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Abstract: A set of planar motion mechanism experiments of the Duisburg Test Case Post-Panamax
container model executed in a towing tank with shallow depth is applied to train a neural network to
analyse the ability of the proposed model to learn the effects of different depth conditions on ship’s
manoeuvring capabilities. The motivation of the work presented in this paper is to contribute an
alternative and effective approach to model non-linear systems through artificial neural networks that
address the manoeuvring simulation of ships in shallow water. The system is developed using the
Levenberg–Marquardt backpropagation training algorithm and the resilient backpropagation scheme
to demonstrate the correlation between the vessel forces and the respective trajectories and velocities.
Sensitivity analyses were performed to identify the number of layers necessary for the proposed
model to predict the vessel manoeuvring characteristics in two different depths. The outcomes
achieved with the proposed system have shown excellent accuracy and ability in predicting ship
manoeuvring with varying depths of shallow water.

Keywords: towing tank; planar motion mechanism tests; artificial neural networks; ship’s manoeuvring;
shallow water

1. Introduction
1.1. State of the Art

In recent years, the tendency toward increasing vessel size has suggested a need to de-
vote attention to the manoeuvring behaviour of ships operating in shallow waters. Because
of this scale growth among these ships, the global ease of access to ports is becoming more
complicated. To bring down infrastructural and functioning costs for the port’s conversion,
understanding vessel performance in restricted waters helps in designing practical access.
Ship manoeuvrability is greatly influenced by the seabed, ground-bounding waters, and
moving vessels. Regarding shallow depths, crucial adjustments on the effect of vessel
manoeuvring kinetics have been included in the literature, highlighting that, in restricted
conditions, (1) the distance travelled by a vessel’s centre of gravity in a course perpendicular
to its initial direction when it has altered its course 180◦ and it is on a reciprocal heading
(tactical diameter) may increase mainly because of hull damping effects; (ii) as the vessel
resistance increases, the manoeuvring capability decreases, and (iii) the variations in the
pressure distribution on the hull can result in greater hydrodynamic forces [1].

Master and deck officers, who ensure the safety of the crew, cargo, passengers, and
ship at sea and port, may have complete knowledge on the operation’s capabilities in
shallow depth and can thus make the right decisions about ship handling. Although ma-
noeuvring data of ships are provided for deep-water conditions, they are usually acquired
through full-scale tests or experiments with scaled models. The evaluation of the ship’s
manoeuvring performance is guided through practical implementation of the Standards
for Ship Manoeuvrability (resolution MSC.137(76)) as set by the International Maritime
Organization (IMO) [2]. These standards apply to deep-water conditions, and the IMO
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recommends that trials be conducted preferably in deep, unrestricted water and that the
water distance from the surface to the bottom should surpass the vessel’s mean draught by
four times. Accordingly, with this recommendation, these trials are unreliable in providing
an accurate understanding of vessel manoeuvring in shallow depth because its behaviour
differs considerably from when it navigates in high seas. As a result, an accurate prediction
of the vessel’s manoeuvring operational behaviour in shallow water is essential. The ap-
proach formulated and introduced in this paper is built on a neural network system trained
with information obtained during a set of planar motion mechanism (PMM) experiments
with a ship model executed in a towing tank.

There are numerous studies on and approaches toward vessel manoeuvrability fore-
casts in different depths; for instance, the steering features of the Esso Osaka were ex-
tensively explored by carrying out a series of model test runs and full-scale experiments
in the Manoeuvring Committee in the 21st ITTC [3]. It was reported that several effects
are increased in shallow depth, such as, the propeller’s influence on sway force and
yaw moment.

Within the context of the European research project SHOPERA [4], shallow- and
deep-water manoeuvring experiments in different sea states have been performed for the
KVLCC2 tanker and the Duisburg Test Case (DTC) container ship [5,6]. The benchmark
data for manoeuvring in shallow water of DTC ship model were provided at the Fifth
International Conference on Ship Manoeuvring in Shallow and Confined Water (MASH-
CON) for validation and verification [7]. In [8], standard rudder manoeuvre simulations
were performed with the KRISO container ship (KCS) travelling at various depths, em-
ploying a model based on the Abkowitz formulation. The hydrodynamic coefficients were
determined through static and dynamic virtual PMM tests carried out using the Reynolds-
averaged Navier–Stokes (RANS) computer program Neptuno created by the authors. The
influence of propulsion was represented with a body force model.

The data obtained in the manoeuvring experiments in deep sea entirely fulfil the
IMO directions, but for vessels navigating slowly in shallow water, considerably greater
distances measured in the tactical circle manoeuvre and significantly lower overshoots
and drift angles were found, as expected. PMM test data obtained in a towing tank have
been used to evaluate the generalisation performance of numerical models, as in the work
presented in [9,10]. A uncertainty analysis of identified hydrodynamic coefficients of a
non-linear manoeuvring model is presented in [9]. The dimensionless hydrodynamic coef-
ficients were obtained by employing the least-squares method, truncated singular value
decomposition, and Tikhonov regularisation with PMM test data. In [10], the authors
present a different version of a least-squares support vector machine (LS-SVM), the trun-
cated LS-SVM, to estimate nondimensionalised hydrodynamic coefficients, also using PMM
test data. Recent work using the KCS hull model with a static rudder and a body force
model-based propeller is presented in [11] where the respective manoeuvring capabilities
are studied and compared in both open and restricted waters.

In [12], the predicting technique of manoeuvring vessel dynamics in shallow depth
was explored based on the well-known mathematical manoeuvring group (MMG) model.
Through that study, the following conclusions were obtained: The MMG model may be
applied for manoeuvring motion prediction in shallow depths; the predicted ship motions
agreed fairly well with the observed motions in each water depth; and it is possible to easily
predict sinkage and trim in shallow depths using simple forms. In [13], a numerical analysis
of vessel dynamics in shallow water was carried out, making use of a commercial unsteady
RANS solver. Primarily, the qualities of low-depth waves were examined by performing a
set of simulations, and afterwards, a full-scale model of a tanker was employed as a specific
instance to forecast its pitch and heave behaviour when subjected to head waves at different
depths, embracing a variety of wave frequencies at zero speed. The achieved outcomes
have demonstrated that shallow depths have a considerable impact on vertical motions.

Taking into consideration the differences between inland and open seas, a particu-
lar system of manoeuvrability assessment methods for inland vessels, which has been
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suggested to differ in testing manoeuvres and standards, appears eligible [14]. The as-
sessment of the manoeuvring operational behaviour of a vessel has been treated using
approaches that imply solving simplified mathematical models or obtaining the complete
set of hydrodynamic coefficients from tests, computational fluid dynamics (CFD), or po-
tential theory [15–17]. The reliability of simplified formulations greatly depends on the
effectiveness of hydrodynamic coefficients, experimental data are very expensive, and it is
challenging to equip a ship model and arrange the facilities required for this purpose. Also,
obtaining hydrodynamic coefficients through CFDs is computationally costly.

This work’s motivation is to report an alternative and effective approach for mod-
elling non-linear systems through artificial neural networks (ANNs) that address the
manoeuvring simulation of ships and, in this specific case, in shallow water. Neural net-
works have been employed to simulate manoeuvring behaviour [18]. The development of
the processing capability of computers allows the execution of complex algorithms into
advanced decision support systems in maritime navigation [19]. These systems should
incorporate functions such as providing solutions for ship manoeuvring operations and
navigational situations.

These demands may be achieved through neuroevolutionary methods with ANNs.
ANN is so called because the model imitates the learning mechanism of the human brain
and does not rely on a physical representation. As a result, it is more effective than tradi-
tional physics-based models, particularly when they are complex. The neural network (NN)
approach reported here has been demonstrated to be an interesting option for substituting
mathematical models for ship manoeuvring that are based on physics. The necessary
information for training this NN-based model might be directly acquired from full-scale sea
trials or free-running model tests so that the technique is sufficiently precise for acquiring
complete experimental information. This type of model also has the advantage of being
fast, with a computational time for each training run varying between 9 and 36 s for the
presented case, using a 13th Gen Intel(R) Core(TM) i7-1355U (1.70 GHz) processor.

In [20], the authors applied ANNs to represent the manoeuvring characteristics of a
chemical tanker based on test results acquired with a model. In their studies, the ANNs
were used to estimate the yaw angle and the paths followed by the model resulting from
the rudder angle order, the number complete rotations by the propeller shaft, the x and y
positions, sway velocity, and yaw angle values measured at the preceding instant. The data
obtained from the learning procedure using the Levenberg–Marquardt technique were anal-
ysed and contrasted with the results obtained using the scaled conjugate gradient method
and the Bayesian regularisation process. In [21], the authors studied an approach that
employs a genetic algorithm to optimise the weights and the number of backpropagation
neurons of an NN at the same time to estimate the path of the vessel. Other applications of
neural networks for ship manoeuvring were presented in [22–26].

More recent applications in the navigation field have focussed on vessel-added resis-
tance prediction in waves to verify its fitness with both the practical and technical standards
recommended by the IMO for mitigating emissions of air pollutants from vessels [27]. The
research presented in [28] shows the development of a mathematical approach established
on the results of fluid dynamics computation in head waves and machine learning, specif-
ically ANNs. The model has demonstrated that it can accurately calculate the added
resistance of container vessels based on vessel particulars, travelling speed, and sea state
by using two wave energy spectra. Then, in [29], an ANN was employed to estimate the
added resistance coefficient for container vessels in regular head waves of diverse speeds.
The information meant to train the model was derived from computational analysis by
applying the Boundary Integral Element Method considering several container vessels’
hull forms. In [30], the predictive ability of recurrent neural networks (RNNs) was explored
for real-time short-term prediction (nowcasting) of vessel motions in high seas. RNN
capabilities, long short-term memory (LSTM), and gated recurrent unit (GRU) approaches
were evaluated and compared through a data record derived from CFD simulations of a
self-propelled destroyer ship navigating stern-quartering waves in sea state seven. Gener-
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ally, all the procedures provided good and similar results. In [31], to set up data-driven
recurrent mapping within ship motion dynamics, an ultrashort-term deep learning pre-
dictor was developed, establishing a self-attention-weighted bidirectional long short-term
memory (Bi-LSTM) network together with one-dimensional convolution (Conv-1D). The
Bi-LSTM has been used to learn forward and reverse feature maps of ship manoeuvring
time-series data. At the same time, the self-attention mechanism, cascaded in the serial
mode, is contrasted with traditional techniques such as dynamic mode decomposition
(DMD), support vector regression (SVR), GRU, and LSTM models. In [32], to facilitate
ship manoeuvring fast-dynamics prediction, which is imperative within motion planning
and control, a self-organising data-driven network with hierarchical pruning (SDN-HP) is
introduced using a fuzzy neural architecture.

In [33], a procedure is developed with LSTM NNs to represent the motions of a free-
running David Taylor Model Basin (DTMB) 5415 destroyer operating at 20 knots in sea
state 7 stern-quartering long-crested irregular seas. The presented work has shown that
LSTM NNs can be trained to accurately represent the six-degree-of-freedom response of
a free-running vessel in waves. A rigorous and comprehensive case study demonstrated
the methodology’s effectiveness for accurately representing the non-trivial motions of the
considered hull form. In [34], a new hybrid prediction model of ship motion attitude
is suggested based on LSTM NNs and Gaussian process regression (GPR). The results
obtained with the presented method have shown that the LSTM-GPR hybrid predictor
effectively integrates the advantages of the high prediction accuracy of the LSTM model and
the interval prediction potential of the GPR model and successfully verified the effectiveness
and advancement of the LSTM-GPR hybrid model.

The research presented in [35] focusses on a model-free machine learning method for
‘ship0as a wave buoy’ (SAWB)-based sea state estimation (SSE), using NNs to map vessel
response spectral data to statistical wave properties for a small uninhabited surface vessel.
The ANN models trained using heave, pitch, and roll vessel response data have been
shown to be able to estimate significant wave heights, mean wave periods, and relative
wave headings effectively for idealised sea states within the given constraints. The main
goal of the work presented in [36] was to develop a seakeeping prediction tool to be used in
the early stages of ship design. Therefore, an artificial intelligence (AI) algorithm based on
ANNs was developed, and it only required a number of ship coefficients of form. The data
were generated using a frequency-domain seakeeping code based on the boundary element
method (BEM). The work has shown the capability of ANNs to compute seakeeping loads
quickly, achieving more than 200 ships per second. Furthermore, the ANNs can naturally
remove irregular output data computed by BEM solvers.

In [37], the novel attention-based neural network (AT-NN) was applied to estimate
wave height, zero-crossing period, and relative wave direction from raw time-series ship
pitch, heave, and roll data. Despite reduced input data, it was demonstrated that the
suggested methods by adjusted state-of-the-art approaches (based on convolutional neural
networks (CNNs) for regression, multivariate LSTM CNN, and sliding puzzle NN im-
proved estimations of the mean-squared error (MSE), the mean absolute error (MAE), and
Nash–Sutcliffe efficiency (NSE) by up to 86%, 66%, and 56%, respectively, compared to the
best-performing original methods for all sea state parameters. Moreover, the presented
method based on AT-NN outperformed all the tested procedures (original and enhanced),
improving estimation MSE by 94%, MAE by 74%, and NSE by 80% when examining all
sea state parameters. In [38], a hybrid spatial–temporal NN that integrates a CNN and a
multi-recurrent neural network (MRNN) is presented. The spatial and temporal features
were extracted from a time series using a CNN and an MRNN, respectively. Afterwards,
the spatial features were input into the MRNN and used as auxiliary features to predict
ship motion. To determine the most suitable hyperparameters, the authors introduced an
improved adaptive particle swarm optimisation (IADPSO) algorithm that includes a novel
population initialisation procedure and dynamic adaptive parameter tuning to optimise
the algorithm’s global- and local-search capabilities. An actual ship’s pitch, roll, and heave
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motion data were used to assess the IADPSO–CNN–MRNN hybrid prediction model. The
results showed that the presented prediction model fitted the actual data better in regions
with significant variations. Moreover, it surpassed the CNN–LSTM, CNN–GRU, LSTM,
and GRU models regarding prediction performance.

The literature referred to above on the NN approach mainly addresses ships’ wave-
induced motions. The present paper addresses manoeuvring models in which the motion
is on the horizontal plane, which means that there are no effects of waves. Therefore,
the use of ANNs in ship manoeuvring applications appears promising and exhibits a
good level of reliability. An alternative system identification procedure for creating a low-
speed manoeuvring model making use of RNNs and free-running model tests is suggested
in [39]. The authors mainly examined a low-speed manoeuvre, like the final stage in
berthing, to attain automatic berthing control. Also, a new loss function that attenuates the
impact of the noise included in the training data is presented. Recent work focussed on a
mathematical model of the cooperative manoeuvres of autonomous ships, autonomous
tugboats, or remotely controlled tugboats that are expected to be an essential part of
navigation assistance for safe navigation in ports and for berthing/unberthing operations
is presented in [40]. The authors presented a new mathematical model framework for
cooperative manoeuvres that considers the coupled motions among tugboats and a ship as
precisely as possible.

Given the advantages of the NN approach, it is assumed that the results achieved by
ANN simulations can accurately reproduce the natural features of a vessel manoeuvring in
shallow depth. Until now, research related to ships’ manoeuvrability simulations applying
ANNs has predominantly focussed on their evaluation in deep waters, as mentioned before.

Particularly, an analysis focussed on studying ship manoeuvrability in shallow depths,
which has been shown to be restricted in quantity and extension. An optimal truncated
LS-SVM for calculating non-linear manoeuvring models’ dimensionless coefficients in
shallow water was presented in [41]. In [42], the authors used the method referred to
before with a Quantum-inspired evolutionary algorithm (QEA) to perform manoeuvring
simulations of a container ship in low water depth, taking into account the water depth
influence, only examining manoeuvrability of a ship type in two shallow-depth conditions.
Considering the absence of prior investigations regarding vessel manoeuvrability simu-
lations in shallow depth through NNs, the analysis described in the present study was
conducted to assess an ANN’s ability to learn the influence of distinct shallow depths on a
vessel’s manoeuvring characteristics.

1.2. Aim of This Work

This paper analyses the manoeuvring behaviour of the DTC ship in various shallow
depths. A set of PMM experiments, namely, pure drift, pure sway, pure yaw, and mixed
yaw and drift, were conducted with the model of the DTC ship in the towing tank of
Flanders Hydraulics Research (FHR) [43]. Different sets of inputs are used for training an
NN to estimate different outputs:

(1) Surge and sway velocities, yaw rate, x and y positions, course, and depth are input to
estimate the surge force, sway force and yaw moment;

(2) Surge and sway forces, in addition to the yaw moment, positions x and y, course, and
depth, are input to estimate surge and sway velocities and yaw rate.

In the current paper, the network is trained using the Levenberg–Marquardt algorithm,
instead of the backpropagation method employed before in other previous applications
of ANNs to the manoeuvring prediction problem [16,44,45]. This procedure is employed
to solve non-linear least-squares problems, and it is a combination of two other methods:
gradient descent and Gauss–Newton algorithms. As there are two possibilities for the
algorithm’s direction at each iteration, the Levenberg–Marquardt algorithm is more robust
than the Gauss–Newton algorithm. As an advantage, it shows to be faster at converging
than either the Gauss–Newton or gradient descent algorithm. Furthermore, it can handle
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models with multiple free parameters that are not precisely known. The algorithm can still
find an optimal solution if the initial guess is far from the mark.

This paper is organised in the following terms: the next section explains the PMM tests
performed in shallow water with the DTC model; Section 3 introduces the NN assumed
in this paper and describes the learning method; Section 4 analyses the proposed model
effectiveness; and then, in the last section, our final remarks are stated.

2. Planar Motion Mechanism Experiments in Shallow Water

The PMM experiments with a vessel model and the data used to train the ANN in
this work are presented below. The experiments were executed by Flanders Hydraulics
Research (FHR) as part of the SHOPERA project [6,46]. Overall, 102 PMM experiments (pure
sway, pure drift, and pure yaw) were conducted considering distinct depths, velocities,
amplitudes, and sample periods, as might be observed below in Table 1.

Table 1. PMM matrix tests executed by FHR [42].

Class h a V b β c A d T e n f

Pure Sway 2 3 7 1 4 12
Pure Drift 2 3 7 - - 28
Pure Yaw 2 3 7 3 2 62

a Depth (m): 0.3254, 0.1952. b Full-scale velocity (kn): 6, 11, 16. c Drift angle (◦): 0, ±2.5. ±5, ±10. d Oscillation
motion amplitude: Pure sway (m): 0.2; Pure yaw (◦): 5. 10, 15. e Period (s): Pure sway: 20, 40, 60, 80; Pure yaw: 17,
25. f PMM tests’ overall value: 102.

A Post-Panamax-container scaled model was employed throughout the tests. This
container model (the DTC vessel) [43,47] is widely used, and the principal information
about its characteristics is specified in Table 2. The DTC is a conventional 14,000 TEU
container ship hull structure made at the Institute of Ship Technology, Ocean Engineering
and Transport Systems, to measure and verify computational techniques [43]. The DTC
is a single-screw ship with a bulbous bow, a big bow flare, a great stern overhang, and a
transom stern. The vessel was experimented on with a bare hull and a hull with appendages
prepared with a fixed-pitch propeller with five blades and clockwise rotation and a twisted
rudder with a Costa bulb. The container model was built at a 1:89.11 scale.

Table 2. Model specifications [47].

Parameter Units Value

λ 1 1:89.11
LPP m 3.984
B m 0.572

Tdesign m 0.163
∇ m3 0.2458
CB 1 0.661
S m2 2.777

LCB from AP m 1.953
KG m 0.222
GM m 0.058
Ixx kg.m2 13.7
Iyy kg.m2 211.6
Izz kg.m2 219.2

Until the present time, the best procedure for gathering the information needed for
simulating manoeuvres when a ship is subject to quite exceptional circumstances, like
port manoeuvres at low speed in shallow depth and restricted water, seems to be the
conduction of captive manoeuvring experiments either in a towing tank or in a circulating
water channel [48–50]. Additionally, the towing tank qualities establish the experimental
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arrangement of the model. In the case of the FHR towing tank, the dimensions (see Table 3)
enable the use of vessel models with a dimension of generally 4 m in length. The towing
tank specifications and potential have been broadly reported in [51]. In captive mode, it is
possible to place the model of the vessel in the three horizontal degrees of freedom (surge,
sway, and yaw) with roll free or fixed and with pitch and heave remaining free all the time.
The roll was fixed throughout the experiments. The captive setup is presented in Figure 1.
Throughout captive tests, the ship is fixed in the horizontal plane (surge, sway, and yaw),
enabling roll, pitch, and heave (during the calm water tests, the roll is fixed, and then,
the moment is measured). The hull forces are measured using load cells LC1 (separate
measurements of X and Y forces) and LC2. The ship’s heave, trim, and roll are measured
by using four potentiometers, P1 to P4 (see Figure 1).

Table 3. FHR towing tank’s basic dimensions [47].

Dimension Units Value

lTotal m 87.5
lEffective m 68.0

b m 7.0
h (max.) m 0.5

LVessel Models m 3.5 till 4.5
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Figure 2 shows three rectangular and clockwise reference frames. O0x0y0z0 is the
earth-bound towing tank frame of reference. The vertical O0z0-axis points downwards,
whereas the horizontal O0x0- and O0y0-axes are positioned at the free surface of the water
at rest. O0x0z0 is the towing tank’s longitudinal vertical symmetry plane.

The reference information comprises harmonic yaw and sway experimental data
obtained with the DTC bare hull. The vessel model performed pure sway motions for
a given sway amplitude and testing period throughout the harmonic sway experiment.
During the harmonic yaw experiment, the vessel model performed pure yaw motions
under a selected yaw amplitude and testing period. The vessel model maintained a null
drift angle throughout the harmonic yaw experiments. The longitudinal element u was
maintained at a fixed value throughout the two experiments. The experiments have also
been performed with the hull with appendages at null propeller rotation speed and the
model self-propulsion point. Different groups of experiments, for example, stationary
experiments at a fixed speed with or without drift and without yaw, were included as a
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source to demonstrate the correlation between the kind of experiment and the kinematical
testing parameters.
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3. Artificial Neural Network (ANN)
3.1. Model

NNs are computational models that mimic the complex functions of the human brain.
NNs are mainly separated linkages of adaptive random processing elements (PEs); meaning
that a connected group of mathematical functions forms these elements, and the informa-
tion is converted by applying a probabilistic viewpoint for computation. Nevertheless,
implemented in data processing devices, a PE is generally a simple unit that receives several
input signals and, based on those inputs, either generates a single output signal or does
not (McCulloch–Pitts model). The numeric values related to the links between neurons
(synapses), called weights, are the variables corrected throughout the learning process to
minimise the discrepancy between the current and target outputs.

The NN system works over interrelated layers, transforming input information into
significant models. The input layer acquires the primary data, which is subsequently
entered within at least one hidden layer that executes numerical computations. The output
layer generates the outcomes, like estimations or classifications. Adaptation refers to the
ability of the network to modify its structure or connection weights in response to feedback
signals from the environment. Adaptive NNs are characterised by online learning, which
allows them to learn from new data as they become available. An NN is an arbitrary
mathematical statistical modelling implementation. They can find and represent non-linear
and complex input–output relationships; produce generalisations and inferences, reveal
hidden relationships, patterns, and predictions; and model extremely volatile information
and deviations required to forecast infrequent occurrences.

MLPs are the dominant NN topology in use. Lippmann [52] reported among the
predominant literature about MLPs’ mathematical abilities. Usually, for steady pattern
categorisation, the two hidden layers of an MLP are a standard pattern classifier. Namely,
the discriminant analysis may assume any configuration required by the input information
collection. Finally, while the output and the weight sets are properly normalised, the
MLP achieves the highest analytical recipient performance, which is great in terms of a
classifying perspective [53]. Concerning mapping effectiveness, the MLP is equivocally
able to approximate stochastic processes.

MLPs are commonly trained by applying the backpropagation process, and in this
work, the Levenberg–Marquardt algorithm solves the minimisation problem. The bias
and weights are adjusted to ensure minimisation, and the backpropagation technique is
used for the Jacobian matrix calculation of the performance function concerning the bias
and weights.

Indeed, backpropagation capabilities have partially driven increased interest toward
NNs. Least mean squares (LMS) cannot be implemented for hidden PEs since the target
signal is not known in that training approach. The backpropagation learning method
disseminates errors through the structure and allows the adaptation of the hidden PEs.

Two of the principal characteristics of MLPs are their arbitrary PEs, which own a
threshold which is supposed to be smooth (the hyperbolic tangent function and the sigmoid
curve are dominant and globally chosen), and their inherent large linkage (basically, an
element that lies in a certain layer feeds each element of the subsequent layer). MLPs
are trained through the supervised error-correction learning rule, which implies that the
network-target output needs to be reached. In pattern recognition, this is the usual practice
because the input information has specifications (that is, which data belong to which
test is found out). A common arrangement illustration of a singular-hidden-layer MLP
configuration is shown in Figure 3.

A singular bias neuron b is added to all the inputs pj and hidden layers, which are
summed to the weighted inputs wj for the calculation of the network input n, which is
denoted through

n =
n

∑
j=1

wj pj + b (1)
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The number of hidden neurons controls the network architecture’s robustness. This
amount is carefully chosen through a sensitivity analysis of the findings after the execution
of various training runs for certification.
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In this work, two distinct configurations of MLP networks (feed-forward NN) are
implemented using MatLab R2024a, trained with the Levenberg–Marquardt procedure,
and contrasted with the resilient backpropagation method afterwards. The primary MLP
is composed using a node set organised in three layers: an input layer, a hidden layer,
and an output layer; the other MLP contains an input layer, three hidden layers, and an
output layer. Except for the input nodes, all the nodes are neurons that use a non-linear
activation function, which, in this present instance, is a sigmoid curve. For this study, the
training procedure is executed for two distinct learning cases using seven input and three
output nodes, as shown in Table 4 (I is the input, and O is the output). The results are
compared using an MLP configuration with one and three hidden layers. A composition
of ten hidden neurons is selected in the additional analysis of the method convergence
and generalisation ability regarding the instance of the MLP with one hidden layer, and
a combination of [5,8,10] neurons is chosen for the case of the MLP with three hidden
layers. The training is carried out using the Levenberg–Marquardt technique, and then, the
performance is contrasted with the one achieved by training the network with the resilient
backpropagation approach. The adopted input–output variables are as follows:

h—depth;
x—longitudinal position of the ship;
y—transversal position of the ship;
COG—course over ground;
u—surge velocity;
v—sway velocity;
r—yaw velocity;
X—surge force along the x-axis;
Y—sway force in direction of the y-axis;
N—moment about the z-axis.

Table 4. Matrix of the training tests.

Set Variable

# h x y COGc u v r X Y N

1 I I I I I - I - I O O O

2 I I I I O O O I I I
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3.2. Training

The sigmoid transfer functions commonly employed by the multilayer networks in
the hidden layers are known under the “squashing” functions since those functions press
an unlimited input domain in a limited range of outputs. These types of functions can be
identified because their gradients approximate zero when the input becomes larger. So, an
issue is generated once the steepest descent is applied for the multilayer net training with
sigmoid functions because the slope may be very small and, thus, generate slight variations
in the biases and weights despite the fact that they are not optimum results.

The resilient backpropagation optimisation objective is to annul the undesirable im-
pacts of the partial derivative quantities. The derivative sign may provide the direction of
the weight update; the derivative magnitude does not affect the weight update. The weight
alteration magnitude depends on a distinct update value. The update value for all the
biases and weights is augmented by a factor any time the performance function derivative
in respect of that weight obtains identical signs in two consecutive iterations. The updated
value decreases by a factor anytime the derivative, with respect to that weight, modifies the
sign over the preceding iteration. As long as the derivative is null, the update value does
not change. Anytime the weight fluctuates, its modification decreases. The weight variation
amplitude rises as long as the weight changes continuously along a constant direction for
multiple iterations. A detailed explanation of resilient backpropagation optimisation is
presented in [54]. This method is meant to contrast with the results acquired using the
Levenberg–Marquardt algorithm.

Inputs and outputs were connected in a single hidden layer with ten neurons. A
sigmoid is used as an activation function and takes effect in all the neurons in the hidden
layer, generating a system that ensures smooth results. The activation function is stated by
the following:

f (xi) =
exi

exi + 1
(2)

where x is the input of neuron i.
The data obtained in the PMM tests are put into array form and then split according

to the percentages below:

For training, 80% of the data points are used;
For validation, 10% of the data points are used;
For testing, 10% of the data points are used.

The total number of data points used for the training procedure was 23,475, cor-
responding to 18,780 for the training set, 2315 for the validation set, and 2314 for the
testing set.

Generally, MLP training is conducted using the backpropagation algorithm; however,
in the present case, the damped least-squares algorithm, alternatively called the Levenberg–
Marquardt method, is used, as well as the resilient backpropagation algorithm method
for comparison.

The error-correction learning executes in the following way: from the network output
at PE i at iteration n, yi(n), and the desired output di(n) for a specified input instance, an
instantaneous error ei(n) may be created using

ei(n) = di(n)− yi(n) (3)

Backpropagation determines the cost function sensitivity regarding all the network
weights and renews them according to the sensitivity [55]. Its advantage is that it can be
employed in local data, and only some products per weight are needed, which is highly
efficient. Its handicap is that as the procedure is a gradient descent approach, it only uses
local data and can consequently become stuck in relative minima. Moreover, the procedure
is naturally noisy since a poor gradient approximation is assumed, generating a slow
convergence problem.
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Despite the fact that backpropagation is a gradient descent method, the Levenberg–
Marquardt algorithm is based on Newton’s method, which is outlined to minimise functions
which are summations of non-linear-function squares [56], as the following configuration:

E =
1
2∑ k(ek)

2 =
1
2
∥e∥2 (4)

where ek is the error in the k-th exemplar and e is the vector of the elements ek. Since the
divergence among the previous and actual weight vectors is insignificant, the error vector
might be approximated to a tangent line applying the Taylor series:

e(j + 1) = e(j) +
∂ek
∂wi

(w(j + 1)− w(j)) (5)

Thus, the error function might appear in the following form:

E =
1
2

∥∥∥∥e(j) +
∂ek
∂wi

(w(j + 1)− w(j))
∥∥∥∥2

(6)

Keeping the error function to a minimum in respect of the actual weight vector:

w(j + 1) = w(j)−
(

JT J
)−1

JTe(j) (7)

with (J)ki =
∂ek
∂wi

representing the Jacobian matrix.
The Hessian matrix for the sum-of-squared-error function is denoted by the following:

(H)ij =
∂2E

∂wi∂wj
= ∑

{(
∂ek
∂wi

)(
∂ek
∂wi

)
+ ek

∂2ek
∂wi∂wj

}
(8)

Omitting the second term in (8), the matrix may be updated in the following form:

H = JTJ (9)

The weight change has to obtain the Hessian inverse. The matrix is quite simple to
calculate as it has a basis on first-order partial derivatives with respect to the network
weights, which are easy to manage via the learning process. Even though the updating
equation is applied recursively to lower the error function, the procedure can create a
big step size, which may invalidate the first-order approximation that has established
the equation. With the Levenberg–Marquardt method, the error function is minimised,
whereas the step size is low, which guarantees an effective first-order approximation. This
minimisation is captured using a modified error function, defined as follows:

E =
1
2

∥∥∥∥e(j) +
∂ek
∂wi

(w(j + 1)− w(j))
∥∥∥∥2

+ λ∥w(j + 1)− w(j)∥2 (10)

with λ being a parameter that controls the step size. The modified error is minimised in
respect to w(j + 1):

w(j + 1) = w(j)−
(

JT J + λI
)−1

JTe(j) (11)

Once λ is zero, Equation (11) just outlines Newton’s method, applying the approxi-
mation to the Hessian matrix. When λ is high, the method changes to the steepest descent
with a small step size. Newton’s method is more expedited and precise once it is about
an error minimum; therefore, the goal is to turn to Newton’s method expeditiously. Thus,
λ is decreased following each effective step (decrease in performance function) and rises
only if a certain step leads to a performance function augmentation. Consequently, the
performance function reduces with each step during the iterative process.
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A representation of the proposed feed-forward NN is presented in Figure 4.
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4. Results

Figures 5–7 show the predicted and experimental longitudinal and transversal forces
X, Y, and the yaw moment N, respectively, for different water depths, using the Levenberg–
Marquardt method with one hidden layer in the network structure. Figures 8–10 present
boxplots of the errors obtained in the predictions shown in Figures 5–7, respectively. The
boxplots allow for a clear summary of the error data, displaying the median, upper quartile,
lower quartile, minimum, and maximum values. The outliers can also be easily seen.

In Figures 5–7, the ANN system can visibly reproduce the forces and moments ob-
tained throughout the PMM test with great precision. It can also be seen that the variation
in the shallow water was learned by the NN model. From the boxplot of Figure 8, which
compares the central tendencies of the X force for the two different depths, it can be verified
that the median is slightly similar. The variability for h = 0.1952 m is slightly higher, but
this is due to the forces measured for this depth also being slightly higher than that for
h = 0.3254 m. It perceived that for both depths, the distribution of the obtained error is
right-skewed. Similar results are obtained for the boxplot of the Y force presented in
Figure 9. The boxplot of the N moment shown in Figure 10 shows a difference in the
distribution of the error for the different depths. For the case of h = 0.3254 m, there is a
symmetrical distribution; for h = 0.1952 m, the error presents a right-skewed distribution.
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The correlation coefficient r is computed to confirm how much the model output
matches the target. As a matter of course, the correlation coefficient among a network
output x and a desired output d is stated by the following:
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r =

∑
i
(xi − x)

(
di − d

)
N√√√√∑

i

(
di − d

)2

N

√√√√∑
i
(xi − x)2

N

(12)

The r is used to measure the fitness of the obtained results with the ANN model, given
in Table 5.
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From the results presented in Table 5, especially from the observation of the results
obtained for the test set, it can be said that the developed design possesses a great generalisa-
tion performance, and it can successfully simulate the PMM tests in distinct shallow depths.
The results obtained with the ANN models fit the data well in the training, validation,
and test sets, using both topologies considered (one hidden layer and three hidden layers).
The test set errors are especially important because this set is not employed throughout
the training procedure, and it is just utilised to measure the differences between distinct
models. In the other hand, the differences obtained using the Levenberg–Marquardt and
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resilient backpropagation approaches are minimal, but the Levenberg generally shows
slightly better results.
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Table 5. X, Y, and N error measures (r).

Output # Hidden
Layers # Neurons Method Training Test Validation

X

1 10

Levenberg 0.98596 0.98664 0.98847

Resilient B 0.97861 0.97284 0.97922

Y
Levenberg 0.99305 0.99528 0.99346

Resilient B 0.99122 0.9884 0.99001

N
Levenberg 0.99408 0.99618 0.99215

Resilient B 0.99578 0.99714 0.99599

X

3 (10, 8, 5)

Levenberg 0.99467 0.99237 0.99276

Resilient B 0.99087 0.98813 0.98877

Y
Levenberg 0.99707 0.99647 0.99567

Resilient B 0.99649 0.99614 0.99617

N
Levenberg 0.99811 0.99783 0.99855

Resilient B 0.99797 0.99807 0.99827

Figures 11–13 present the surge speed, sway speed, and yaw rate assessed in the
free-running tests in shallow water and the related estimations obtained through the ANN
model using the resilient backpropagation method with three hidden layers in the network
structure. Figures 14–16 present boxplots of the errors obtained in the predictions shown in
Figures 11–13, respectively.

According to Figures 11–13, the ANN model can reproduce surge and sway velocities
and a yaw rate in excellent agreement with the measured results obtained in the PMM tests.
From the boxplot of Figure 14, which compares the central tendencies of the surge velocity
u for the two different depths, it can be verified that the median is slightly similar. The
variability for both depths does not exhibit relevant discrepancy, and it can be perceived
that the distribution of the obtained error is left-skewed. Similar results are obtained for
the boxplot of the sway velocity v presented in Figure 15, but a symmetrical distribution is
noticed in this case. For the boxplot of the yaw rate r shown in Figure 16, there are also
approximately symmetrical distributions for the errors.

The r values of the estimations are provided in Table 6.

Table 6. Surge, sway, and yaw velocity error measurements (r).

Output # Hidden
Layers # Neurons Method Training Test Validation

u

1 10

Levenberg 0.99271 0.99128 0.99318

Resilient B 0.99175 0.99089 0.99086

v
Levenberg 0.96641 0.96233 0.96671

Resilient B 0.97282 0.97523 0.97374

r
Levenberg 0.96527 0.96369 0.96671

Resilient B 0.96428 0.96278 0.96497

u

3 (10, 8, 5)

Levenberg 0.99792 0.99418 0.99634

Resilient B 0.99899 0.99553 0.99882

v
Levenberg 0.98281 0.98202 0.98263

Resilient B 0.98369 0.98091 0.98329

r
Levenberg 0.98799 0.98543 0.98584

Resilient B 0.98549 0.9855 0.98465
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Table 6 demonstrates that the derived system has an excellent generalisation perfor-
mance and can reproduce the dynamic characteristics of the free-running model tests at
shallow depths. From the results presented in Table 6, in a similar way as concluded
from Table 5, it can be said that the developed system exhibits very good generalisation
performance and can successfully simulate the PMM model tests in diverse water depths.
The results obtained with the ANN models fit the data in the training, validation, and
test sets very well, using both topologies (one hidden layer and three hidden layers). As
previously explained for the results obtained in Table 5, the observation of the results
obtained for the test set are especially important drawing conclusions about the model’s
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generalisation performance and its capability to successfully simulate the PMM tests in
distinct shallow depths.
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In the case of the surge and sway velocities and yaw rate estimations, the differences
between the results obtained using the Levenberg–Marquardt and resilient backpropa-
gation approaches are again very small. In Tables 5 and 6, the results for three hidden
layers represent a sensitivity check on the capabilities of one hidden layer to provide
appropriate results.
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(b) h = 0.1952 m.

As final considerations for this study, an NN model suitable for performing ship
manoeuvrability predictions in different shallow water conditions was proposed and
implemented. The motivation and advantages behind the development of this type of novel
model were well justified. There are no evident differences in the results obtained using
either the Levenberg–Marquardt algorithm or the resilient backpropagation procedure.
As expected, slightly better results were achieved using three hidden layers than just one
hidden layer in the NN structure. From the values achieved of the error r, from the figures of
the superposition of the predicted values with the experimental data, and from the boxplots
of the errors, it is evident that the proposed ANN model has very good performance and
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that it is a valid model for estimating manoeuvring characteristics of ships under different
shallow-water conditions. The effectiveness of the good generalisation capability of the
proposed model was confirmed by the very good values of r achieved in the test set.
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5. Conclusions

The current work has shown the validity of the NNs model as a predictor of the
manoeuvring behaviour of a Post-Panamax container ship model in shallow water with
data obtained in a series of PMM tests. The past research devoted to NN applications
of ship manoeuvrability in shallow depths is insufficient for drawing conclusions about
their capability to learn the respective effects, and this article intends to contribute by
analysing an ANN system’s capabilities to predict the vessel’s manoeuvring qualities in
distinct shallow depths. This topic is of great importance due to the continuing trend
towards ever-larger vessels and their use in shallow waters. The ANN model for vessel
manoeuvrability prediction in shallow depths has been designed using two different
methods for comparison: the Levenberg–Marquardt backpropagation and the resilient
backpropagation. An explanation for the choice of apparatus used for the experimental
tests that provided the data used for the NN training was given in Section 2. The designed
model can predict the motions measured in the PMM tests performed with the model
in shallow water and has demonstrated a good degree of precision in estimating the
vessel manoeuvring performance in different depths. The generalisation performance
of the developed ANN systems was examined through the test and validation sets. The
obtained correlation coefficient r results have demonstrated that the developed ANN
models have excellent generalisation performance and may be employed to reproduce the
vessel dynamics when manoeuvring in shallow depths. The analysis presented in this paper
has only examined the manoeuvring characteristics of the vessel model in two shallow
depths. Even though the outcomes presented in this paper are for a given benchmarking
vessel model, the results might apply to any real-scale ship if the appropriate training
data are available. In the case of real scenarios, external disturbances might be included
as inputs, especially wind and current for this specific application. The ANN model is a
viable alternative for onboard ship simulators and decision support systems.
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AI Artificial intelligence
ANN Artificial neural network
AT-NN Attention-based neural network
BEM Boundary element method
Bi-LSTM Bidirectional long short-term memory
CFD Computational fluid dynamics
CNN Convolutional neural network
COG Course over ground
Conv-1D One-dimensional convolution
DMD Dynamic mode decomposition
DTC Duisburg Test Case
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DTMB David Taylor Model Basin
FHR Flanders Hydraulics Research
GPR Gaussian process regression
GRU Gated recurrent units
IADPSO Improved adaptive particle swarm optimisation
IMO International Maritime Organization
ITTC International Towing Tank Conference
KCS KRISO container ship
LMS Least mean squares
LS-SVM Least-squares support vector machine
LSTM Long short-term memory
MAE Mean absolute error
MLP Multilayer perceptron
MMG Mathematical manoeuvring group
MRNN Multi-recurrent neural network
MSE Mean squared error
NN Neural network
NSE Nash–Sutcliffe efficiency
PE Processing element
PMM Planar motion mechanism
QEA Quantum-inspired evolutionary algorithm
RANS Reynolds-averaged Navier–Stokes
RNN Recurrent neural network
RPM Revolutions per minute
SAWB Ship as a wave buoy
SDN-HP Self-organising data-driven network with hierarchical pruning
SSE Sea state estimation
SVR Support vector regression
TEU Twenty-foot equivalent unit
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