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Abstract: The purse seine is a fishing method in which a net is used to encircle a fish school,
capturing isolated fish by tightening a purse line at the bottom of the net. Tuna purse seine
operations are technically complex, requiring the evaluation of fish movements, vessel
dynamics, and their interactions, with success largely dependent on the expertise of the
crew. In particular, efficiency in terms of highly complex tasks, such as calculating the
shooting trajectory during fishing operations, varies significantly based on the fisher’s skill
level. To address this challenge, developing techniques to support less experienced fishers
is necessary, particularly for operations targeting free-swimming fish schools, which are
more difficult to capture compared to those utilizing Fish Aggregating Devices (FADs).
This study proposes a method for predicting shooting trajectories using the Double Deep
Q-Network (DDQN) algorithm. Observation states, actions, and reward functions were
designed to identify optimal scenarios for shooting, and the catchability of the predicted
trajectories was evaluated through gear behavior analysis. The findings of this study are
expected to aid in the development of a trajectory prediction system for inexperienced
fishers and serve as foundational data for automating purse seine fishing systems.

Keywords: purse seine; fishing technology; machine learning; numerical method; reinforcement
learning; simulation

1. Introduction
Purse seining is a fishing method in which a net encircles a school of fish, isolating

them before capturing the fish by tightening a purse line at the bottom of the net. Tuna purse
seine fishing is particularly efficient and is characterized by relatively low fuel consumption
per unit of tuna catch. This efficiency can be largely attributed to recent technological
advancements, with artificial Fish Aggregating Devices (FADs) playing a significant role [1].
However, FAD-based fishing has a higher bycatch rate compared to fishing targeting free-
swimming schools (FSCs) and, when accounting for travel distances between operations, is
less energy-efficient [2]. In response to these challenges, the Western and Central Pacific
Fisheries Commission (WCPFC) has implemented restrictions on FAD operations in specific
areas during designated periods [3]. Currently, the use of FADs in purse seine fisheries
operating in the Pacific is regulated under the Conservation and Management Measures
(CMMs) established by both the WCPFC and the Inter-American Tropical Tuna Commission
(IATTC). In the future, more stringent FAD regulations are expected, varying based on the
target species and fishing locations [4]. Therefore, it is necessary to reduce the use of FADs
and enhance the success rate of FSC-based fishing operations to address these challenges.
However, the success rate of purse seine operations targeting FSCs is heavily influenced by
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the skill level of the crew. This is because such operations require accurately identifying
the location and movement of the target fish school and deploying the net at the optimal
position, considering the vessel’s speed. In particular, complex tasks such as calculating
the shooting trajectory significantly impact fishing performance, with outcomes largely
dependent on the crew’s expertise. Therefore, developing fishing techniques to support
inexperienced fishers is of critical importance. However, research on shooting trajectories
remains limited. One notable study that summarized the technical principles and practical
precedents of purse seine fishing [5] was conducted. Additionally, ref. [6] introduced the
first mathematical approach to purse seine positioning and trajectory as a function of vessel
and fish speeds. Another study compared circular and elliptical purse seine trajectories to
determine the optimal eccentricity [7]. However, these studies rely solely on mathematical
equations, which neither account for the actual movements of vessels nor provide sufficient
flexibility to adapt to various real-world situations. To address this limitation, this study
employs the Double Deep Q-Network (DDQN) algorithm, a machine learning approach,
to derive shooting trajectories for various eccentricities, building upon the findings of
previous studies. This study introduces the design of observational states, actions, and
reward functions to generate shooting trajectories that reflect vessel movements and flexibly
respond to different scenarios. As this is an initial attempt to apply reinforcement learning
to purse seine shooting trajectories, this study focuses on learning fundamental shooting
trajectories based on scenarios derived from previous research, rather than training for
a wide range of complex situations. Consequently, the learned shooting trajectories for
each eccentricity were evaluated by comparing them with the required towline lengths.
Furthermore, when the fish school exhibited escape behavior, the sinking depths of the gear
at each vertex were calculated using numerical methods. These calculations were based
on the time required for the fish school to reach specific measurement points, enabling an
assessment of catchability. The primary objective of this study is to enhance the accuracy
and efficiency of FSC-based purse seine operations by employing reinforcement learning
to optimize shooting trajectories. By developing a data-driven approach that accounts for
vessel movement and environmental variability, this study aims to support inexperienced
fishers and contribute to the advancement of automated fishing techniques.

2. Materials and Methods
2.1. Target Shooting Trajectory

In tuna purse seine fishing, two types of ideal shooting trajectories have been pro-
posed [6]. These include Case 1, in which the fish school reaches the midpoint of the
floatline (F0.5) upon completion of the shooting operation, and Case 2, in which the fish
school reaches one-third of the floatline (F0.3) at the end of the shooting operation (Figure 1).
Case 1 is generally applicable to typical scenarios, whereas Case 2 is better suited to situa-
tions in which the speed of the fish school differs significantly from the speed of the vessel.
Furthermore, in actual fishing operations, shooting trajectories are predominantly elliptical
rather than circular [7]. When the shooting trajectory is elliptical, the sinking depth of the
lead line is greater when the fish encounter the gear compared to a circular trajectory. In
this study, reinforcement learning was performed with eccentricities ranging from 0.4 to
0.9 for Case 1 of the reticulated trajectory to ensure comprehensive applicability.
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Figure 1. A schematic representation of the shooting trajectory of a purse seine based on the speed
vector of the fish school, adapted from a previous study (LT : towline length, LF: floatline length,
a: distance between the fish school and the shooting circle, b: distance to be traveled by the fish
school, Rg: radius of the shooting trajectory, r f : radius of the fish school, α: angle between the fish
school’s direction and the line abeam of the ship, Vf : speed vector of the fish school, P0: position of
the fish school, P1: initial shooting position, and PC: center of the shooting circle).

2.2. DDQN (Double Deep Q-Network) Algorithm

Reinforcement learning is a system control method that optimizes sequential decision-
making problems by enabling the learning object, referred to as the agent, to interact
with the system environment (state) and learn through rewards defined by a reward
function [8]. Reinforcement learning is primarily modeled as a Markov Decision Process
(MDP), which has been further developed into Q-learning theory through the Bellman
expectation equation and the Bellman optimality equation.

Q-learning is a value-based reinforcement learning method, in which the Q-function is
expressed as shown in Equation (1). It iteratively applies the Bellman expectation equation
to approximate the Bellman optimality equation, enabling the agent to learn a process that
maximizes cumulative rewards.

Q(st, at)← Q(st, at) + α(r + γmax
at+1

Q(st+1, at+1)−Q(st, at)) (1)

where st represents the state; at denotes the action; r is the reward; st+1 is the next state;
at+1 is the next action; γ is the discount factor, which determines the importance of future
rewards; Q(st, at) is the expected reward for taking action a in state s; max

at+1
Q(st+1, at+1) is

the maximum Q-value in st+1; and α is the learning rate, with a value between 0 and 1.
A Deep Q-Network (DQN) implements Equation (1) by utilizing the parameters θ of

an artificial neural network to approximate the Q-function through deep learning [9]. A
DQN is distinguished by two key features, experience replay and a target network, that
enhance the stability of the learning process. When both the Q-value and the target Q-value
are calculated using the same neural network, frequent updates to the target values during
the network training process can induce instability. To address this issue, DQN separates
the main network from the target network. Experience replay involves storing the results
of each time step, represented as (st, at, rt, st+1), in a dataset, from which mini-batches are



J. Mar. Sci. Eng. 2025, 13, 530 4 of 19

randomly sampled to update the weights of the neural network. This random sampling
improves data utilization efficiency by reusing past experiences. The objective of the
learning process is to minimize the difference between the Q-value predicted by the main
network and the target Q-value computed using the target network. The mean squared
error (MSE) between these two values is used as the loss function, as shown in Equation (2):

L(θ) = E(st ,at ,rt ,st+1)∼U(D)(rt + γmax
at+1

Q
(
st+1,at+1; θ−t

)
−Q(st, at; θt))

2. (2)

where θ and θ− represent the parameters of the Q-network and target network, respectively.
E(st ,at ,rt ,st+1)∼U(D) denotes the expected value obtained by randomly sampling from the
experience buffer. Accordingly, when updating the network weights, DQN selects the target
Q-value by estimating the maximum Q-value for the next state, as shown in Equation (3):

YDQN
t ≡ Rt+1 + γmax

a

(
st+1, a; θ−t

)
(3)

DQN is prone to overestimating Q-values due to a positive bias in the difference
between the Q-value and the target Q-value, which can result in an overestimation [10]. To
mitigate this issue, DDQN (Figure 2) defines the target Q-value as shown in Equation (4):

YDoubleDQN
t ≡ Rt+1 + γQ

(
st+1, argmax

a
Q(st+1,at+1; θt), θ−t

)
(4)

where argmax
a

Q(st+1,at+1; θt) represents the action with the highest Q-value for st+1, as

determined by the main network. The estimation of the maximum target Q-value is
performed as follows: First, the main network, using weights θ, selects the action a that
maximizes the Q-value. Then, the target network, with weights θ−, calculates the target Q-
value for the selected a. By employing YDoubleDQN

t , the issue of overestimation is effectively
mitigated. Furthermore, DDQN demonstrates improved performance in environments with
large state-action spaces, enhancing the efficiency of the learning process. Therefore, DDQN
was applied in this study to derive the shooting trajectory and achieve superior results.
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Figure 2. A data flow diagram of a DDQN with a replay buffer and two neural networks. Figure 2. A data flow diagram of a DDQN with a replay buffer and two neural networks.

As this study aims to configure relatively simple pre-existing shooting trajectories
based on vessel movements rather than training for complex scenarios, the fundamental
DQN-based algorithm, DDQN, was selected over more advanced algorithms such as PPO
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or A3C. Accordingly, DDQN was applied to derive the shooting trajectory and achieve
superior results.

2.3. Problem Definition for Learning-Based Shooting Trajectory

The training environment was implemented in a two-dimensional space using Pygame 2.5.2
with Python 3.11.5, and reinforcement learning was conducted with PyTorch 2.1.2. The environ-
ment, based on previous studies, consists of a vessel, the initial shooting position, the center of
the shooting circle, and a fish school. The map dimensions were set to 1000 m× 1000 m.

The vessel’s speed was fixed at 10 knots, while the center of the shooting circle and
the initial shooting position were determined according to the predefined target trajectory,
as described in Equations (5) and (6):

→
P0Pc =

∣∣∣∣ →P0Pc

∣∣∣∣nr f (5)

→
PcP0·

→
PcP1 =

∣∣∣∣ →PcP0

∣∣∣∣∣∣∣∣ →PcP1

∣∣∣∣cos α (6)

where
→

P0Pc is the position vector, and
∣∣∣∣ →P0Pc

∣∣∣∣ represents the magnitude of the position vector.

The swimming speed of the fish school was set at 4 knots, based on the average speed
of tuna [11]. The fish school was modeled with a radius of 50 m and a maximum detection
range of 40 m. This study did not account for the behavioral response of the fish school
to vessel noise. However, in scenarios where the fish school detected the fishing gear and
exhibited escape behavior, swimming speed data from previous research [12] were utilized
(Figure 3). The size of each fish object was assumed to be either 0.5 m or 1.0 m, and both
scenarios were considered during the analysis.
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Figure 3. The swimming speeds of bluefin tuna in relation to endurance time, shown for two body
lengths: 0.5 m and 1.0 m.

2.3.1. Hyperparameters

The number of episodes was set to 10,000, with a learning rate of 0.0003, a batch size
of 64, and a replay memory size of 1,000,000. The maximum number of steps per episode
was limited to cases in which the towline length was 500 m. The hidden layers consisted of
three layers with 256 units each. This configuration was selected as maintaining a greater
number of hidden layers is advantageous for addressing complex problems. The action
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policy adopted was the ε-greedy policy. The initial value of ε was set to 1.0, with a decay
rate of 0.999 per episode, and a minimum ε value of 0.001. This setup ensured that the agent
performed extensive exploration during the initial stages of training, gradually converging
toward an optimal solution as the ε value decreased over time.

2.3.2. Observation States

The observation state equations and the schematic utilized by the agent in deep
reinforcement learning are presented in Equation (7) and Figure 4.

st =

[→
SL, l f , lt, li(i=1,...,13), d1, . . . , d13, c1, . . . , c13

]
(7)
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Using the ship’s heading vector
(→

SL

)
, the agent identifies the direction and distance

between the ship’s current position and the shooting distance vectors
(→

di

)
. Additionally,

the remaining length of the floatline
(

l f

)
and the length of the towline (lt) are utilized

to perceive the floatline’s residual length and the towline’s length. Notably, based on
private communication with the first officer of Dongwon Industries, a shooting attempt is
considered unsuccessful if the towline length exceeds 500 m. The actual shooting distance
vector (di) enables the agent to recognize the size of the shooting circle relative to its center,
and collision detection (ci) between the ship and each shooting distance vector helps the
agent understand the shooting sequence and progress. The actual shooting distance vector
(di) was designed to observe distances of up to 2000 m at 30◦ intervals within a 360◦ radius.
The collision detection (ci) is set to 0 if the ship has passed the respective distance vector
and 1 otherwise. The target shooting distance vector ( li) represents the desired value of
the actual shooting distance vector (di) and is calculated based on the goal length of the
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ellipse’s major axis, corresponding to d6. This calculation was performed using Equation (8),
depending on the eccentricity.

l6 = (LF/(2Vs) + td)Vf − D fc∼pc + e f (8)

where LF is the length of the floatline, Vs is the ship’s velocity, td is the time required for
the fishing gear to reach the target sinking depth, Vf is the fish swimming velocity, D fc∼pc

is the distance from the fish school’s center to the shooting circle’s center. In this study,
the target sinking depth of the fishing gear was set at 100 m, considering that the average
swimming depth of tuna ranges between 50 m and 70 m. Finally, the value for l13 was set

to
∣∣∣∣ →P0Pc

∣∣∣∣, ensuring a return to the origin.

2.3.3. Action

The agent’s actions were designed to include six options in total (Figure 5). In the
Republic of Korea, fishing operations typically involve using rudders within a range of 7◦

to 10◦ to port during actual fishing activities. As corks are loaded on the starboard side and
chains on the port side during shooting operations, turning the rudder to the starboard side
during shooting poses a risk of the net becoming entangled with the propeller. Therefore,
the actions were defined as a1 = 0◦ for straight motion, and a2 to a6 as port turns ranging
from 1◦ to 9◦ in intervals of 2◦. The ε-greedy policy was employed to facilitate the agent’s
exploration by maintaining a high epsilon value during the initial stages of learning. As
the number of episodes increased, the epsilon value was gradually reduced to minimize
exploratory moves.
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2.3.4. Reward

The reward function was designed to account for the ship’s situation, enabling rewards
or penalties to be applied at each step. When the ship approached the actual shooting
distance vector (di), a reward was assigned based on the distance and direction between

the ship and di, which were calculated using the ship’s progression vector (
→
SL). Through

this process, the vessel was guided to approach the actual shooting distance vectors (di).
If the vessel approached di+1 or di−1 instead of di, no reward was assigned. The reward
function is expressed in Equation (9):

Rs = exp
(
−0.005

∣∣∣∣→SL

∣∣∣∣) (9)
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If the remaining length of the floatline (l f ) was greater than zero, the actual shooting

distance vector (di) was defined as the distance from the intersection of di and
→
SL, calculated

relative to the center of the shooting circle. When the vessel approached the actual shooting
distance vector (di), a reward or penalty was assigned based on the difference between
the actual shooting distance vector (di), and the target shooting distance vector (li). As a
reduction in the size of the shooting circle may induce reactive behavior in the fish school,
a reward was assigned when the actual shooting distance vector (di) was greater than the
target shooting distance vector (li), whereas a penalty was applied in the opposite case.
Through this process, the size of the shooting circle was adjusted, and the corresponding
equations are as follows:

RL =

{
−2ln((di − li)/10 + 1) di < li

exp(−0.05(di − li)) di ≥ li
(10)

If l f remained above zero and the ship reached di, a reward or penalty was assigned
based on the difference between di and li, as defined in Equation (11):

RG =

{
− 25

2 ln((di − li)/10 + 1) di < li
25− 25

2 ln((di − li)/10 + 1) di ≥ li
(11)

When l f = 0, the towline length (lt) increased, and if the ship approached d13, the
reward was calculated as shown in Equation (12):

RT =

{
−2ln((d13 − l13)/10 + 1) d13 < l13

exp(−0.005(d13 − l13)) d13 ≥ l13
(12)

When l f = 0 and the ship reached the target reward d13, the base reward was calculated
as per Equation (13). Additionally, achieving a position within 5 m of the target yielded an
additional reward, as outlined in Equation (14):

Rn = 25exp(−0.005|di − li|) (13)

RF = 25 + 50
(500− lt)

500
(14)

As described in Equation (14), additional rewards were allocated based on the towline
length (lt) upon reaching d13, incentivizing the use of shorter towline lengths.

If the vessel’s shooting sequence was incorrect or the towline length (lt) exceeded 500
m, the shooting attempt was considered a failure, and a penalty was assigned based on the
progress of the shooting process. The corresponding equation is as follows:

Rc = −∑13
i=1 25ci (15)

2.4. Fishing Gear Specifications Used for Analysis

In this study, the standard specifications of tuna purse seine gear used in the Republic of
Korea were selected to simulate the sinking speed and depth of the lead line (Figure 6). The
floatline measured 1928 m in length, with a total buoyancy of 48,712 kgf and a total sinking
force of 11,342 kgf. In purse seine operations, insufficient sinking of the gear can result in
fish escaping beneath it, leading to operation failure [4]. Consequently, the depth at each
measurement point of the fishing gear under various fish schooling conditions was analyzed.
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2.5. Numerical Analysis Method

To mathematically model the tuna purse seine gear (Figure 6), a mass–spring system
was employed. The mathematical framework used for the simulation was based on prior
research [13,14]. This model divides the gear system into finite elements, assigning mass
points to each element and connecting them with massless springs.

The fundamental motion equation for each mass point is expressed in Equation (16):

(m + ∆m)
..
q = Fint + Fext (16)

where m is the total mass of the point, ∆m is the added mass,
..
q is the acceleration vector,

fint represents the internal force between the mass points, and fext denotes the external
forces acting on the mass points.

The added mass is defined as follows:

∆M = ρswVnKm (17)

where ρsw is the density of seawater (kgf · s2/m4), Vn is the volume of the mass point, and
Km is the added mass coefficient, which was set at 1.5 because the structural connections
were assumed to be spheres [14,15].

Cylindrical structures, such as ropes, were determined as follows [16]:

Km = 1 + sin α (18)

where α is the angle of attack.
Internal force is generated by the tension and compression of the springs connecting

the mass points, as described in Equation (19):

Fint = −∑n
i=1 kini

(∣∣∣ri − l0
i

∣∣∣) (19)

where ki is the stiffness of the spring, ni is the unit vector in the direction of the spring, l0
i is

the initial length of the spring, and |ri| is the magnitude of the position vector of the spring.
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External forces acting on each mass point include drag force (FD), lift force (FL), and
buoyancy and sinking force (FB). The sum of these forces is expressed in Equation (20):

Fext =FD + FL + FB (20)

Drag and lift forces are defined as follows in Equations (21) and (22):

FD =
1
2

CDρsw ApU2nv (21)

FL =
1
2

CLρsw ApU2nL (22)

where CD is the drag force coefficient, CL is the lift force coefficient, Ap is the projected area
of the mass point (m2), U is the magnitude of the resultant velocity vector, nv is the unit
vector in the direction of the drag force, and nL is the unit vector in the direction of the
lift force.

The buoyancy and sinking force are expressed in Equation (23):

FB = (ρi − ρsw)Vng (23)

where ρi is the density of the material, ρsw is the density of seawater, Vn is the volume of
the mass, and g is the acceleration due to gravity.

Considering both external and internal forces, the equation of motion is transformed
into the following non-linear second-order differential equation in the time domain, as
expressed in Equation (24).

M
..
q(t) = Fint(t) + FD(t) + FL(t) + FB(t) (24)

Using the fourth-order Runge–Kutta method, the motion described by Equation (24)
is converted into first-order differential equations, as shown in Equations (25) and (26).

.
q(t) = v(t) (25)

.
v(t) = M−1[F int(t) + FD(t) + FL(t) + FB(t)] (26)

3. Results
3.1. Simulation Results

The simulation results, based on conditions including a ship speed of 10 knots and a
floatline length of 1928 m, are presented in Figure 7. The simulation provided a compre-
hensive representation of the three-dimensional configuration of the fishing gear from the
start of the shooting process, along with data on the line tension, as well as the depth and
sinking speeds of various parts of the gear.

3.1.1. Sinking Speed at Measurement Points

The sinking speeds at each measurement point were recorded at 30 s intervals (Figure 8).
The rate of descent decreased sharply at the beginning of the shooting process and subse-
quently stabilized. A subsequent decline was observed during the pursing operation. For the
central measurement points of the net (M4 to M17), the initial sinking speeds ranged from
0.4 to 0.7 m/s, eventually converging to 0.2 to 0.4 m/s. During the pursing operation, the
sinking speed decreased gradually. In contrast, the outer measurement points of the net (M1

to M3 and M18 to M20) exhibited initial sinking speeds ranging from 0.6 to 1.1 m/s, which
rapidly declined to approximately 0.01 m/s. During the pursing process, these outer sections
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of the net experienced negative speeds as they were hauled back onto the ship. This behavior
reflects the operational characteristics of purse seining, by which the edges of the net are
retrieved first.
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Figure 7. Simulation results of purse seine operations during shooting and pursing under conditions
including a ship speed of 10 knots and a floatline length of 1928 m. (a) represents the starting
point of the floatline shooting, (b) represents the midpoint of the floatline shooting, (c) represents
the completion of the shooting and the beginning of the pursing operation, and (d) represents the
completion of the pursing operation.
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3.1.2. Sinking Depth at Measurement Points

The sinking depths at each measurement point were recorded at 30 s intervals (Figure 9).
The depth of the lead line increased continuously over time; however, the rate of increase
gradually diminished. This trend can be attributed to the initially high sinking speed, which
decreased over time due to the increasing resistance from the net. When the pursing operation
commenced, the sinking depth of the net began to decrease, starting from the edges of the net.
This phenomenon occurs because, in purse seine operations, the edges of the net are relatively
closer to the vessel, enabling the gear to respond more quickly to the pursing action.
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In this study, Case 1 was applied, with M10, corresponding to F0.5, being deployed
at d6. Consequently, in Equation (8), the time td required for the fishing gear to reach the
target sinking depth was determined based on M10, as shown in Figure 9. The simulation
results indicated that it took approximately 240 s for M10 to reach a depth of 100 m after
the shooting operation commenced. Therefore, td in Equation (8) was set to 240.

3.2. Results of Reinforcement Learning

The rewards per episode during the learning process are shown in Figure 10. The results
of the shooting trajectory learning demonstrated a consistent increase in reward values as the
episodes progressed. After 10,000 episodes, the reward value reached approximately 550.
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3.2.1. Shooting Trajectories Based on Eccentricity

The shooting trajectories of purse seine fishing nets for each eccentricity, derived
from the trained model after 10,000 episodes of learning, are illustrated in Figure 11. The
numbers associated with the fish school represent its positions when each measurement
point of the gear was deployed. The vessel successfully returned to its starting point after
completing the shooting operation in accordance with the specified eccentricity. At the 22nd
position, the fish school, based on the predetermined maximum detection range, identified
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the closest segment of the net and initiated reactive behavior. If the fish school detected the
net and moved to the right in response, the net’s sinking depth exceeded 100 m, ensuring
the success of the operation. However, if the fish school reacted by moving to the left,
where the net’s sinking depth might be insufficient, the fish could escape beneath the purse
seine, resulting in an unsuccessful operation.
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3.2.2. Shooting Area Based on Eccentricity

The shooting area of the purse seine varied according to eccentricity (Table 1). The
shooting area decreased by up to 24.6% as the eccentricity increased. The size of the
shooting circle was determined based on the major axis corresponding to the eccentricity,
leading to a reduction in the shooting area with higher eccentricity values. Consequently,
at eccentricities of 0.4 and 0.5, the larger size of the shooting circle caused the fish school to
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approach M11. For eccentricities of 0.6 and 0.7, the fish school successfully reached M10.
However, at eccentricities of 0.8 and 0.9, the smaller shooting circle caused the fish school
to approach closer to M9.

Table 1. Shooting area according to each eccentricity.

Eccentricity 0.4 0.5 0.6 0.7 0.8 0.9

Shooting Area(m2) 373,252 373,169 352,757 327,536 303,629 281,278

3.2.3. Towline Length Based on Eccentricity

When the target depth is 100 m, the required towline lengths vary according to eccentricity.
For an eccentricity of 0.4, the required towline length is 275 m; for 0.5, it is 255 m; for 0.6, it is
200 m; for 0.7, it is 125 m; for 0.8, it is 115 m; and for 0.9, it is 115 m. As eccentricity increases,
the size of the shooting area decreases, resulting in a corresponding reduction in the required
towline length. According to private communications, the maximum allowable towline length
used in successful actual operations is approximately 300 m. This indicates that the model
employed in this study operates within an appropriate range of towline length.

3.2.4. Comparison of Trajectories Derived from DDQN and Traditional Methods

To evaluate the effectiveness of the shooting trajectory derived using DDQN, a com-
parison was conducted with the traditional shooting trajectory calculated based on mathe-
matical principles and the empirical knowledge of skilled skippers [12] (Figure 12). The
area of the ellipse formed by the DDQN-derived trajectory was approximately 352,757 m²,
whereas the shooting area obtained using the traditional method was 339,324 m². This
result indicates that the DDQN-derived trajectory encompasses a slightly larger area than
the conventional mathematical approach. The difference in area can be attributed to the
design of the reinforcement learning model, by which a penalty is applied when the ac-
tual shooting distance vector (di) is smaller than the target shooting distance vector (li).
Consequently, the agent learns to generate a relatively larger shooting trajectory. This
distinction highlights that DDQN can dynamically adjust the shooting trajectory based on
its reward structure. Unlike traditional methods, which follow a predefined structure based
on mathematical models and empirical knowledge, reinforcement learning enables flexible
shooting pattern adaptation through observation states, actions, and rewards, allowing for
greater responsiveness to varying fishing conditions.

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 14 of 19 
 

 

m. This indicates that the model employed in this study operates within an appropriate 

range of towline length. 

3.2.4. Comparison of Trajectories Derived from DDQN and Traditional Methods 

To evaluate the effectiveness of the shooting trajectory derived using DDQN, a com-

parison was conducted with the traditional shooting trajectory calculated based on math-

ematical principles and the empirical knowledge of skilled skippers [12] (Figure 12). The 

area of the ellipse formed by the DDQN-derived trajectory was approximately 352,757 m², 

whereas the shooting area obtained using the traditional method was 339,324 m². This 

result indicates that the DDQN-derived trajectory encompasses a slightly larger area than 

the conventional mathematical approach. The difference in area can be a�ributed to the 

design of the reinforcement learning model, by which a penalty is applied when the actual 

shooting distance vector (��) is smaller than the target shooting distance vector (��). Con-

sequently, the agent learns to generate a relatively larger shooting trajectory. This distinc-

tion highlights that DDQN can dynamically adjust the shooting trajectory based on its 

reward structure. Unlike traditional methods, which follow a predefined structure based 

on mathematical models and empirical knowledge, reinforcement learning enables flexi-

ble shooting pa�ern adaptation through observation states, actions, and rewards, allow-

ing for greater responsiveness to varying fishing conditions. 

 

Figure 12. A comparison of trajectories derived from DDQN and traditional methods with an ec-

centricity of 0.7. 

3.3. The Sinking Depth of the Fishing Gear Based on Fish Reactive Behavior 

Scenarios in which the likelihood of fishing failure is high due to fish exhibiting re-

active behavior are illustrated in Figure 13. The calculated sinking depths of the fishing 

gear at each measurement point, where the fish school exhibited reactive behavior, are 

presented in Figures 14 and 15, derived from Figure 9. For both tuna object sizes, the sink-

ing depths up to M₁₇ ranged from 70 m to 100 m, which is sufficient considering the aver-

age swimming depth of tuna, typically 50 m to 70 m. However, beyond ���, the sinking 

depth decreased sharply, ranging from 20 m to 50 m. This rapid decrease is a�ributed to 

the proximity of these measurement points to the vessel, which causes faster gear re-

sponses during the pursing operation. Nevertheless, in actual operations, the reactive be-

havior of fish schools generally follows the net walls [17], making a direct movement from 

��� to ��� highly unlikely. 

Figure 12. A comparison of trajectories derived from DDQN and traditional methods with an
eccentricity of 0.7.



J. Mar. Sci. Eng. 2025, 13, 530 15 of 19

3.3. The Sinking Depth of the Fishing Gear Based on Fish Reactive Behavior

Scenarios in which the likelihood of fishing failure is high due to fish exhibiting reactive
behavior are illustrated in Figure 13. The calculated sinking depths of the fishing gear at
each measurement point, where the fish school exhibited reactive behavior, are presented in
Figures 14 and 15, derived from Figure 9. For both tuna object sizes, the sinking depths up
to M17 ranged from 70 m to 100 m, which is sufficient considering the average swimming
depth of tuna, typically 50 m to 70 m. However, beyond M18, the sinking depth decreased
sharply, ranging from 20 m to 50 m. This rapid decrease is attributed to the proximity of these
measurement points to the vessel, which causes faster gear responses during the pursing
operation. Nevertheless, in actual operations, the reactive behavior of fish schools generally
follows the net walls [17], making a direct movement from M18 to M20 highly unlikely.
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When comparing tuna objects with average body lengths of 0.5 m and 1.0 m, the
sinking depths of the fishing gear were greater for the former between M11 and M17,
whereas they were greater for the latter between M18 and M20. This difference can be
attributed to the fact that larger tuna tend to have higher average swimming speeds.
Consequently, for smaller tuna with lower swimming speeds, a greater number of pursing
operations occurred in the range from M18 to M20.
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4. Discussion
In purse seine fishing, the calculation of shooting trajectories has traditionally relied on

the experience and intuition of skilled fishers. This process is influenced by various dynamic
factors, such as vessel speed, fish school movement, and environmental conditions, making
it challenging for inexperienced fishers to achieve optimal results. This study applied
deep reinforcement learning (DDQN) to learn purse seine shooting trajectories, focusing
not on exploring a wide range of possible trajectories but on training the model based on
predefined trajectories derived from mathematical models and expert knowledge.

The results demonstrate that DDQN enables dynamic adjustments to shooting trajectories
based on real-time conditions, unlike traditional static models. By leveraging reinforcement
learning, inexperienced fishers can adopt optimized shooting strategies, potentially narrowing
the skill gap in the fishing industry. This advancement suggests that AI-driven trajectory
planning could address labor shortages and contribute to the development of AI-based
automation systems in fisheries. Furthermore, the data accumulated during DDQN training
can be utilized for the long-term optimization of fishing strategies, facilitating a shift from
experience-based decision-making to data-driven operational improvements.

While reinforcement learning-based shooting trajectory prediction requires substantial
resources during the initial training phase, the trained model can be operated efficiently us-
ing existing onboard equipment. Specifically, once deployed, it does not require additional
high-performance computing devices for practical use on vessels.

Compared to existing AI-based fishing optimization methods, which primarily focus
on indirect support systems such as optimizing Fish Aggregating Device (FAD) fishing
routes [1], this study directly optimizes the core fishing operation by actively adjusting
shooting trajectories. This highlights the potential for AI to transcend its traditional role of
assisting fishers and instead play a direct role in fishing operations.

The study findings indicate that DDQN generates shooting trajectories with a larger
coverage area than traditional methods, attributed to the observation states, action, and
reward structure employed in the model. However, a decline in precision was observed
in the later stages of training, likely due to the discrete action space of DDQN, which
limits precise trajectory adjustments. Future research should explore continuous action
space reinforcement learning methods, such as Proximal Policy Optimization (PPO) or Soft
Actor-Critic (SAC), to improve trajectory precision.

Moreover, as reinforcement learning primarily occurs in a simulation environment, its
applicability to real-world fishing operations must be validated through empirical experi-
ments. Incorporating real fishing data into reinforcement learning models could enhance
their adaptability, enabling them to respond more effectively to dynamic fishing conditions.
By integrating such approaches, reinforcement learning-based trajectory optimization could
be further generalized for application across diverse operational environments.

Additionally, this study did not incorporate fish school responses to vessel noise or the
influence of ocean currents, both of which are critical factors in actual fishing operations.
Future models should integrate these factors to improve accuracy. Moreover, the swimming
speed of the fish school was modeled based on Atlantic bluefin tuna, whereas skipjack
tuna is the primary target species in purse seine fishing. Future studies should incorporate
species-specific movement patterns to enhance the realism of the simulation.

5. Conclusions
This study demonstrated that DDQN can effectively optimize shooting trajectories by

incorporating vessel movements rather than relying solely on pre-established empirical knowl-
edge and mathematical principles. The reinforcement learning model dynamically adjusts
trajectories based on observation states, actions, and reward. This flexibility enables the model
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to adapt to various conditions rather than strictly following predefined mathematical patterns,
thereby optimizing shooting strategies in response to real-time environmental changes. In
particular, the findings suggest that utilizing DDQN could enable inexperienced fishers to
operate purse seine fishing with efficiency comparable to that of experienced fishers. Further-
more, the results indicate that reinforcement learning-based approaches offer a more flexible
and data-driven alternative to conventional trajectory planning methods, potentially reducing
uncertainties in the fishing process. Future research should focus on incorporating additional
environmental variables and real-world vessel dynamics to enhance the practical applicability
of this approach in commercial fishing operations.
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