
Academic Editor: Eugen Rusu

Received: 5 May 2025

Revised: 29 May 2025

Accepted: 6 June 2025

Published: 10 June 2025

Citation: Guo, L.; Zhou, R.; Guo, Q.;

Ma, L.; Hu, C.; Luo, J. Spatial

Trajectory Tracking of Underactuated

Autonomous Underwater Vehicles by

Model–Data-Driven Learning

Adaptive Robust Control. J. Mar. Sci.

Eng. 2025, 13, 1151. https://doi.org/

10.3390/jmse13061151

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Spatial Trajectory Tracking of Underactuated Autonomous
Underwater Vehicles by Model–Data-Driven Learning Adaptive
Robust Control
Linyuan Guo 1,2, Ran Zhou 1,2, Qingchang Guo 2, Liran Ma 1,2,*, Chuxiong Hu 1,2,* and Jianbin Luo 1,2

1 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
guoly21@mails.tsinghua.edu.cn (L.G.); zhour20@mails.tsinghua.edu.cn (R.Z.);
luojb@mail.tsinghua.edu.cn (J.L.)

2 State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China;
gqchang@mail.tsinghua.edu.cn

* Correspondence: maliran@mail.tsinghua.edu.cn (L.M.); cxhu@tsinghua.edu.cn (C.H.)

Abstract: This paper aims to solve the spatial trajectory tracking control problem of under-
actuated autonomous underwater vehicles (AUVs) in the presence of system parameter
uncertainties and complex external disturbances. To accomplish this goal, a model–data-
driven learning adaptive robust control (LARC) strategy is introduced for AUVs. Firstly, a
serial iterative learning control (ILC) approach is introduced as feedforward compensation,
and then the corresponding trajectory tracking error dynamics model, the Feedforward
Compensation–Line of Sight (FFC-LOS) guidance law, and the feedforward compensation-
based kinematics controller are designed. Secondly, the dynamics controller is designed
for AUVs, which consists of a linear feedback term, a nonlinear robust feedback term,
an adjustable model compensation term, and a fast dynamic compensation term. In this
control framework, the robust control and fast dynamic compensation parts are utilized to
deal with nonlinear uncertainties and disturbances, the projection-type adaptive control
part solves the influence caused by the uncertainty of system parameters, and the serial
ILC part that is a data-driven learning method can further improve the trajectory tracking
accuracy for repetitive tasks. Finally, comparative simulations under different scenarios
and different types of disturbances are performed to verify the effectiveness of the proposed
control strategy for AUVs.

Keywords: underactuated AUVs; spatial trajectory tracking; motion control; adaptive
control; data-driven control

1. Introduction
Autonomous mobile robots are gradually entering the academic and industrial fields.

Autonomous underwater vehicles (AUVs) are sophisticated unmanned systems equipped
with advanced perception, decision-making, and operational capabilities, fulfilling critical
roles across scientific, commercial, and military sectors. Over the past two decades, there
has been a notable surge of interest in AUV research. AUVs are employed in a myriad of
applications, including the inspection and monitoring of submarine cables and pipelines,
exploration of marine topography, underwater rescue operations, and localization of pollu-
tion sources. AUVs adeptly perform a variety of underwater tasks that are often beyond
human operational capacity [1–3]. To fulfill the requirements of diverse operational mis-
sions, AUVs need to demonstrate exceptional capability in trajectory tracking or path
following within three-dimensional (3D) environments. Nevertheless, the development of
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high-performance tracking controllers is significantly complicated by the complex dynam-
ics inherent to AUV systems. These challenges include high degrees of freedom, intrinsic
nonlinearities, strong internal coupling, model and parameter uncertainties, and a vulner-
ability to environmental disturbances. Furthermore, the configuration of the prevalent
torpedo-shaped AUVs typically exhibits underactuation, that is, the number of equipped
actuators is fewer than the system’s degrees of freedom, imposing additional constraints
on controller synthesis. Consequently, the development of advanced control methodolo-
gies capable of addressing these multifaceted challenges is of critical importance, as it
would substantially enhance the performance and robustness of AUV 3D spatial motion
control [4–6].

Numerous advanced control strategies have been designed to address the trajectory
tracking challenges for AUVs. The existing approaches can be broadly categorized into
conventional proportional–integral–derivative (PID) control [7,8], sliding mode control
(SMC) [9,10], adaptive control [11,12], robust control [13,14], and intelligent neural net-
work and reinforcement learning control [15,16]. Owing to its structural simplicity and
straightforward implementation, PID was initially adopted as a control approach for AUVs.
Nevertheless, conventional PID controllers exhibit inherent limitations when addressing
dynamic model uncertainties and external disturbances, particularly in complex marine
environments. In recent years, the SMC strategy has garnered significant attention for its
implementation in AUVs, due to its robustness and adaptation to variations in system
dynamics. In Xu et al. [17], a dynamic SMC strategy was presented for trajectory track-
ing of AUVs. This approach synergistically combines the advantages of SMC with the
backstepping technique, thereby improving the vehicle’s resilience to internal uncertain-
ties and external disturbances. In Zhou et al. [18], a terminal SMC method with an RBF
neural network was introduced for AUV trajectory tracking control, where the terminal
sliding mode method was utilized to design the longitudinal and yaw control law and the
neural network was used to address the compound disturbances. Nevertheless, a notable
drawback of conventional SMC in practical implementations is the chattering phenomenon,
which arises from the discontinuous switching component. Furthermore, robust control
and adaptive control have garnered considerable interest from researchers. In Mahapatra
and Subudhi [19], a novel robust H-infinity state feedback control scheme was developed
for steering control and path following of AUVs in the horizontal plane by tackling the
Hamilton–Jacobi–Isaacs equation. Similarly, Zhang et al. [20] proposed robust controllers
for the velocity, heading, and depth control of AUVs by integrating H-infinity control theory
with Riccati equation solution interpolation. Despite these advancements, there remains a
paucity of research and practical cases focused on the application of robust control to 3D
spatial trajectory tracking for six-degree-of-freedom AUVs. Additionally, adaptive control
is frequently employed in conjunction with other control strategies to enhance the system’s
ability to handle uncertainties.

As artificial intelligence technology advances, the application of neural network control
and reinforcement learning control in AUVs is gradually being studied. In Luo and Cheng [21],
an underactuated AUV trajectory tracking control scheme combining neural network com-
pensation and interference rejection was designed. In this framework, the task of the online
neural network was to identify unknown dynamics, including derivatives of virtual control
and errors caused by input saturation, in order to improve trajectory tracking performance.
In Li et al. [22], an adaptive model-free optimal reinforcement learning control scheme is
designed for the trajectory tracking control problem of AUVs with input saturation, where
the reinforcement learning strategy based on an actor–critic framework is introduced to
approximate the Hamilton–Jacobi–Bellman solution. The primary advantage of reinforce-
ment learning control is its capacity to achieve optimal control by interacting with the
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environment without dependence on the system model. However, this approach is often
constrained by the assumption that model parameters remain invariant throughout the
operation. Additionally, the need for extensive data processing and interaction elevate the
complexity and computational cost of the algorithm, presenting challenges in practice.

In the works of Yao and Tomizuka [23] and Yao [24], a framework of adaptive robust
control (ARC) was established to achieve high performance in controlling nonlinear systems.
This control framework integrates the benefits of both adaptive control and robust control,
providing effective parametric adaptability while maintaining system robustness against
nonlinear uncertainties and disturbances. Additionally, this approach, along with its
theoretical advancements, has found applications in areas such as linear motor-driven
systems and hydraulic manipulators [25–27]. Subsequently, an integrated direct/indirect
adaptive robust control (DIARC) framework has been proposed, which optimizes ARC
control, ensuring the capability of both parameter adaptive and tracking performance [28].
However, although the control robustness of DIARC and ARC have been guaranteed to
a certain extent, there is still room for improvement, especially for repetitive tasks that
require high control accuracy. Iterative learning control (ILC) is an intelligent control
method commonly used for feedforward compensation, which uses information from
previous iteration data to produce optimal control inputs [29,30]. The benefit of ILC is
it can achieve effective tracking performance without requiring precise dynamic models,
making it particularly valuable for controlling nonlinear and complex systems like AUVs.
In the past two decades, ILC has been broadened and implemented in electromechanical
systems and robotic systems. However, it remains sensitive to non-repetitive and complex
disturbances [31,32]. In addition, there is a lack of research on feedforward control for
trajectory tracking of AUVs with a high degree of freedom and underactuated characteristic.
Nowadays, it is challenging for underactuated AUVs to achieve high-precision and high-
robust trajectory tracking control in 3D space under conditions of uncertain dynamics and
complex external disturbances. In particular, there is an urgent need for an intelligent
control method that is robust to external disturbances, capable of coping with internal
parameter uncertainties, and has good control accuracy to complete certain repetitive tasks.

In this paper, a model–data-driven learning adaptive robust control (LARC) strategy
is introduced for spatial trajectory tracking of underactuated AUVs. Compared with other
algorithms, the performance of the LARC strategy for AUVs is verified by simulation study
and analysis. The main contributions are summarized as follows:

(1) The serial ILC is introduced as feedforward compensation control, and the correspond-
ing trajectory tracking error dynamics, Feedforward Compensation–Line of Sight
(FFC-LOS) guidance law, and feedforward compensation-based kinematics controller
are proposed, which can significantly improve trajectory tracking performance for
repetitive tasks in 3D space.

(2) In order to solve the problem of uncertain dynamics parameters, the projection-type
adaptation law with rate limits is applied, and the parameter estimation process
is designed based on the least squares estimation technique. The nonlinear robust
feedback control and fast dynamic compensation term are designed to deal with the
nonlinear complex external disturbances.

(3) The proposed LARC strategy for underactuated AUVs includes the data-driven ILC
feedforward part, the adaptive control part, and the robust control and fast dynamic
compensation part, using the advantages of both model-based control and data-driven
control. The stability of the kinematics controller and dynamics controller are ensured
by Lyapunov analysis. The effectiveness of the proposed control strategy is verified
by comparison and multi-case study.



J. Mar. Sci. Eng. 2025, 13, 1151 4 of 24

The remainder of this paper is organized as follows. Section 2 introduces the math-
ematical models of the underactuated AUV and control objective. Section 3 presents the
controller design, including the ILC compensation part, trajectory tracking error dynamics
model, kinematics controller design, and dynamics controller design. Section 4 performs
the comprehensive simulation study to verify the effectiveness of the proposed control
scheme. The conclusion of this work is illustrated in Section 5.

2. Modeling and Control Objective
2.1. Mathematical Models of Underactuated AUV

In this paper, an underactuated AUV with neutral buoyancy will be studied. Prior to
developing the mathematical model for the underactuated AUV, it is essential to define the
spatial coordinate system. As shown in Figure 1, three coordinate frames, the earth-fixed
inertial reference frame, body-fixed frame, and Serret–Frenet frame, are created and named
{I}, {B}, and {F}, respectively. Due to the fact that the roll motion of the underactuated
AUV cannot usually be directly controlled by any of its actuators and it is assumed that
the hydrodynamic restoring force is sufficiently large in the roll direction, the roll direction
motion is ignored.

Figure 1. Spatial trajectory tracking schematic diagram of an AUV.

Notations: Throughout this paper, scalars are represented using standard math fonts;
vectors and matrices are denoted with bold math fonts. The primary nomenclatures are
presented in Appendix A.

The kinematics model can be established as [33]:

ẋ = u cos ψ cos θ − v sin ψ + w cos ψ sin θ

ẏ = u sin ψ cos θ + v cos ψ + w sin ψ sin θ

ż = −u sin θ + w cos θ

θ̇ = q

ψ̇ = r/ cos θ

(1)

with η1 =
[
x, y, z

]T and η2 =
[
θ, ψ

]T as the position vector and attitude vector in the frame

{I}, respectively. The vectors υ =
[
u, v, w

]T and ω =
[
q, r

]T are the linear velocity and
angular velocity in the frame {B}, respectively.
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The dynamics model of the underactuated AUV can be established as [33,34]:

m11u̇ = m22vr − m33wq − Xuu − Xu|u|u|u|+ τ1 + Du

m22v̇ = −m11ur − Yvv − Yv|v|v|v|+ Dv

m33ẇ = m11uq − Zww − Zw|w|w|w|+ Dw

m55q̇ = (m33 − m11)uw − Mqq − Mq|q|q|q| − (zGW − zBB) sin θ + τ2 + Dq

m66ṙ = −(m22 − m11)uv − Nrr − Nr|r|r|r|+ τ3 + Dr

(2)

where mii(i = 1, 2, 3, 5, 6) denotes the combined terms of inertia and added mass. Xu,
Yv, Zw, Mq, and Nr represent the hydrodynamic coefficients associated with the linear
drag terms, while Xu|u|, Yv|v|, Zw|w|, Mq|q|, and Nr|r| correspond to the coefficients for
the nonlinear drag terms. τ1 is the propeller thrust. τ2 and τ3 are the pitch and yaw
torques produced by the rudders, respectively. Du, Dv, Dw, Dq, and Dr indicate the oceanic
external disturbance.

Assumption 1. The AUV utilized in this paper features a uniform mass distribution and it is
symmetrical about three principal axial planes. Considering that the pitch angle of the AUV cannot
be too large during the 3D trajectory tracking process, otherwise it will lose basic stability, the pitch
angle is constrained to the range of −30◦ ≤ θ ≤ 30◦. The uncertain disturbances Du, Dv, Dw, Dq,
and Dr are bounded with known values.

Assumption 2. Considering that the actual propeller thrust and rudder torques cannot be too
large to meet the actual engineering conditions, the control inputs for the AUV are subject to
limitations, which means that there exist positive known constants τ1max, τ2max, and τ3max such
that 0 ≤ τ1 ≤ τ1max, |τ2| ≤ τ2max, and |τ3| ≤ τ3max.

Assumption 3. The vehicle velocities, angular velocities, and their derivatives are also bounded
to better fit practice, which means that there exist positive known constants εimax(i = 1, 2, 3, 5, 6)
and νimax(i = 1, 2, 3, 5, 6) such that 0 ≤ u ≤ ε1max, |v| ≤ ε2max, |w| ≤ ε3max, |q| ≤ ε5max,
|r| ≤ ε6max, |u̇| ≤ ν1max, |v̇| ≤ ν2max, |ẇ| ≤ ν3max, |q̇| ≤ ν5max, and |ṙ| ≤ ν6max.

2.2. Control Objective

In the trajectory tracking task, the underactuated AUV is required to gradually track
the predefined trajectory which is bounded and differentiable. Moreover, the reference
trajectory only focuses on path kinematics and does not involve path dynamics. As
shown in Figure 1, the position of the moving point P on the desired trajectory is de-
noted as η1d =

[
xd, yd, zd

]T , and the corresponding route angles at point P are defined as

η2d =
[
θd, ψd

]T with θd = arctan
(
−żd/

√
ẋ2

d + ẏ2
d

)
and ψd = atan2(ẏd, ẋd).

In practice, the elevation angle θb of the vehicle also includes the attack angle
α = arctan(−w/u); the course angle ψb of the vehicle consists of the sideslip angle
β = arctan

(
v/

√
u2 + w2

)
as well, which can be expressed as θb = θ + α and ψb = ψ + β.

The control objective of spatial trajectory tracking is to develop an effective control law so
that the tracking error between the posture of the vehicle and the desired trajectory can be
well controlled.

3. Controller Design
In order to accomplish the control goal, the process of the controller design can be

decomposed into the two sub-stages. The first sub-stage is to develop a valid virtual
control law

[
ud, qd, rd

]T , and the second sub-stage is to design a highly robust control law
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[
τ1, τ2, τ3

]T in the presence of system parameter uncertainties and external disturbances.
The proposed LARC scheme for the underactuated AUV in this paper is shown in Figure 2.
In kinematics controller design, serial ILC feedforward compensation is adopted. Accord-
ingly, the ILC-based trajectory tracking error dynamics model, the FFC-LOS guidance
law, and the corresponding kinematics controller are developed. In dynamics controller
design, the projection-type adaptation law and the robust control law for the underactu-
ated AUV are designed to improve the adaptive and anti-disturbance performances of the
vehicle. The whole control strategy utilizes the advantages of model-based control and
data-driven control.

Figure 2. Schematic diagram of the proposed LARC strategy for the underactuated AUV.

3.1. ILC Part in Kinematics Controller

ILC provides excellent stable tracking performance without requiring an accurate
system model. As illustrated in Figure 2, the serial ILC structure that serves as feedforward
compensation iteratively learns to generate inputs to adjust the kinematics controller
reference before the closed-loop system.

The tracking error Ej(s) at the jth iteration of the serial ILC can be expressed as

Ej(s) = R(s)− C(s)
[
R(s) + UILC,j(s)

]
(3)

with C(s) as the closed-loop system transfer function, R(s) as the reference trajectory, and
UILC,j(s) as the compensation in the jth iteration.

The serial ILC-based learning law UILC,j+1 for the next iteration can be written as

UILC,j+1(s) = Q(s)
[
UILC,j + LsEj(s)

]
(4)

where Ls ∈ (0, 1] is the learning gain to produce the desired ILC input in the next iteration,
and Q(s) is the Q filter that limits the learning bandwidth to achieve robustness.

Asymptotic stability and convergence of the serial ILC-based learning law described
in (4) can be guaranteed and the details have already been presented in Bristow et al. [31].

3.2. Trajectory Tracking Error Dynamics Model

Before designing the kinematics controller, the trajectory tracking error dynamics
model embedded by ILC needs to be established. Through the serial ILC, there exists an
adjusted desired trajectory

[
xd + xILC, yd + yILC, zd + zILC

]T that should be followed by
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the kinematics controller and dynamics controller. The adjusted trajectory tracking error
η
′
1e =

[
x
′
e, y

′
e, z

′
e
]T in the frame {F} can be expressed as

η
′
1e = η1e − ηILC =

cos ψd cos θd − sin ψd cos ψd sin θd

sin ψd cos θd cos ψd sin ψd sin θd

− sin θd 0 cos θd


Tx − xd

y − yd

z − zd



−

cos ψd cos θd − sin ψd cos ψd sin θd

sin ψd cos θd cos ψd sin ψd sin θd

− sin θd 0 cos θd


TxILC

yILC

zILC


(5)

where x
′
e, y

′
e, and z

′
e represent the along-track error, cross-track error, and vertical-track

error, respectively, η1e =
[
xe, ye, ze

]T is the original position tracking error, and ηILC =[
sILC, hILC, eILC

]T is the compensation term in the frame {F}.
Differentiating (5) yields

η̇
′
1e = SF

T(η1e − ηILC) + RF
V UV − Vd (6)

with Vd =
[
Ud, 0, 0

]T and Ud =
√

ẋ2
d + ẏ2

d + ż2
d as the resultant velocity of the moving point

P, and UV =
[
U, 0, 0

]T and U =
√

u2 + v2 + w2 as the resultant velocity of the vehicle. The
skew-symmetric matrix SF and rotation matrix RF

V are calculated as [35]:

SF =

 0 −ψ̇d cos θd θ̇d

ψ̇d cos θd 0 ψ̇d sin θd

−θ̇d −ψ̇d sin θd 0

 (7)

RF
V =

cos ψe cos θe − sin ψe cos ψe sin θe

sin ψe cos θe cos ψe sin ψe sin θe

− sin θe 0 cos θe

 (8)

In addition, the angle tracking errors can be formulated by

η2e =

[
θe

ψe

]
=

[
θb − θd

ψb − ψd

]
(9)

Furthermore, by expanding (6) and differentiating (9), the error dynamics model can
be written as

ẋ
′
e = (ye − hILC)ψ̇d cos θd − (ze − eILC)θ̇d + U cos ψe cos θe − Ud

ẏ
′
e = (−xe + sILC)ψ̇d cos θd − (ze − eILC)ψ̇d sin θd + U sin ψe cos θe

ż
′
e = (xe − sILC)θ̇d + (ye − hILC)ψ̇d sin θd − U sin θe

θ̇e = q + α̇ − θ̇d

ψ̇e = r/ cos θ + β̇ − ψ̇d

(10)

The above trajectory tracking error dynamics model is the basis for designing the
kinematics controller. It is worth noting that the adjusted desired trajectory mentioned
here is used to design a controller with higher control accuracy and robustness. In fact, the
control’s purpose is still to render the trajectory of the vehicle as able to track the predefined
desired trajectory, which is usually generated by the planning and navigation system, as
described in Section 2.2.
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3.3. Kinematics Controller Design

The kinematics control law is designed as

ud =[−k1(xe − sILC) + Ud]
cos α cos β

cos θe cos ψe

qd =− α̇ + θ̇d + θ̇FFC-LOS − k2(θe − θFFC-LOS) + (ze − eILC)U
sin θe − sin θFFC-LOS

θe − θFFC-LOS

rd = cos θ

[
−β̇ + ψ̇d + ψ̇FFC-LOS − k3(ψe − ψFFC-LOS)− (ye − hILC)U cos θe

sin ψe − sin ψFFC-LOS

ψe − ψFFC-LOS

] (11)

where k1, k2, k3 > 0 are the designed control parameters. In addition, the following is held
for the kinematics controller [36]:

lim
a→b

sin a − sin b
a − b

∇=a−b−−−−→ lim
∇→0

sin a − sin(a −∇)

∇ = cos a (12)

The designed FFC-LOS guidance law θFFC-LOS and ψFFC-LOS can be expressed as
θFFC-LOS = arctan

(
ze − eILC

∆z

)
ψFFC-LOS = arctan

(
−ye + hILC

∆y

) (13)

where ∆z > 0 and ∆y > 0 are the designed guidance gain coefficients. The stability analysis
of the kinematics subsystem is shown in Appendix B.

3.4. Dynamics Controller Design

In order to solve the sub-problem of dynamics control, the surge velocity tracking
controller, pitch angular velocity tracking controller, and yaw angular velocity tracking
controller are designed, respectively, to produce the final control inputs from the propeller
and rudders of the vehicle. Herein, the dynamic controller is designed based on DIARC,
which simultaneously executes robust control law and adaptive law to improve the vehicle’s
ability to resist external disturbances and system parameter uncertainties.

3.4.1. Parameter Adaptation Law

In practice, accurately determining the system parameters of the vehicle is challenging.
To mitigate these adverse effects, integrating an adaptation law along with a parameter
estimation technique into the design of the control law can be beneficial. In the design of
the dynamics controller, the robust controller, adaptation law, and estimation algorithm are
synthesized.

Firstly, the adaptation law with rate limits is utilized. For any vector ζ and pre-set rate
limit θ̇M, the saturation function is defined as

satθ̇M
(ζ) = s0ζ, s0 =

1, ∥ζ∥ ≤ θ̇M
θ̇M
∥ζ∥ , ∥ζ∥ > θ̇M

(14)

Then, the following projection-type adaptation law with rate limits can be expressed as

•

θ̂i= satθ̇Mi

(
Projθ̂i

(Γiµi)
)

, θ̂i(0) ∈ Ωθi (15)

where θ̂i(i = 1, 2, 3) is the estimation value of θi(i = 1, 2, 3), θ̇Mi(i = 1, 2, 3) is the pre-set
rate limit for each θi, Γi(i = 1, 2, 3) is the positive adaptation rate matrix, and µi(i = 1, 2, 3)
is the vector of adaptation function to be determined later. In addition, θimax(i = 1, 2, 3)
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and θimin(i = 1, 2, 3) are the known maximum and minimum values of θi. Furthermore,
the following standard projection mapping is utilized in the adaptation process [37]:

Projθ̂i
(ζi) =


ζi, if θ̂i ∈ Ωθi or

(
θ̂i ∈ ∂Ωθi and nθ̂i

Tζi ≤ 0
)(

I − Γi
nθ̂i

nθ̂i
T

nθ̂i
TΓinθ̂i

)
ζi, if θ̂i ∈ ∂Ωθi and nθ̂i

Tζi > 0
(16)

where ζi(i = 1, 2, 3) is the function to be projected, Ωθi (i = 1, 2, 3) and ∂Ωθi (i = 1, 2, 3) are
the interior and boundary of the set Ωθi (i = 1, 2, 3), and nθ̂i

(i = 1, 2, 3) is the outward unit

normal vector at θ̂i ∈ ∂Ωθi .
The parameter estimation error is denoted as θ̃i = θ̂i − θi(i = 1, 2, 3). With the above

parameter adaptation law, the following properties can be held [38]:

P1 : θ̂i ∈ Ωθi ≜
{

θ̂i : θimin ≤ θ̂i ≤ θimax

}
P2 : θ̃i

T
[
Γi
−1Projθ̂i

(Γiµi)− µi

]
≤ 0, ∀µi

P3 : ∥
•

θ̂i (t)∥ ≤ θ̇Mi, ∀t

(17)

3.4.2. Velocity Tracking Controller Design

Define the surge velocity tracking error, pitch angular velocity tracking error, and yaw
angular velocity tracking error as

e1 = u − ud, e2 = q − qd, e3 = r − rd (18)

Then, the dynamics equations of the vehicle can be written in a more compact form:

θ15 ė1 = ϕ1
Tθ1 + τ1 + Du

θ25 ė2 = ϕ2
Tθ2 + τ2 + Dq

θ34 ė3 = ϕ3
Tθ3 + τ3 + Dr

(19)

with the regressor vectors

ϕ1 =
[
vr,−wq,−u,−u|u|,−u̇d

]T

ϕ2 =
[
uw,−q,−q|q|,− sin θ,−q̇d

]T

ϕ3 =
[
−uv,−r,−r|r|,−ṙd

]T

(20)

and system parameters

θ1 =
[
θ11, θ12, θ13, θ14, θ15

]T
=

[
m22, m33, Xu, Xu|u|, m11

]T

θ2 =
[
θ21, θ22, θ23, θ24, θ25

]T
=

[
(m33 − m11), Mq, Mq|q|, (zGW − zBB), m55

]T

θ3 =
[
θ31, θ32, θ33, θ34

]T
=

[
(m22 − m11), Nr, Nr|r|, m66

]T

(21)

The proposed dynamics control law in the proposed LARC framework consists of
four terms:

ULARC = Us1 + Ua1 + Us2 + Ua2 (22)
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with ULARC =
[
τ1, τ2, τ3

]T as the final control inputs of the vehicle, Us1 as the linear feed-
back term to stabilize the nominal system, and Ua1 as the adjustable model compensation
term to achieve more accurate tracking of the nominal system, and they are in the forms of

Us1 =

Us11

Us12

Us13

 =

−ksue1

−ksqe2

−ksre3

, Ua1 =

Ua11

Ua12

Ua13

 =

−ϕ1
T θ̂1

−ϕ2
T θ̂2

−ϕ3
T θ̂3

 (23)

with ksu, ksq, ksr > 0 as the proportional feedback gains.

Furthermore, Ua2 =
[
Ua21, Ua22, Ua23

]T
=

[
− d̂c1,−d̂c2,−d̂c3

]T is the fast dynamic
compensation part and the direct adaptive estimation is applied here to improve the
tracking performance. The d̂ci(i = 1, 2, 3) can be calculated as:

•

d̂ci= satθ̇Mci

(
Projd̂ci

(Γdciei)
)

(24)

Projd̂ci
(Γdciei) ≜

0, if |d̂ci(t)| > dcimax

Γdciei, otherwise
(25)

where dcimax(i = 1, 2, 3) is the pre-set upper bound for d̂ci, θ̇Mci(i = 1, 2, 3) is the pre-set
adaptive rate limit for the compensation term, and Γdci > 0(i = 1, 2, 3). The projection
mapping in (25) ensures that |d̂ci(t)| ≤ dcimax.

The nonlinear robust feedback term Us2 =
[
Us21, Us22, Us23

]T that meets the following
two conditions can be selected to enhance the robust performance of the closed-loop
system [24]:

P4 : ei

(
Us2i − ϕi

T θ̃i − d̂ci + Di

)
≤ ϵi

P5 : eiUs2i ≤ 0
(26)

where ϵi > 0(i = 1, 2, 3) is the designed parameter. Herein, Us2i(i = 1, 2, 3) is designed as

Us2i = − 1
4ϵi

h2
i ei

hi = |ϕi
T ||θimax − θimin|+ |Dimax|+ dcimax

(27)

where Dimax(i = 1, 2, 3) is the maximum value of Di(i = 1, 2, 3) with D1 = Du, D2 = Dq,
and D3 = Dr.

Next, the design of the estimator for the parameter estimation process will be discussed.
There are a variety of estimation algorithms that can be utilized, and here, based on the
least squares estimation algorithm, the estimators for the velocity tracking controller are
designed [39]. The prediction error is defined as

σi = −ϕi f
T θ̂i + Θi ėi f − τi (28)

where ϕi f (i = 1, 2, 3) and ėi f (i = 1, 2, 3) are the output of filtering ϕi and ėi through a stable

filter H f (s) with a relative degree of 1, e.g., H f (s) = 1/
(

τf s + 1
)

, and Θ =
[
Θ1, Θ2, Θ3

]T
=[

θ15, θ25, θ34
]T .

Then, the adaptation function is expressed as

µi =
1

1 + viϕi f
TΓiϕi f

ϕi f σi (29)
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and the adaptation rate matrix is given by

Γ̇i =

αiΓi − 1
1+viϕi f

TΓiϕi f
Γiϕi f ϕi f

TΓi, if λmax(Γi(t)) ≤ ρMi and ∥Projθ̂i
(Γiµi)∥ ≤ θ̇Mi

0, otherwise
(30)

with vi ≥ 0(i = 1, 2, 3), αi(i = 1, 2, 3) as the forgetting factor, and ρMi(i = 1, 2, 3) as the
pre-set upper bound for ||Γi(t)||.

Theorem 1. Using the kinematics control law in (11) and dynamics control law in (22), where the
system parameters are updated by the projection-type adaptation law in (15) with the projection
mapping in (16), the whole system is stable and all signals in the resulting closed-loop system are
bounded, and the positive definite function V2 defined as

V2 = V1 +
1
2

θ15e2
1 +

1
2

θ25e2
2 +

1
2

θ34e2
3 (31)

that is bounded by
V2(t) ≤ exp(−ϑt)V2(0) +

ϵ

ϑ
[1 − exp(−ϑt)] (32)

with ϑ = 2min{ksu/θ15max, ksq/θ25max, ksr/θ34max, k1, k2, k3, U cos θe√
∆y

2+(ye−hILC)
2
, U√

∆z
2+(ze−eILC)

2 }

and ϵ = ϵ1 + ϵ2 + ϵ3.

Proof. See Appendix C.

4. Simulation Study
In order to verify the effectiveness and robustness of the proposed model–data-driven

LARC strategy for the underactuated AUV, a comparison simulation study with DIARC and
integral sliding mode control (ISMC) are performed. Two scenarios with two different exter-
nal disturbances and system parameter uncertainties, namely the simulation comparison of
four cases, are executed. The control algorithms are conducted on the underactuated AUV,
whose nominal values of system parameters are presented in Pettersen and Egeland [40].
The control parameters are set as: ksu = 2, ksq = 90, ksr = 12.5, ϵ1 = ϵ2 = ϵ3 = 3000,
dc1max = 10, dc2max = 20, dc3max = 10, v1 = v2 = v3 = 10, α1 = 10, and α2 = α3 = 1.
The initial adaptation rate matrices are Γ1 = Γ2 = Γ3 = I, and the corresponding pre-
set rate limits are θ̇M1 = θ̇M2 = θ̇M3 = 10. The adaptation rates for the compensation
terms are Γdc1 = 10 and Γdc2 = Γdc3 = 1, and the corresponding pre-set rate limits are
θ̇Mc1 = θ̇Mc2 = 50 and θ̇Mc3 = 100. The learning gains of feedforward compensation in
the x, y, and z directions are set as 0.4, 0.4, and 0.3, respectively. Based on the practical
constraints, all the simulation cases below are conducted with a 10% deviation in the
combined terms of inertia and added mass of m11, m22, and m33, as well as a 30% deviation
in m44, m55, and other linear and nonlinear hydrodynamic coefficients. The performances
and advantages of the designed controllers are studied in the following sections.

4.1. Combined Reference Trajectory Tracking

The efficacy of the proposed control strategy is initially evaluated through a combined
reference trajectory tracking. This trajectory encompasses both linear and curved segments
and can be considered for underwater inspection. The details are outlined as follows:
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xd =



1.5 t, 0 ≤ t < 100

50 sin(0.01π(t − 100)) + 150, 100 ≤ t < 200

− 1.5 t + 450, 200 ≤ t < 300

− 50 sin(0.01π(t − 300)), 300 ≤ t < 400

1.5 t − 600, 400 ≤ t < 500

50 sin(0.01π(t − 500)) + 150, 500 ≤ t < 600

− 1.5 t + 1050, 600 ≤ t < 700

− 50 sin(0.01π(t − 700)), 700 ≤ t < 800

1.5 t − 1200, 800 ≤ t < 900

50 sin(0.01π(t − 900)) + 150, 900 ≤ t < 1000

yd =



0, 0 ≤ t < 100

50 cos(0.01π(t − 100))− 50, 100 ≤ t < 200

− 100, 200 ≤ t < 300

50 cos(0.01π(t − 300))− 150, 300 ≤ t < 400

− 200, 400 ≤ t < 500

50 cos(0.01π(t − 500))− 250, 500 ≤ t < 600

− 300, 600 ≤ t < 700

50 cos(0.01π(t − 700))− 350, 700 ≤ t < 800

− 400, 800 ≤ t < 900

50 cos(0.01π(t − 900))− 450, 900 ≤ t < 1000

zd = 15, 0 ≤ t < 1000

(33)

The initial conditions of the vehicle are: x(0) = 1.5 m, y(0) = 1 m, z(0) = 15 m,
u(0) = 0.01 m/s, and v(0) = w(0) = q(0) = r(0) = θ(0) = ψ(0) = 0. The number of
feedforward compensation iterations is one. In order to verify the control effects under
different types of disturbances, two sets of tests with different disturbances are conducted
in this scenario, among which Disturbance 1 is related to the velocity and angular velocity
states of the vehicle and is time-varying, expressed as:

Du = 20 sin(0.3t) + 2 cos(0.1t) + 20u2 + 2 N

Dv = 15 sin(0.3t) + 1.5 cos(0.1t) + 15v2 + 1.5 N

Dw = 15 sin(0.3t) + 1.5 cos(0.1t) + 15w2 + 1.5 N

Dq = 30 cos(0.3t) + 6 sin(0.1t) + 30q2 + 6 Nm

Dr = 30 cos(0.3t) + 6 sin(0.1t) + 30r2 + 6 Nm

(34)

Disturbance 2 is also time-varying and set as:

Du = m11(0.1 sin(0.3t) + 0.01) N

Dv = 0.5m22(0.1 sin(0.3t) + 0.01) N

Dw = 0.5m33(0.1 sin(0.3t) + 0.01) N

Dq = 4m55(0.1 cos(0.3t) + 0.01) Nm

Dr = 4m66(0.1 cos(0.3t) + 0.01) Nm

(35)

The combined reference trajectory tracking performance of the vehicle by three control
strategies under Disturbance 1 is shown in Figure 3, which clearly exhibits that the pro-
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posed controller can track the underactuated vehicle to the desired trajectory. In order to
demonstrate the tracking performance in the steady state more clearly, the position tracking
errors and angle tracking errors under Disturbance 1 after 100 s are shown in Figures 4 and
5, respectively. It can be seen that the error fluctuations generated by the LARC strategy
are significantly reduced compared to the DIARC strategy and the ISMC strategy. The
control inputs generated by the propeller and rudders by the LARC and DIARC strategies
under Disturbance 1 are shown in Figure 6. In addition, the tracking performance under
Disturbance 2 is shown in Figure 7, and the corresponding position tracking errors and
angle tracking errors after 100 s are shown in Figures 8 and 9, respectively, which also show
that the LARC strategy has the best control performance, followed by the DIARC strategy,
and then the ISMC strategy. Similarly, the control inputs by the LARC and DIARC strategies
under Disturbance 2 are shown in Figure 10. The control inputs under both disturbances
indicate that although the discontinuity of the trajectory leads to brief saturation limits at
some time points, the overall control inputs are within reasonable ranges.

Figure 3. Trajectory tracking results in combined trajectory scenario by three control strategies under
system parameter inaccuracies and Disturbance 1.

Figure 4. Vehicle position tracking errors in combined trajectory scenario by three control strategies
under system parameter inaccuracies and Disturbance 1.

In order to perform a more quantitative analysis, additional evaluations are carried
out on the tracking error data across three different control strategies. The Mean Absolute
Error (MAE) and Mean Square Error (MSE) are chosen as the criteria for data assessment,
which are widely accepted standards for evaluating tracking errors. The detailed data
analysis results under Disturbances 1 and 2 are shown in Tables 1 and 2, respectively. It can
be seen that the control accuracy of the LARC strategy is optimal in all x, y, and z spatial
directions, as well as in both pitch and yaw angles. In this scenario, the total MAE created
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by the LARC strategy is lower than 70% of that of the DIARC strategy and lower than 50%
of that of the ISMC strategy, and the corresponding total MSE is lower than 50% of that of
the DIARC strategy and lower than 30% of that of the ISMC strategy.

Figure 5. Vehicle angle errors in combined trajectory scenario by three control strategies under system
parameter inaccuracies and Disturbance 1.

(a) (b)

Figure 6. Control inputs of the vehicle by (a) LARC strategy and (b) DIARC strategy in combined
trajectory scenario under system parameter inaccuracies and Disturbance 1.

Table 1. Performance indices for three control strategies in combined trajectory scenario under system
parameter inaccuracies and Disturbance 1.

Performance Indices LARC DIARC ISMC

Total MAE 1.4208 2.0879 3.0263
Total MSE 1.2513 2.5514 4.7696
MAE (xe) 0.0209 0.0299 0.0536
MSE (xe) 0.0021 0.0024 0.0045
MAE (ye) 0.0824 0.1232 0.1715
MSE (ye) 0.0117 0.0235 0.0461
MAE (ze) 0.0371 0.0534 0.0995
MSE (ze) 0.0018 0.0036 0.0126
MAE (ψe) 0.8522 1.2666 1.6016
MSE (ψe) 1.0073 2.0605 3.2048
MAE (θe) 0.4282 0.6148 1.1001
MSE (θe) 0.2285 0.4614 1.5015

In the LARC strategy, the feedforward compensation ILC part is designed to adjust the
optimal reference, which can compensate unmodeled uncertainties to attenuate the tracking
error. The projection-type adaptation law with least squares parameter estimation can
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reduce the tracking errors caused by the uncertainty of system parameters. The nonlinear
robust feedback and fast dynamic compensation terms can deal with the nonlinear complex
external disturbances and internal uncertainties. Generally, it can be concluded from the
above results and analyses that the proposed LARC strategy possesses a high control
accuracy and robustness ability for 3D spatial trajectory tracking of an underactuated AUV,
and can well meet the high requirements of control performance in repetitive tasks.

Figure 7. Trajectory tracking results in combined trajectory scenario by three control strategies under
system parameter inaccuracies and Disturbance 2.

Figure 8. Vehicle position tracking errors in combined trajectory scenario by three control strategies
under system parameter inaccuracies and Disturbance 2.

Figure 9. Vehicle angle errors in combined trajectory scenario by three control strategies under system
parameter inaccuracies and Disturbance 2.
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(a) (b)

Figure 10. Control inputs of the vehicle by (a) LARC strategy and (b) DIARC strategy in combined
trajectory scenario under system parameter inaccuracies and Disturbance 2.

Table 2. Performance indices for three control strategies in combined trajectory scenario under system
parameter inaccuracies and Disturbance 2.

Performance Indices LARC DIARC ISMC

Total MAE 1.5013 2.2084 3.4047
Total MSE 1.3958 2.8627 5.4221
MAE (xe) 0.0214 0.0312 0.2671
MSE (xe) 0.0020 0.0024 0.0729
MAE (ye) 0.0833 0.1236 0.1581
MSE (ye) 0.0110 0.0215 0.0348
MAE (ze) 0.0382 0.0550 0.1029
MSE (ze) 0.0018 0.0038 0.0133
MAE (ψe) 0.9137 1.3599 1.6988
MSE (ψe) 1.1365 2.3395 3.6014
MAE (θe) 0.4447 0.6388 1.1779
MSE (θe) 0.2444 0.4954 1.6998

4.2. Helical Dive Reference Trajectory Tracking

The second scenario is the 3D spatial helical dive reference trajectory, which is also a
trajectory often used for verification. It can be described as:

xd = 50 sin(0.01πt)

yd = −50 cos(0.01πt) + 50

zd = 0.1t + 5

(36)

The initial conditions of the vehicle are: x(0) = 2 m, y(0) = −2 m, z(0) = 5.5 m,
u(0) = 0.01 m/s, and v(0) = w(0) = q(0) = r(0) = θ(0) = ψ(0) = 0. Similarly, in order to
verify the control effects under different disturbances, tests are carried out under the same
Disturbances 1 and 2 as the combined reference trajectory. Additionally, to visually and
quantitatively verify the learning ability of the proposed LARC strategy, when conducting
the Disturbance 2 case in this scenario, simulations under the one and two iterations of
LARC are carried out.

Figure 11 presents the spatial trajectory tracking performance in the helical dive sce-
nario under Disturbance 1, which illustrates that the proposed controller effectively guides
the vehicle along the desired trajectory. The 3D positions and pitch and yaw angles tracking
errors after 100 s under Disturbance 1 are exhibited in Figures 12 and 13, respectively. It can
be seen that the vehicle controlled by the LARC strategy produces minimal positions and
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angle fluctuations. Figure 14 displays the control inputs for the LARC and DIARC strategies
under Disturbance 1, which exhibits that the control inputs are within the reasonable limits.
Accordingly, the spatial tracking performance, 3D positions and angles tracking errors,
and control inputs are shown in Figures 15–18. The results exhibit that the control error
variations by the LARC strategy is still the best under Disturbance 2 in this scenario, and
the control inputs are also within the appropriate ranges.

Figure 11. Trajectory tracking results in helical dive trajectory scenario by three control strategies
under system parameter inaccuracies and Disturbance 1.

Figure 12. Vehicle position tracking errors in helical dive trajectory scenario by three control strategies
under system parameter inaccuracies and Disturbance 1.

Furthermore, to quantitatively illustrate the effectiveness and robustness of the pro-
posed control strategy in the helical dive scenario, data analyses are conducted utilizing
the same evaluation criteria of MAE and MSE. Tables 3 and 4 demonstrate the detailed
performance indices across three control strategies under Disturbances 1 and 2, respectively,
which present that the LARC strategy realizes the highest control accuracy across the x, y,
and z directions, as well as in the pitch and yaw angles, followed by the DIARC, and then
the ISMC. The total MAE produced by the LARC strategy with one iteration is less than
70% of that of the DIARC strategy and less than 50% of that of the ISMC strategy, and the
corresponding total MSE is less than 75% of that of the DIARC strategy and less than 50%
of that of the ISMC strategy.
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Figure 13. Vehicle angle errors in helical dive trajectory scenario by three control strategies under
system parameter inaccuracies and Disturbance 1 .

(a) (b)

Figure 14. Control inputs of the vehicle by (a) LARC strategy and (b) DIARC strategy in helical dive
trajectory scenario under system parameter inaccuracies and Disturbance 1.

In the part of dynamics control, the system parameters of the AUV are often difficult
to obtain precisely. The adjustable model compensation term can reduce the tracking error
caused by inaccurate parameters to a certain extent. Meanwhile, the AUV is confronted
with complex time-varying external disturbances. The nonlinear robust feedback term and
fast dynamic compensation term in the proposed control strategy have a good inhibitory
effect on the disturbances. Therefore, it can be seen from the above simulation results
that the control accuracy of DIARC is superior to that of ISMC. In the part of kinematics
control, the ILC feedforward compensation can further reduce the tracking error. Moreover,
it can be seen from the Disturbance 2 case of the helical dive trajectory scenario that the
LARC strategy iterated twice has a smaller tracking error than the LARC strategy iterated
once. This vividly and quantitatively verifies the learning ability of the proposed strategy.
From the perspective of computational complexity, the LARC strategy employs an offline
learning approach, which eliminates the need for online learning. As a result, the system
does not consume online computing resources nor experience failures caused by complex
online computations during the AUV trajectory tracking process. This characteristic is
beneficial for practical applications. Although the LARC strategy requires offline learning
compared with the other control strategies, it is still attractive for significantly improving
the control accuracy and robustness of commonly used repetitive tasks. Based on the above
simulation results and analyses, the proposed LARC strategy offers significant advantages
and options for control methods.
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Figure 15. Trajectory tracking results in helical dive trajectory scenario under system parameter
inaccuracies and Disturbance 2.

Figure 16. Vehicle position tracking errors in helical dive trajectory scenario under system parameter
inaccuracies and Disturbance 2.

Figure 17. Vehicle angle errors in helical dive trajectory scenario under system parameter inaccuracies
and Disturbance 2.

(a) (b)

Figure 18. Control inputs of the vehicle by (a) LARC-one iteration and (b) LARC-two iteration in
helical dive trajectory scenario under system parameter inaccuracies and Disturbance 2.
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Table 3. Performance indices for three control strategies in helical dive trajectory scenario under
system parameter inaccuracies and Disturbance 1.

Performance Indices LARC DIARC ISMC

Total MAE 1.4609 2.0931 3.0078
Total MSE 2.5752 3.4832 5.2508
MAE (xe) 0.0232 0.0328 0.0654
MSE (xe) 0.0044 0.0047 0.0081
MAE (ye) 0.0879 0.1296 0.1753
MSE (ye) 0.0199 0.0332 0.0548
MAE (ze) 0.0379 0.0538 0.0994
MSE (ze) 0.0021 0.0039 0.0127
MAE (ψe) 0.8517 1.2420 1.5823
MSE (ψe) 1.8165 2.5747 3.6042
MAE (θe) 0.4602 0.6349 1.0855
MSE (θe) 0.7324 0.8667 1.5710

Table 4. Performance indices in helical dive trajectory scenario under system parameter inaccuracies
and Disturbance 2.

Performance Indices LARC-2 Iteration LARC-1 Iteration DIARC ISMC

Total MAE 1.0766 1.5504 2.2279 3.3942
Total MSE 2.3505 2.6816 3.7884 5.8889
MAE (xe) 0.0174 0.0234 0.0338 0.2883
MSE (xe) 0.0041 0.0042 0.0046 0.0855
MAE (ye) 0.0597 0.0897 0.1316 0.1661
MSE (ye) 0.0136 0.0197 0.0318 0.0466
MAE (ze) 0.0280 0.0393 0.0558 0.1026
MSE (ze) 0.0013 0.0022 0.0041 0.0132
MAE (ψe) 0.6178 0.9214 1.3495 1.6781
MSE (ψe) 1.6288 1.9145 2.8622 3.9934
MAE (θe) 0.3537 0.4765 0.6571 1.1591
MSE (θe) 0.7028 0.7411 0.8858 1.7502

5. Conclusions
In this paper, the LARC strategy was introduced to solve the 3D spatial trajectory

tracking control problem of an underactuated AUV in the presence of system parameter
uncertainties and complex external disturbances. In the design of the kinematics controller,
the serial ILC without requiring an accurate system model was utilized for feedforward
compensation to obtain the adjusted desired trajectory, and then the trajectory tracking
error dynamics model with ILC trajectory compensation was acquired. Subsequently, the
corresponding feedforward-based kinematics controller was introduced and its stability
was proved according to Lyapunov’s theorem. In the design of the dynamics controller,
the control law is composed of a linear feedback term, a nonlinear robust feedback term,
an adjustable model compensation term, and a fast dynamic compensation term, and
the projection-type adaptive law was integrated in the control law. According to this
control framework, the surge velocity tracking controller, pitch angular velocity tracking
controller, and yaw angular velocity tracking controller were designed. The comprehensive
simulation study was carried out under different types of disturbances in two scenarios,
which showed that the proposed LARC strategy for the underactuated AUV can accurately
regulate the vehicle to the predefined trajectory. Quantitative analyses revealed that the
MAE and MSE values of the LARC strategy are significantly lower compared to both the
DIARC strategy and the ISMC strategy, which greatly improves the trajectory tracking
performance and can better meet the high requirements of trajectory tracking accuracy and
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robustness of repetitive tasks. The results illustrate the effectiveness and advantages of
the proposed control strategy. In the future, extending the asymptotic convergence of the
controller to fixed-time convergence will be an attractive research direction, and extending
this control strategy to the collective behaviors of mobile robots has good research and
engineering value.
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Appendix A
The main nomenclatures used in this paper are listed in Table A1.

Table A1. The main nomenclatures in this paper.

Nomenclature Definition

AUV Autonomous underwater vehicle
ARC Adaptive robust control

DIARC Integrated direct/indirect adaptive robust control
ILC Iterative learning control

LARC Learning adaptive robust control
FFC-LOS Feedforward Compensation–Line of Sight

ISMC Integral sliding mode control
{I} Earth-fixed inertial reference frame
{B} Body-fixed frame
{F} Serret–Frenet frame

η1 = [x, y, z]T The position vector in {I}
η2 = [θ, ψ]T The attitude vector in {I}

η1d = [xd, yd, zd]
T The desired trajectory in {I}

η2d = [θd, ψd]
T The desired attitude in {I}

υ = [u, v, w]T The velocity in {B}
ω = [q, r]T The angular velocity in {B}

mii(i = 1, 2, 3, 5, 6) Terms of inertia and added mass
Xu, Yv, Zw, Mq, Nr Linear drag hydrodynamic coefficients

Xu|u|, Yv|v|, Zw|w|, Mq|q|, Nr|r| Nonlinear drag hydrodynamic coefficients
Du, Dv, Dw, Dq, Dr Oceanic external disturbance

τ1, τ2, τ3 Propeller thrust and rudder torques
ηILC = [sILC, hILC, eILC]

T ILC compensation term in {F}
[ud, qd, rd]

T The kinematics control law
θFFC-LOS, ψFFC-LOS FFC-LOS guidance law

ULARC The dynamics control law
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Table A1. Cont.

Nomenclature Definition

Us1, Ua1, Us2, Ua2

Linear feedback term, adjustable model compensation
term, nonlinear robust feedback term, fast dynamic

compensation term in the dynamics control law
ϕi(i = 1, 2, 3) Regressor vectors
θi(i = 1, 2, 3) System parameters
Γi(i = 1, 2, 3) Adaptation rate matrices
µi(i = 1, 2, 3) Adaptation functions

Γdci(i = 1, 2, 3) Adaptation rates in fast dynamic compensation term
ei(i = 1, 2, 3) Velocity and angular velocity tracking errors

Appendix B
In order to analyze the stability of the kinematics subsystem, define the following

positive definite Lyapunov function as

V1 =
1
2
(xe − sILC)

2 +
1
2
(ye − hILC)

2 +
1
2
(ze − eILC)

2 +
1
2
(θe − θFFC-LOS)

2 +
1
2
(ψe − ψFFC-LOS)

2 (A1)

Combining (10), (11), and (13) in the main text, the derivative of (A1) can be ex-
pressed as:

V̇1 = (xe − sILC)ẋ
′
e + (ye − hILC)ẏ

′
e + (ze − eILC)ż

′
e

+ (θe − θFFC-LOS)
(
θ̇e − θ̇FFC-LOS

)
+ (ψe − ψFFC-LOS)(ψ̇e − ψ̇FFC-LOS)

= (xe − sILC)
[
(ye − hILC)ψ̇d cos θd − (ze − eILC)θ̇d + U cos ψe cos θe − Ud

]
+ (ye − hILC)[(−xe + sILC)ψ̇d cos θd − (ze − eILC)ψ̇d sin θd + U sin ψe cos θe]

+ (ze − eILC)
[
(xe − sILC)θ̇d + (ye − hILC)ψ̇d sin θd − U sin θe

]
+ (θe − θFFC-LOS)

(
q + α̇ − θ̇d − θ̇FFC-LOS

)
+ (ψe − ψFFC-LOS)

(
r/ cos θ + β̇ − ψ̇d − ψ̇FFC-LOS

)
= (xe − sILC)

(
u

cos α cos β
cos ψe cos θe − Ud

)
+ (ye − hILC)U sin ψe cos θe

− (ze − eILC)U sin θe + (θe − θFFC-LOS)
(
q + α̇ − θ̇d − θ̇FFC-LOS

)
+ (ψe − ψFFC-LOS)

(
r/ cos θ + β̇ − ψ̇d − ψ̇FFC-LOS

)
= −k1(xe − sILC)

2 − k2(θe − θFFC-LOS)
2 − k3(ψe − ψFFC-LOS)

2

+ (ye − hILC)U cos θe sin ψFFC-LOS − (ze − eILC)U sin θFFC-LOS

≤ −2min{k1, k2, k3,
U cos θe√

∆y
2 + (ye − hILC)

2
,

U√
∆z

2 + (ze − eILC)
2
}V1

(A2)

It can be deduced that (ye − hILC) cos θe sin ψFFC-LOS ≤ 0, (ze − eILC) sin θFFC-LOS ≥ 0,
and U ≥ 0. Therefore, by designing control parameters k1, k2, and k3, V̇1 ≤ 0 can be
guaranteed. V̇1 = 0 if and only if x

′
e = 0, y

′
e = 0, z

′
e = 0, θe = θFFC-LOS, and ψe = ψFFC-LOS.

Then, by Barbalat’s lemma, the kinematics errors can be stabilized by (11).
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Appendix C
In order to prove Theorem 1, using the property P4 in (26) in the main text and then

differentiating (31) in the main text yields

V̇2 = V̇1 + e1θ15 ė1 + e2θ25 ė2 + e3θ34 ė3

= V̇1 + e1

(
ϕ1

Tθ1 + τ1 + D1

)
+ e2

(
ϕ2

Tθ2 + τ2 + D2

)
+ e3

(
ϕ3

Tθ3 + τ3 + D3

)
= V̇1 + e1

(
−ksue1 + Us21 − ϕ1

T θ̃1 − d̂c1 + D1

)
+ e2

(
−ksqe2 + Us22 − ϕ2

T θ̃2 − d̂c2 + D2

)
+ e3

(
−ksre3 + Us23 − ϕ3

T θ̃3 − d̂c3 + D3

)
= V̇1 − ksue2

1 + e1

(
Us21 − ϕ1

T θ̃1 − d̂c1 + D1

)
− ksqe2

2 + e2

(
Us22 − ϕ2

T θ̃2 − d̂c2 + D2

)
− ksre2

3 + e3

(
Us23 − ϕ3

T θ̃3 − d̂c3 + D3

)
≤ V̇1 − ksue2

1 − ksqe2
2 − ksre2

3 + ϵ1 + ϵ2 + ϵ3 ≤ −ϑV2 + ϵ

(A3)

which leads to (32) in the main text and proves Theorem 1.

References
1. Ning, B.; Han, Q.L.; Zuo, Z.; Jin, J.; Zheng, J. Collective behaviors of mobile robots beyond the nearest neighbor rules with

switching topology. IEEE Trans. Cybern. 2017, 48, 1577–1590. [CrossRef] [PubMed]
2. Li, D.; Du, L. Auv trajectory tracking models and control strategies: A review. J. Mar. Sci. Eng. 2021, 9, 1020. [CrossRef]
3. Jawhar, I.; Mohamed, N.; Al-Jaroodi, J.; Zhang, S. An architecture for using autonomous underwater vehicles in wireless sensor

networks for underwater pipeline monitoring. IEEE Trans. Ind. Inform. 2018, 15, 1329–1340. [CrossRef]
4. Degorre, L.; Fossen, T.I.; Chocron, O.; Delaleau, E. A model-based kinematic guidance method for control of underactuated

autonomous underwater vehicles. Control Eng. Pract. 2024, 152, 106068. [CrossRef]
5. Zhang, Z.; Lin, M.; Li, D. A double-loop control framework for AUV trajectory tracking under model parameters uncertainties

and time-varying currents. Ocean Eng. 2022, 265, 112566. [CrossRef]
6. Er, M.J.; Gong, H.; Liu, Y.; Liu, T. Intelligent trajectory tracking and formation control of underactuated autonomous underwater

vehicles: A critical review. IEEE Trans. Syst. Man Cybern. Syst. 2023, 54, 543–555. [CrossRef]
7. Jalving, B. The NDRE-AUV flight control system. IEEE J. Ocean. Eng. 1994, 19, 497–501. [CrossRef]
8. Patil, P.V.; Khan, M.K.; Korulla, M.; Nagarajan, V.; Sha, O.P. Design optimization of an AUV for performing depth control

maneuver. Ocean Eng. 2022, 266, 112929. [CrossRef]
9. Elmokadem, T.; Zribi, M.; Youcef-Toumi, K. Terminal sliding mode control for the trajectory tracking of underactuated

Autonomous Underwater Vehicles. Ocean Eng. 2017, 129, 613–625. [CrossRef]
10. Xia, Y.; Huang, Z.; Xu, K.; Xu, G.; Li, Y. Three-Dimensional Trajectory Tracking for a Heterogeneous XAUV via Finite-Time Robust

Nonlinear Control and Optimal Rudder Allocation. J. Mar. Sci. Eng. 2022, 10, 1297. [CrossRef]
11. Rezazadegan, F.; Shojaei, K.; Sheikholeslam, F.; Chatraei, A. A novel approach to 6-DOF adaptive trajectory tracking control of an

AUV in the presence of parameter uncertainties. Ocean Eng. 2015, 107, 246–258. [CrossRef]
12. Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A. Trajectory tracking for autonomous underwater vehicle: An adaptive approach.

Ocean Eng. 2019, 172, 511–522. [CrossRef]
13. Mahapatra, S.; Subudhi, B.; Rout, R.; Kumar, B.K. Nonlinear H∞ control for an autonomous underwater vehicle in the vertical

plane. IFAC-PapersOnLine 2016, 49, 391–395. [CrossRef]
14. Lapierre, L.; Jouvencel, B. Robust nonlinear path-following control of an AUV. IEEE J. Ocean. Eng. 2008, 33, 89–102. [CrossRef]
15. Shojaei, K. Three-dimensional neural network tracking control of a moving target by underactuated autonomous underwater

vehicles. Neural Comput. Appl. 2019, 31, 509–521. [CrossRef]
16. Hadi, B.; Khosravi, A.; Sarhadi, P. Deep reinforcement learning for adaptive path planning and control of an autonomous

underwater vehicle. Appl. Ocean Res. 2022, 129, 103326. [CrossRef]
17. Xu, J.; Wang, M.; Qiao, L. Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater

vehicles. Ocean Eng. 2015, 105, 54–63. [CrossRef]
18. Zhou, J.; Zhao, X.; Chen, T.; Yan, Z.; Yang, Z. Trajectory tracking control of an underactuated AUV based on backstepping sliding

mode with state prediction. IEEE Access 2019, 7, 181983–181993. [CrossRef]
19. Mahapatra, S.; Subudhi, B. Design of a steering control law for an autonomous underwater vehicle using nonlinear H∞ state

feedback technique. Nonlinear Dyn. 2017, 90, 837–854. [CrossRef]

http://doi.org/10.1109/TCYB.2017.2708321
http://www.ncbi.nlm.nih.gov/pubmed/28613191
http://dx.doi.org/10.3390/jmse9091020
http://dx.doi.org/10.1109/TII.2018.2848290
http://dx.doi.org/10.1016/j.conengprac.2024.106068
http://dx.doi.org/10.1016/j.oceaneng.2022.112566
http://dx.doi.org/10.1109/TSMC.2023.3312268
http://dx.doi.org/10.1109/48.338385
http://dx.doi.org/10.1016/j.oceaneng.2022.112929
http://dx.doi.org/10.1016/j.oceaneng.2016.10.032
http://dx.doi.org/10.3390/jmse10091297
http://dx.doi.org/10.1016/j.oceaneng.2015.07.040
http://dx.doi.org/10.1016/j.oceaneng.2018.12.027
http://dx.doi.org/10.1016/j.ifacol.2016.03.085
http://dx.doi.org/10.1109/JOE.2008.923554
http://dx.doi.org/10.1007/s00521-017-3085-6
http://dx.doi.org/10.1016/j.apor.2022.103326
http://dx.doi.org/10.1016/j.oceaneng.2015.06.022
http://dx.doi.org/10.1109/ACCESS.2019.2958360
http://dx.doi.org/10.1007/s11071-017-3697-5


J. Mar. Sci. Eng. 2025, 13, 1151 24 of 24

20. Zhang, W.; Teng, Y.; Wei, S.; Xiong, H.; Ren, H. The robust H-infinity control of UUV with Riccati equation solution interpolation.
Ocean Eng. 2018, 156, 252–262. [CrossRef]

21. Luo, W.; Cheng, B. Disturbance suppression and NN compensation based trajectory tracking of underactuated AUV. Ocean Eng.
2023, 288, 116172. [CrossRef]

22. Li, Z.; Wang, M.; Ma, G. Adaptive optimal trajectory tracking control of AUVs based on reinforcement learning. ISA Trans. 2023,
137, 122–132. [CrossRef] [PubMed]

23. Yao, B.; Tomizuka, M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica 1997,
33, 893–900. [CrossRef]

24. Yao, B. High performance adaptive robust control of nonlinear systems: A general framework and new schemes. In Proceedings
of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, 12 December 1997 ; IEEE: Piscataway, NJ, USA, 1997;
Volume 3, pp. 2489–2494.

25. Yao, B.; Jiang, C. Advanced motion control: From classical PID to nonlinear adaptive robust control. In Proceedings of the 2010
11th IEEE International Workshop on Advanced Motion Control (AMC), Nagaoka, Japan, 21–24 March 2010; IEEE: Piscataway,
NJ, USA, 2010; pp. 815–829.

26. Hu, C.; Yao, B.; Wang, Q. Integrated direct/indirect adaptive robust contouring control of a biaxial gantry with accurate parameter
estimations. Automatica 2010, 46, 701–707. [CrossRef]

27. Mohanty, A.; Yao, B. Indirect adaptive robust control of hydraulic manipulators with accurate parameter estimates. IEEE Trans.
Control Syst. Technol. 2010, 19, 567–575. [CrossRef]

28. Yao, B. Integrated direct/indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback form. In Proceedings
of the Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; IEEE: Piscataway, NJ, USA, 2003;
Volume 4, pp. 3020–3025.

29. Ahn, H.S.; Chen, Y.; Moore, K.L. Iterative learning control: Brief survey and categorization. IEEE Trans. Syst. Man Cybern. Part C
(Appl. Rev.) 2007, 37, 1099–1121. [CrossRef]

30. Hu, C.; Hu, Z.; Zhu, Y.; Wang, Z.; He, S. Model-data driven learning adaptive robust control of precision mechatronic motion
systems with comparative experiments. IEEE Access 2018, 6, 78286–78296. [CrossRef]

31. Bristow, D.A.; Tharayil, M.; Alleyne, A.G. A survey of iterative learning control. IEEE Control Syst. Mag. 2006, 26, 96–114.
32. Saab, S.S.; Shen, D.; Orabi, M.; Kors, D.; Jaafar, R.H. Iterative learning control: Practical implementation and automation. IEEE

Trans. Ind. Electron. 2021, 69, 1858–1866. [CrossRef]
33. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Willy & Sons Ltd: Hoboken, NJ, USA, 2011.
34. Guo, C.; Han, Y.; Yu, H.; Qin, J. Spatial path-following control of underactuated auv with multiple uncertainties and input

saturation. IEEE Access 2019, 7, 98014–98022. [CrossRef]
35. Breivik, M.; Fossen, T.I. Guidance-based path following for autonomous underwater vehicles. In Proceedings of the OCEANS

2005 MTS/IEEE, Washington, DC, USA, 17–23 September 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 2807–2814.
36. Huang, Z.; Xia, Y.; Wang, W.; Xu, G.; Xiang, X.; Xu, K. SHSA-based adaptive roll-safety 3D tracking control of a X-Rudder AUV

with actuator dynamics. Ocean Eng. 2022, 265, 112544. [CrossRef]
37. Goodwin, G.C.; Mayne, D.Q. A parameter estimation perspective of continuous time model reference adaptive control. Automatica

1987, 23, 57–70. [CrossRef]
38. Yao, B.; Palmer, A. Indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback forms. IFAC Proc. Vol. 2002,

35, 397–402. [CrossRef]
39. Landau, I.D.; Lozano, R.; M’Saad, M.; Karimi, A. Adaptive Control: Algorithms, Analysis and Applications; Springer Science &

Business Media: Berlin/Heidelberg, Germany, 2011.
40. Pettersen, K.Y.; Egeland, O. Time-varying exponential stabilization of the position and attitude of an underactuated autonomous

underwater vehicle. IEEE Trans. Autom. Control 1999, 44, 112–115. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.oceaneng.2018.02.004
http://dx.doi.org/10.1016/j.oceaneng.2023.116172
http://dx.doi.org/10.1016/j.isatra.2022.12.003
http://www.ncbi.nlm.nih.gov/pubmed/36522214
http://dx.doi.org/10.1016/S0005-1098(96)00222-1
http://dx.doi.org/10.1016/j.automatica.2010.01.022
http://dx.doi.org/10.1109/TCST.2010.2048569
http://dx.doi.org/10.1109/TSMCC.2007.905759
http://dx.doi.org/10.1109/ACCESS.2018.2884947
http://dx.doi.org/10.1109/TIE.2021.3063866
http://dx.doi.org/10.1109/ACCESS.2019.2928897
http://dx.doi.org/10.1016/j.oceaneng.2022.112544
http://dx.doi.org/10.1016/0005-1098(87)90118-X
http://dx.doi.org/10.3182/20020721-6-ES-1901.01052
http://dx.doi.org/10.1109/9.739086

	Introduction
	Modeling and Control Objective
	Mathematical Models of Underactuated AUV
	Control Objective

	Controller Design
	ILC Part in Kinematics Controller
	Trajectory Tracking Error Dynamics Model
	Kinematics Controller Design
	Dynamics Controller Design
	Parameter Adaptation Law
	Velocity Tracking Controller Design


	Simulation Study
	Combined Reference Trajectory Tracking
	Helical Dive Reference Trajectory Tracking

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

