 1:1:22,000~1:90,000 11,112 <10% 

66.5∘~74∘ Mercator Projection 

74∘~79∘ Polar Gauss-Krüger Projection 

79∘~90∘ Polar Stereographic Projection 

Coastal 1:90,000~1:350,000 44,448 <30% 
66.5∘~83∘ Mercator Projection 

83°~90∘ Polar Stereographic Projection 

General 1:350,000~1:1,500,000 177,792 <40% 
66.5∘~85∘ Mercator Projection 

85∘~90∘ Polar Stereographic Projection 

Overview ＜1:1,500,000 407,440 <50% 
66.5∘~85∘ Mercator Projection 

85∘~90∘ Polar Stereographic Projection 

4.3. Accuracy of Direct Transformation between Projections 

The aim of this paper is to carry out an accuracy analysis of the direct transformation 

between the established projections, as follows: Firstly, 𝐵 ∈ [66. 5∘, 90∘]  and 𝑙 ∈
[−90∘, 90∘] are substituted into Equations (1), (5), and (8) to get the true value of the pro-

jected coordinates. Secondly, the true values of the coordinates are substituted into the 

projected conversion formulas (Equations (11)~(16)) derived in this paper to get the com-

puted values. Lastly, the computed values are subtracted from the true values to get the 

computational errors of the conversion formulas. The computational errors of the trans-

formation between the polar Gauss-Krüger projection and the polar stereographic projec-

tion are listed in this section, limited by the length of the article. The computational errors 

of the direct transformation of the polar Gauss-Krüger projection to the polar spherical 

projection are recorded as Δ𝑥23, Δ𝑦23, while the computational errors of the direct trans-

formation of the polar spherical projection to the polar Gauss projection are noted as Δ𝑥32 

and Δ𝑦32. The variation of the computational errors is shown in Figure 7. As can be seen 

from Figure 7, the computational errors of the derived direct transformation formulas for 

both polar Gauss-Krüger projection and polar stereographic projection are less than 10−9 

m in this paper. The computational errors of the other direct transformation formulas 
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were calculated to be less than 10−9 m. The correctness of the derived direct transfor-

mation formulas can be proved numerically by taking into account the computational er-

rors inherent in Mathematica. 

 

Figure 7. Calculation error of the transformation between polar Gauss-Krüger projection and polar 

stereographic projection. (a) Calculation error of Δ𝑥23; (b) calculation error of Δ𝑦23; (c) calculation 

error of Δ𝑥23 ; (d) calculation error of Δ𝑦23 , where the direct transformation of the polar Gauss-

Krüger projection to the polar spherical projection are recorded as Δ𝑥23, Δ𝑦23, and the computa-

tional errors of the direct transformation of the polar spherical projection to the polar Gauss projec-

tion are noted as Δ𝑥23, Δ𝑦23. 

4.4. Calculation Efficiency Analysis 

In order to verify the efficiency of the established direct transformation model among 

the three projections, 𝐵 ∈ [66. 5∘，90∘]、𝑙 ∈ [0∘, 90∘] are selected as the study area, and 

the transformation between the Gauss-Krüger projection of the polar region and the polar 

stereographic projection is used as an example. The computational time used for the three 

resolutions of 1∘ × 1∘,1′ × 1′,0. 1′ × 0.1′ is measured and is shown in Table 3. The 

resolution of 1∘ × 1∘ requires the computation of 2 115 points; the resolution of 1′ × 1′ 

includes 7.614 million points; and the resolution of 0. 1′ × 0.1′ requires the calculation 

of 761.4 million points. Here, the 0. 1′ × 0.1′ resolution is chosen because of the format 

of XX°XX.XXXX′ in which nautical users enter the coordinates of points on ECDIS. In the 

table, 𝑡1 is defined as the computational time used for the direct conversion of the polar 

Gauss-Krüger projection to polar stereographic projection, and 𝑡2 represents the compu-

tational time used for the direct conversion of polar stereographic projection to polar 

Gauss-Krüger projection. The algorithm is tested in the following environment: 

Hardware environment: the processor is AMD Ryzen 7 5800H with Radeon Graphics 

3.20 GHz, RAM is 16.0 GB; the graphics card is AMD Radeon (TM) Graphics. 
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Software environment: Windows 11, 64-bit, MATLAB R2019av9.6.0. 

Table 3. Calculational time (unit: s). 

Form Time (s) 
Resolution 

𝟏∘ × 𝟏∘ 𝟏′ × 𝟏′ 𝟎. 𝟏′ × 𝟎. 𝟏′ 
(𝑥2, 𝑦2) → (𝑥3, 𝑦3) 𝑡1 0.0018389 0.081655 197.8277 

(𝑥3, 𝑦3) → (𝑥2, 𝑦2) 𝑡2 0.0019954 0.067192 203.3265 

According to Table 3, the time taken for the direct transformation between the polar 

Gauss-Krüger projection and the polar stereographic projection also does not exceed 0.1s 

for the calculation of nearly 8 million points at 1′ × 1′ resolution, which can better sat-

isfy the higher requirements of high-precision ENCs in terms of resolution and projection 

transformation efficiency. 

5. Visualization of Dynamic Chart Projection 

The real-time capability of the dynamic projection can meet the needs of route chang-

ing at any time when the ship navigation path is determined. In this paper, a method 

based on buffer analysis is proposed. The projection area is determined according to the 

real-time position of the object, and adaptive visualization is achieved using a multi-

thread-double buffer dynamic scheduling algorithm. The specific process of dynamic 

chart projection implementation is shown in Figure 8. The radius r of the buffer is deter-

mined by the relationship between the screen size and the current map scale. The radius 

r of the buffer is determined by the relationship between the screen size and the current 

map scale. Screen width and height are represented by w and h, respectively, and scale is 

the current scale. 

𝑟 =
√𝑤2 + ℎ2

𝑠𝑐𝑎𝑙𝑒
 (17) 

 

Figure 8. Schematic diagram of the realization process of dynamic chart projection. 

The current point of the ship's navigation, which is placed at the center of the screen, 

is set as the initial point for the projection. A circular buffer is formed with the center of 

the projected datum and a radius of 𝑟, and all objects within the buffer are projected. The 

next projection reference point is judged by the real-time position of the ship's movement. 

Specifically, this is achieved by dividing the screen into four parts, as shown in Figure 9, 

and if the point is located in area i, then 𝐷𝑖  is used as the next projection reference point. 
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For fast transitions in navigation scenarios, a double buffering technique can be used. The 

double buffer technique means that two buffers (the front buffer and the back buffer) are 

used to store and display images alternately. In general, the front buffer is used to display 

the current image, and the back buffer is used to render the new image. While the vessel 

is moving, the back buffer is exchanged with the chart information displayed on the screen 

of the ECDIS, so that the ENCs are ensured to display updates smoothly and quickly. 

Dynamic chart projection is required to visualize, while completing the projection trans-

formation based on the next projection datum, which can be made more efficient using 

multithreaded techniques. The main thread is dedicated to loading the chart data centered 

on the current projection reference point. It also focuses on providing the navigation-re-

lated details that the user is interested in during the navigation process. The sub-thread is 

applied to load the chart data for the next projection datum. Because the projection area 

corresponding to the current projection datum covers a larger area than the current screen, 

fast visualization of the projection area can be achieved by the technique of double buff-

ering. 

 

Figure 9. Selection of the projection reference point and the corresponding projection (the dark blue 

portion of the figure in the thick black rectangular box is the front buffer, which displays the chart 

information from the ECDIS screen. The light blue portion and the red portion are the back buffers. 

Assuming that the next position of the ship is located in zone 1, the next projection datum is 𝐷1. The 

red part is the buffer with 𝐷1 as the projection datum buffer). 

6. Conclusions 

In order to solve the problem that the projection used in ENCs is not fully applicable 

to polar navigation, an ENC projection suitable for polar navigation, based on the theory 

of complex function, is analyzed in detail. Direct transformations of Mercator projection, 

polar Gauss-Krüger projection, and polar stereographic projection are derived, dynamic 

projections oriented to polar navigation are designed, and an ENCs visualization idea 

based on multithread-double buffering is developed. Taking the CGCS2000 reference el-

lipsoid as an example for calculation, the Mercator projection has less than 10% distortion 

up to 74° latitude, but distortion exceeds 80% at extreme high latitudes. The maximum 

distortion of the polar Gauss-Krüger projection does not exceed 10%. Polar stereographic 

projection is shown to be less than 1% above 79°. From the perspective of longitude and 

latitude grid lines, the polar Gauss-Krüger projection and the polar stereographic projec-

tion differ only to a small extent near the poles. By combining the existing specifications 

for the compilation and mapping of ENCs, recommendations for the projections oriented 

towards polar navigation at different scales and in different latitude bands for different 

applications are given. Taking the transformation between the Gauss-Krüger projection 

and the polar stereographic projection in the polar region as an example, the computa-

tional error of the direct transformation formula is less than 10−9 m, and the time does 

not exceed 0.1 s for the calculation of nearly 8 million points at 1′ × 1′ resolution, which 



J. Mar. Sci. Eng. 2024, 12, 577 16 of 17 
 

 

fully meets the demand of high-precision ENCs for resolution and projection transfor-

mation efficiency. 

In conclusion, the adverse effects on navigation caused by projection errors in ENCs 

can be effectively eliminated by the established dynamic projection and visualization 

methods for polar navigation. By providing high-precision spatial and temporal infor-

mation services and improving the visualization of navigation software for smart ships, it 

can better serve polar scientific research, ocean shipping, and other related fields, while 

also reducing navigation risks. 
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