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Abstract: Penicillium rubens is a filamentous fungus of great biotechnological importance due to
its role as an industrial producer of the antibiotic penicillin. However, despite its significance, our
understanding of the regulatory mechanisms governing biological processes in this fungus is still
limited. In fungi, zinc finger proteins containing a Zn(II)2Cys6 domain are particularly interesting
regulators. Although the P. rubens genome harbors many genes encoding proteins with this domain,
only two of them have been investigated thus far. In this study, we employed CRISPR-Cas9 technology
to disrupt the pcz1 gene, which encodes a Zn(II)2Cys6 protein in P. rubens. The disruption of pcz1
resulted in a decrease in the production of penicillin in P. rubens. This decrease in penicillin production
was accompanied by the downregulation of the expression of pcbAB, pcbC and penDE genes, which
form the biosynthetic gene cluster responsible for penicillin production. Moreover, the disruption
of pcz1 also impacts on asexual development, leading to decreased growth and conidiation, as well
as enhanced conidial germination. Collectively, our results indicate that pcz1 acts as a positive
regulator of penicillin production, growth, and conidiation, while functioning as a negative regulator
of conidial germination in P. rubens. To the best of our knowledge, this is the first report involving a
gene encoding a Zn(II)2Cys6 protein in the regulation of penicillin biosynthesis in P. rubens.

Keywords: Zn(II)2Cys6 protein; pcz1; CRISPR-Cas9; penicillin production; asexual development;
Penicillium rubens

1. Introduction

The genus Penicillium is one of the largest and most diverse in the fungal kingdom.
Most species in this genus are saprophytic, displaying high catabolic activity and the ability
to produce a wide range of specialized metabolites [1]. Moreover, several species within
the Penicillium genus are economically important. One of these species is Penicillium rubens.
This filamentous fungal species is an important industrial producer of β-lactam antibiotics,
specifically penicillins, and it comprises historically important penicillin-producing strains
formerly classified as Penicillium chrysogenum [2]. Penicillins are of great economic impor-
tance, serving as both direct therapeutic agents against certain diseases and as a scaffold
for the development of semi-synthetic antibiotics [3].
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At the molecular level, the biosynthesis pathway of penicillin in P. rubens was eluci-
dated many years ago and has been extensively documented in recent reviews [3–5]. The
production of this specialized metabolite involves the sequential action of three enzymes
encoded by the genes pcbAB, pcbC, and penDE, which form a biosynthetic gene cluster
(BGC) [3,4]. These enzymes, namely δ(α-aminoadipyl)-cysteinyl-valine (ACV) synthetase,
isopenicillin N synthase, and isopenicillin N acyltransferase, synthesize penicillin from the
precursor amino acids α-aminoadipate, cysteine, and valine [3,4].

The regulation of penicillin biosynthesis in P. rubens involves a complex network of
regulatory signals, transduction pathways, and effector proteins [3,4,6,7]. Interestingly, the
penicillin BGC lacks a gene encoding for a specific transcription factor [8,9]. Thereby, the
production of this metabolite in P. rubens is governed by well-known global regulators in
fungi, including CreA, AreA, PacC, LaeA, Velvet proteins, PcRFX1, and PcFKH1 [3,4,6].

Zinc finger proteins constitute one of the largest families of regulators in eukaryotes.
These proteins are classified into different groups based on the type of “zinc fingers” they
possess [10,11]. Among these proteins, those containing a Zn(II)2Cys6 domain, in which
six cysteines coordinate two zinc atoms, are particularly interesting in fungi, where they
are exclusively found [10,11]. Fungal genomes can contain hundreds of genes encoding
Zn(II)2Cys6 proteins, and several of them have been functionally characterized in diverse
genera such as Aspergillus, Bipolaris, Fusarium, Trichoderma, and Penicillium [10].

In the genome of P. rubens, numerous genes encoding proteins with Zn(II)2Cys6 do-
mains were identified [12]. However, to date, only two of these genes have been functionally
characterized in this fungus. One of these genes, sorR1, is part of the sorbicillin BGC in P.
rubens. Guzmán-Chávez et al. [13] demonstrated that sorR1 positively regulates the expres-
sion of all the genes within this BGC. The second characterized gene is nirA, a well-known
regulatory gene involved in nitrate assimilation in fungi [14]. Espeso et al. [15] examined
a P. rubens strain with a natural mutation in nirA, resulting in a truncation of the NirA
protein and an impaired nitrate assimilation. The subsequent complementation of this
strain with a functional nirA gene led to an increase in the transcriptional levels of genes
related to nitrate assimilation and improved growth of the fungus on nitrate-containing
medium. To the best of our knowledge, no other gene encoding Zn(II)2Cys6 proteins has
been functionally studied in P. rubens.

A few years ago, a gene named pcz1 (for Penicillium C6 zinc domain protein 1), en-
coding a protein with a Zn(II)2Cys6 domain, was characterized in the cheese-ripening
fungus Penicillium roqueforti [16]. In P. roqueforti, Pcz1 exerts significant effects on asexual
development, including promotion of apical growth and conidiation, and repression of
conidial germination [16,17]. Furthermore, pcz1 exerts important effects on the production
of the main specialized metabolites of P. roqueforti [17]. It is worth noting that orthologues
of pcz1 are widely distributed in fungi of the Ascomycota phylum, including P. rubens [16].
However, the functional role of this gene has only been experimentally investigated in P.
roqueforti and remains unexplored in other fungi.

Recently, Pohl et al. [18] developed CRISPR/Cas9 tools for genetic modification in P.
rubens, thus enabling the application of this technique in the fungus [19–21]. The authors
established two CRISPR/Cas9 systems for P. rubens. One approach involved direct intro-
duction of Cas9 protein and an in vitro synthesized sgRNA-ribonucleoprotein complex into
fungal cells through transformation. The other approach involved transient transformation
of the fungus with an AMA-based plasmid carrying cassettes for sgRNA and Cas9 expres-
sion within the fungal cells. The simplicity of the second approach makes it particularly
attractive for gene disruption in the fungus. Consequently, in this study, we employed the
second approach to disrupt the pcz1 gene in P. rubens using CRISPR/Cas9. The functional
characterization of the pcz1-disrupted mutants indicated that the gene acts as a positive
regulator of penicillin BGC expression and penicillin production in P. rubens. Furthermore,
pcz1 exerts an important influence on the asexual development processes in the fungus,
specifically controlling growth, conidiation, and germinal conidiation.
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2. Materials and Methods
2.1. Fungal Strain and Culture Media

In this work, we used P. rubens Wis 54-1255, a strain widely used as a reference in
molecular biology and OMICs studies [3]. The fungus was routinely kept on potato dextrose
agar (PDA, Difco, Sparks, MD, USA) and grown at 28 ◦C. Various culture media were
employed for phenotypic characterization, including Czapek, CYA, YES [22], Power [23],
and CM [16]. The specific media utilized for penicillin production are described in the
corresponding protocol (see below).

2.2. Selection of a Target Site for CRISPR/Cas9-Mediated Disruption of the pcz1 Gene

The sequence of the pcz1 gene from P. rubens Wis 54-1255 (see Results) was used to
select a target site using the CRISPR/Cas9 target prediction tool CCTop (https://cctop.
cos.uni-heidelberg.de:8043, accessed on 18 August 2021) [24], which contains the genome
sequence of P. rubens as a reference. CCTop was utilized with default parameters, except
for mismatches considered during the prediction in the core sequence and the total number
of mismatches, which were both set to 0. A predicted target sequence (5′ GGCCGGGCAT-
GAGATCGACG 3′) with a high efficacy score (0.76) and located at the 5′ end of the coding
sequence of the gene, was selected. To ensure specificity to the target sequence of interest
and the absence of off-target effects, the selected sequence was aligned against the complete
genome of P. rubens Wis 54-1255 using BLASTN.

2.3. Construction of Plasmid pFC333-Pcpcz1 for CRISPR/Cas9-Mediated Disruption of pcz1 in
P. rubens Wis 54-1255

To achieve the disruption of pcz1 in P. rubens Wis 54-1255 using CRISPR/Cas9, a
plasmid named pFC333-Pcpcz1 was constructed. The plasmid construction involved
the previous synthesis of an expression cassette by Integrated DNA Technologies (IDT,
Coralville, IA, USA). The cassette was designed based on an expression cassette utilized in
previous studies conducted on Aspergillus by Song et al. [25] and van Leewe et al. [26]. It
comprised the promoter and gene sequence of the proline-tRNA (tRNAPro1), the sgRNA
(including the target sequence), and the terminator of tRNAPro1. Additionally, a hammer-
head ribozyme sequence was included between the tRNAPro1 gene sequence and sgRNA,
and PacI restriction sites were added at the ends of the cassette.

The cassette synthesized was then digested with PacI and cloned into plasmid pFC333 [27],
previously digested with PacI, thus giving rise to the final plasmid pFC333-Pcpcz1. Plasmid
pFC333 contains the gene encoding Cas9 under the control of tef1-promoter from A. nidu-
lans, the AMA region enabling autonomous replication of the plasmid, and the phleomycin
resistance marker for selection of fungal transformants [27].

2.4. Transformation of P. rubens Wis 54-1255 and Obtainment of Transformants

The plasmid pFC333-Pcpcz1 was introduced into P. rubens Wis 54-1255 through pro-
toplast transformation. Briefly, protoplasts were obtained using lytic enzymes (Sigma,
St. Louis, MO, USA) and the transformation process followed the protocol established by
Chávez et al. [28]. Transformants were selected on Czapek-sorbitol medium containing
phleomycin, as described by Gil-Durán et al. [16]. Subsequently, conidia of the transfor-
mants underwent serial dilutions and were seeded onto phleomycin-containing Czapek
medium to obtain homokaryotic strains. To induce the loss of phleomycin resistance, the
homokaryotic strains were transferred four times to PDA medium without phleomycin
(non-selective growth conditions). Confirmation of the loss of phleomycin resistance was
achieved by observing the absence of growth of the transformants when plated again on
selective media.

DNA was extracted following the method described by Gil-Durán et al. [16]. This
DNA was used as a template for amplifying the target region using appropriate primers
(Table 1). The resulting amplicons were then cloned in pGEM-T Easy and sent to Macrogen
Inc. (Seoul, Republic of Korea) for sequencing.

https://cctop.cos.uni-heidelberg.de:8043
https://cctop.cos.uni-heidelberg.de:8043
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Table 1. Primers used in this work.

Name of the Primer Sequence (5′---3′) Used for:

Conf-Pcz1-CRISPR-FW
Conf-Pcz1-CRISPR-RV

TCAACCACTACACACCCC
GAACGCCATCAGATCCG

Amplification of the target
sequence of the pcz1 gene

qPCR-pcbAB-fw
qPCR-pcbAB-rv

ACGACAACTTCTTCCGCCTA
AGATGCTGACCGAGAGTCGT

pcbAB gene expression
analysis by qRT-PCR

qPCR-pcbC-fw
qPCR-pcbC-rv

GACGTGTCGCTCATTACCGT
AATTGACCAGGTAGGCGTTG

pcbC gene expression analysis
by qRT-PCR

qPCR-penDE-fw
qPCR-penDE-rv

CATCCTCTGTCAAGGCACTCC
CCATCTTTCCTCGATCACGC

penDE gene expression
analysis by qRT-PCR

qRT-btub-fw
qRT-btub-rv

TCCAAGGTTTCCAGATCACC
GAACTCCTCACGGATCTTGG

β-tubulin gene expression
analysis by qRT-PCR

2.5. Growth, Conidiation, and Conidial Germination Analyses

Apical extension rates were determined following the method described by Ivey et al. [29].
Briefly, 0.2 µL of a conidia suspension (106 conidia/mL) was inoculated at the center of a
Petri dish containing PDA, Czapek, CYA, YES, or Power medium. The plates were then
incubated at 28 ◦C for 7 days. The diameters of the colonies were initially measured after
48 h and subsequently at 24 h intervals, with the outer white edge of the colonies serving
as the reference point. To calculate the apical extension rate, a linear regression analysis
was performed using the colony diameters plotted against time.

The production of conidia was measured following the methodology outlined by
García-Rico et al. [30]. In brief, 100 µL of a conidial suspension (5 × 105 conidia/mL)
was spread onto Petri dishes containing either Czapek or Power media. The dishes were
incubated at 28 ◦C for 3, 5, or 7 days, and the resulting conidia were collected by adding
NT solution (0.9% NaCl, 0.05% Triton) and gently scraping the plate’s surface using an
inverted Pasteur pipette. This procedure was repeated once, and the collected conidia were
quantified using a Neubauer chamber. The conidia counts were expressed as conidia/mm2

of surface area.
Finally, conidial germination analysis was performed following the method described

by Gil-Duran et al. [16]. Three replicate flasks containing CM or Czapek medium were
inoculated with 2 × 105 conidia/mL. The flasks were incubated at 28 ◦C for 12 h, and
at regular intervals, 10 µL samples were collected from each flask. These samples were
observed under a microscope, and the number of germinated and non-germinated conidia
was counted in 10 randomly selected fields. This process was repeated twice for each flask
to ensure technical replication. Conidia were classified as germinated when the length of
their germ tubes equaled or exceeded the diameter of the conidia. The resulting data were
plotted as the percentage of germination over time.

2.6. Production of Benzylpenicillin and HPLC Analyses

To produce benzylpenicillin, P. rubens was grown on Power medium agar [23] at
28 ◦C for 5 days. All the spores from a plate were collected and inoculated into 50 mL of
Penicillium seed medium (MCIP) (sucrose 20 g/L, corn steep solids 20 g/L, yeast extract
10 g/L, CaCO3 5 g/L, pH 5.7) [31]. The culture was incubated at 25 ◦C and 250 rpm for
24 h. Subsequently, 10 mL of this culture was inoculated into 100 mL of complex medium
for fermentation of Penicillium (MCFP) (lactose 55 g/L, corn steep solids 35 g/L, CaCO3
10 g/L, KH2PO4 7 g/L, MgSO4·7H2O 3 g/L, potassium phenylacetate 4 g/L, pH 6.8) [31]
and incubated under the same conditions for 48 and 72 h.

The extraction and quantification of benzylpenicillin from these broths were conducted
as described by García-Estrada et al. [32]. In brief, 5 mL of the culture broth was centrifuged
at 9000 rpm to separate the broth from the mycelium. The mycelium was stored for subse-
quent use (dry weight determination, see below), while the clarified broth (approximately
3 mL) was acidified to pH 2.0 using 0.1 N HCl. Benzylpenicillin was extracted from the
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broth three times by adding 2 mL of n-butyl acetate, and then the organic phase was
re-extracted three times with 2 mL of 10 mM phosphate buffer at pH 7.5. The aqueous
phase was lyophilized, resuspended in 1 mL of Milli-Q water, and analyzed using HPLC.

HPLC analysis was performed using a Waters system comprising a Waters 1525 Binary
HPLC pump, a Waters 2996 Photodiode Array Detector, and an analytical 4.6 × 250 mm
(5 µm) RPC18 SunFire® 100 column (Waters, Wexford, Ireland). A flow rate of 1 mL/min
and a detector wavelength of 214 nm were employed. Samples (50 µL) were injected and
eluted using a mobile phase consisting of buffer A (30 mM ammonium formate pH 5.0 and
5% acetonitrile) and buffer B (buffer A plus acetonitrile 20:80, v/v) with an isocratic method
(85% of A). In all analyses, pure commercial benzylpenicillin was used as standard.

Penicillin production was normalized based on the dry weight of the mycelium. For
this purpose, the remaining mycelium was washed with 2 mL of a 1 M HCl solution,
followed by centrifugation at 9000 g for 5 min. The supernatant was discarded, and the
washed mycelium was then lyophilized, and its dry weight was determined.

2.7. qRT-PCR Analysis of the Expression of Penicillin Biosynthesis Genes

To isolate RNA, the mycelia were frozen in liquid nitrogen and ground in a mortar.
Total RNA extraction was performed using the Plant/FungiTotal RNA Purification Kit
(Norgen Biotek Corp., Thorold, ON, Canada) according to the manufacturer’s instructions.
To eliminate any contaminating DNA, the extracted RNA was treated with the RNase-Free
DNase I Kit (Norgen Biotek Corp, Thorold, ON, Canada). The concentration of RNA
was determined using a MultiSkan GO quantification system with a µDrop plate (Thermo
Fischer Scientific, Braunschweig, Germany). Next, 1 µg of total RNA was used to synthesize
cDNA using All-In-One 5× RT MasterMix (Applied Biological Materials, Richmond, BC,
Canada) according to the manufacturer’s instructions.

For gene expression analysis, qRT-PCR was conducted using the primers described in
Table 1. Reactions were prepared in 20 µL volumes, containing 10 µL of KAPA SYBR Fast
qRT-PCR Master Mix 2× (Kapa Biosystems, Wilmington, MA, USA), 0.4 µL of each primer
(at a concentration of 10 µM each), 0.4 µL de 50× ROX High/Low, 6.8 µL of water, and 2 µL
of cDNA. The quantification was performed on a StepOne Real-Time PCR System (Applied
Biosystems, Waltham, MA, USA) with the following conditions: 30 s at 95 ◦C and 40 cycles
of 3 s at 95 ◦C and 30 s at 60 ◦C. Negative controls were included in the experiments. Three
replicates were performed for each gene expression analysis. Data were analyzed using
the comparative Ct (2−∆∆Ct) method and were normalized to β-tubulin gene expression in
each sample.

2.8. Phylogenetic Analysis of Pcz1

The Pcz1 protein sequence from P. rubens Wis 54-1255 was deduced from the cor-
responding gene sequence and subjected to BlastP analysis to identify sequences with
high similarity. Multiple sequence alignment was performed using Clustal Omega, and
a phylogenetic tree was constructed using MEGA version 7.0 [33]. The neighbor-joining
method was employed to reconstruct the tree, and evolutionary distances were calculated
using the Poisson correction model. To assess the robustness of the tree topology, bootstrap
analyses with 1000 replications were conducted to estimate the support of internal nodes.

3. Results
3.1. Analysis of the pcz1 Gene and Deduced Protein from P. rubens Wis 54-1255

The pcz1 gene from P. roqueforti [16] was utilized to scan the genome of P. rubens Wis
54-1255 using BLASTN and BLASTX. Both analyses yielded redundant results, confirming
that the pcz1 gene corresponds to the gene Pc22g12400 in the P. rubens Wis 54-1255 genome.
The pcz1 gene in P. rubens Wis 54-1255 spans 2446 bp and contains a single intron of 70 bp
located at the 3′ end of the gene (Figure 1). This gene encodes a protein consisting of
791 amino acids. Analyses of conserved domains were performed using the HMMER
tool at Interpro, and CDD at NCBI. Both analyses indicated the presence of a Zn(II)2Cys6
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fungal-type domain spanning positions 394–431 of the Pcz1 protein, which contains the
conserved six cysteines characteristic of such domains (Figure 1).
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Figure 1. Schematic representations of the pcz1 gene (A) and Pcz1 protein (B) from P. rubens Wis
54-1255. In panel (A), the single 70 bp intron is depicted in green. Panel (B) highlights the position of
the Zn(II)2Cys6 domain in blue. Panel (C) shows the amino acid sequence of the Zn(II)2Cys6 domain,
with the six conserved cysteines highlighted in red. The drawings are not to scale.

BlastP analysis of Pcz1 revealed the presence of closely related orthologues in vari-
ous fungal species belonging to the phylum Ascomycota, particularly within the genus
Penicillium. The evolutionary relationships between Pcz1 from P. rubens Wis 54-1255 and
its closest orthologous proteins are depicted in Figure 2. This analysis showed that Pcz1
clustered with orthologues within section Chrysogena in Penicillium, in agreement with
the established species phylogeny [1].
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number of each sequence is indicated in parentheses. The Pcz1 protein from Aspergillus ellipticus was
used as an outgroup. Bootstrap values of 50% or higher are displayed at each node.
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3.2. Generation of pcz1-Disrupted Strains of P. rubens Wis 54-1255 by CRISPR-Cas9

After the transformation of P. rubens Wis 54-1255 with plasmid pFC333-Pcpcz1, thirty-
five transformants were obtained. These transformants underwent passages in Czapek
media containing phleomycin, followed by passages in phleomycin-free Czapek media.
Ten transformants lost phleomycin resistance, and their target region was amplified and
sequenced. Notably, four of these transformants exhibited insertions in the pcz1 gene,
resulting in gene disruption due to the generation of multiple stop codons (Figure 3).
Specifically, three transformants (T12, T14, and T25) shared the same 1 bp insertion, while
transformant T6 displayed a large insertion of 336 bp, encompassing various fragments
from the AMA region of plasmid pFC333 (Figure 3). Based on these findings, transformants
T6 and T14, along with the wild-type strain, were selected for subsequent experiments.
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Figure 3. (A) Sequences of the target region in the pcz1 gene from P. rubens wild type (WT) and
transformants T6, T12, T14, and T25. The target sequence is highlighted in red, while the yellow
region represents the primers used for amplification (see Table 1). Transformants T12, T14, and
T25 exhibit the same one-nucleotide insertion (highlighted in green), while T6 displays different
inserted segments from plasmid pFC333 (highlighted in fuchsia, turquoise, and green). (B) Deduced
protein sequence of the target region from transformants T6, T12, T14, and T25. The unaltered protein
sequence is highlighted in green. After this region, frameshifts occur in transformants, resulting in
changes to the protein sequence and the generation of multiple stop codons (asterisks highlighted in red).
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3.3. Morphological Features of the pcz1-Disrupted Strains of P. rubens Wis 54-1255

As an initial approach to assess the phenotypic characterization of the transformants
T6 and T14, they were subjected to examination in five different media and compared to P.
rubens Wis 54-1255 grown under the same conditions (Figure 4A). In general, two discernible
morphological changes were noted. Firstly, the characteristic green pigmentation associated
with normal sporulation in P. rubens Wis 54-1255 was attenuated in transformants T6 and
T14 in certain media, resulting in a visibly paler or even white aspect. This phenomenon
was particularly pronounced in PDA, CYA, and Power media (Figure 4A). Additionally,
the transformants displayed subtle differences in growth compared to the wild-type strain
(Figure 4A), suggesting a slight reduction in their growth rate of the transformants. Both
conidiation and growth rates will be examined in detail in subsequent experiments.
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Figure 4. Phenotypic characteristics of P. rubens strains. (A) Colony morphology of P. rubens Wis
54-1255 (WT) and transformants T6 and T14 after 7 days of growth at 28 ◦C on PDA, Czapek (CZ),
CYA, YES and Power (PW) media. (B) Microscopic observation of P. rubens Wis 54-1255 (WT) and
transformants T6 and T14. Fungal samples were obtained from colonies grown on PDA agar for
7 days at 28 ◦C. Samples were stained with lactophenol cotton blue and observed under bright-field
microscopy at 100×magnification.

Furthermore, a microscopic examination of the strains was conducted (Figure 4B). All
strains exhibited similar morphological characteristics under microscopic analysis, with
no evidence of major morphological alterations. Thereby, hyphae displayed their typical
elongated, branch-like structures characteristic of hyphal growth, while conidiophores
exhibited the distinctive brush-like appearance typical of Penicillium.



J. Fungi 2023, 9, 1010 9 of 15

3.4. The Disruption of pcz1 Reduces Growth and Conidiation, but Promotes Conidial Germination
in P. rubens Wis 54-1255

The apical growth of fungal strains was evaluated in five different media. In all cases,
the pcz1-disrupted strains T6 and T14 exhibited a slight delay in apical growth compared
to the wild-type strain of P. rubens (Figure 5). Depending on the specific media used,
transformants displayed a growth rate ranging between 77.6% and 89.7% of the wild-type
fungus, indicating that pcz1 acts as a positive regulator of growth in P. rubens Wis 54-1255.
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Figure 5. Apical extension rates of P. rubens Wis 54-1255 (WT) and transformants T6 and T14 on PDA,
Czapek (CZ), CYA, YES, and Power (PW) media. Strains were incubated at 28 ◦C for 7 days. Error
bars represent the standard deviation of three replicates in three different experiments. The symbol *
indicates statistically significant differences (p < 0.05 using Student’s t-test) in apical extension rates
compared to the wild-type strain in the respective medium.

Regarding conidiation, it was assessed in two different media: the minimal medium
Czapek, and the nutrient-rich medium Power, specifically designed to enhance conidi-
ation [23]. In both media, the pcz1-disrupted strains T6 and T14 displayed a significant
decrease in conidia production compared to the wild-type strain (Figure 6). Depending
on the specific media used and day of measurement, the transformants produced between
44.8% and 63.2% of the conidia produced by the wild-type fungus. These findings support
the role of pcz1 as a positive regulator of conidiation in P. rubens Wis 54-1255.
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Figure 6. Conidia production of P. rubens Wis 54-1255 (WT) and transformants T6 and T14 in
Power (A) and Czapek (B) media grown at 28 ◦C for 3, 5, and 7 days. Error bars represent the
standard deviation of three replicates in three independent experiments. The asterisk (*) indicates
statistically significant differences (p < 0.05 using Student’s t-test) in conidia production between the
transformants and the wild-type strain.
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Finally, conidial germination was assessed. As shown in Figure 7, the pcz1-disrupted
strains T6 and T14 exhibited earlier conidial germination compared to the wild-type strain.
For instance, after 7, 8, and 9 h in CM medium, the transformants displayed approximately
56%, 80%, and 90% of conidia germinated, respectively. In contrast, the wild-type P.
rubens Wis 54-1255 exhibited significantly lower values of 35%, 56%, and 69% of conidia
germinated at the same time points and in the same medium. A similar trend was observed
in the minimal medium Czapek, although the differences were less pronounced. These
findings indicate that pcz1 functions as a negative regulator of conidial germination in P.
rubens Wis 54-1255.
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Figure 7. Germination rates of P. rubens Wis 54-1255 (WT) and transformants T6 and T14 represented
as the percentage of germinated conidia versus hours of incubation in CM-rich medium (A) and
Czapek minimal medium (B). Error bars represent the standard deviation of three replicates from
three independent experiments. The asterisks (*) indicate points on the curves where statistically
significant differences (p < 0.05 using Student’s t-test) were observed between the transformants and
the wild-type strain.

3.5. The Inactivation of pcz1 Reduces the Production of Penicillin and the Expression of the
Penicillin Gene Cluster in P. rubens Wis 54-1255

Penicillin is the most important specialized metabolite produced by P. rubens; therefore,
we studied its production in the transformants. As depicted in Figure 8, the production
of benzylpenicillin was significantly reduced in the pcz1-disrupted strains. While the
wild-type strain of P. rubens Wis 54-1255 produced an average of 2.4 and 3.9 µg/mg of
penicillin at 48 and 72 h, respectively, transformant T6 produced 1.2 µg/mg of penicillin,
and transformant T14 produced 0.6 and 0.5 µg/mg of penicillin at the same time points
(Figure 8). These results indicate that the inactivation of pcz1 decreases the production of
benzylpenicillin, suggesting that this gene exerts a positive regulation on the production of
this important specialized metabolite in P. rubens Wis 54-1255.

Finally, the impact of pcz1 disruption on the expression of the genes in the penicillin
BGC was investigated. For this purpose, the relative expression of pcbAB, pcbC, and penDE
genes was measured. As shown in Figure 9, the relative expression of these three genes
in the pcz1-disrupted strains was significantly lower compared to the wild-type strain.
Transformants T6 and T14 exhibited an important reduction in pcbAB transcripts, with
a 2.4- and 3.2-fold decrease at 48 h, and a 2.5- and 3.0-fold decrease at 72 h, respectively,
compared to P. rubens Wis 54-1255. Similarly, pcbC transcripts showed a 2.3- and 3.0-fold
decrease at 48 h, and a 2.4- and 3.2-fold decrease at 72 h, respectively, in the disrupted
strains. And in the case of penDE, transcripts displayed a 2.3- and 3.1-fold decrease at 48 h,
and a 2.4- and 3.1-fold decrease at 72 h, respectively. These findings confirm that Pcz1
positively regulates the expression of penicillin biosynthetic genes.
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Figure 8. Production of penicillin by P. rubens Wis 54-1255 (WT) and transformants T6 and T14 in
MCFP medium at 48 and 72 h. Data are average of three replicas from three different experiments.
Error bars indicate the standard deviation of the mean value. The symbol * indicates statistically
significant differences of transformants (p < 0.05 using Student’s t-test) as compared to the wild-type
strain at the same times.
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standard deviation of the mean. The symbol * indicates statistically significant differences between
transformants and the wild-type strain (p < 0.05, assessed using Student’s t-test).

4. Discussion

To date, the role of the pcz1 gene has only been investigated in the cheese-ripening
fungus P. roqueforti. In this organism, it has been observed that pcz1 acts as a positive
regulator of growth and conidiation, while exerting a negative regulation on conidial
germination [16]. The results obtained in our study indicate that the role of pcz1 in the
regulation of these processes is conserved in P. rubens. Taken together, these findings
suggest an emerging role of pcz1 in asexual development across Penicillium species, possibly
through conserved mechanisms, and underscore the importance of further exploring the
regulatory role of pcz1 in fungi beyond the Penicillium genus.

In addition to its impact on asexual development, the inactivation of pcz1 in P. rubens
Wis 54-1255 has an important effect on penicillin production. Specifically, the pcz1-disrupted
strains T6 and T14 exhibited a significant reduction in benzylpenicillin production com-
pared to the wild-type strain. The decrease in penicillin production ranged from approx-
imately 50% to 87% in comparison to the wild-type strain at 48 and 72 h, respectively
(Figure 8). These results provide clear evidence that the inactivation of pcz1 diminishes the
production of penicillin, indicating a positive regulatory role of pcz1 in the biosynthesis of
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this important specialized metabolite in P. rubens Wis 54-1255. To the best of our knowledge,
this is the first study implicating a gene encoding a Zn(II)2Cys6 protein in the regulation of
penicillin biosynthesis in P. rubens.

The positive regulatory role of pcz1 in penicillin production suggests that the over-
expression of this regulator could potentially serve to increase penicillin production in P.
rubens. This hypothesis finds support in recent research demonstrating that overexpression
of pcz1 in P. roqueforti increased the production of mycophenolic acid, an important im-
munosuppressive compound [17]. In P. rubens, various efforts have been made to increase
penicillin production through the overexpression of global regulators, yielding varied re-
sults. For instance, the overexpression of regulators like PcLaeA, PcRFX1, PcYap1, PcRsmA,
and PcFKH1 led to an increased production of penicillin, although in some cases (for
example, PcFKH1) the increase was modest [34–37]. Conversely, the overexpression of the
positive regulators of penicillin production StuA and MAT1-1-1 had no impact on penicillin
titers in P. rubens [38,39]. Thus, the effectiveness of employing the overexpression of global
regulators to enhance penicillin production in P. rubens varies on a case-by-case basis. In
the future, it will be interesting to investigate whether the overexpression of pcz1 effectively
increases penicillin production in P. rubens.

In P. roqueforti, Rojas-Aedo et al. [17] employed RNAi-mediated gene silencing to
downregulate the expression of pcz1 and measured the effect of this genetic manipulation
on the production of three specialized metabolites: roquefortine C, andrastin A, and
mycophenolic acid. They observed reduced production of the three specialized metabolites
in the RNAi-downregulated strains, which correlated with decreased transcription of genes
within the biosynthetic gene clusters responsible for their biosynthesis [17]. Collectively,
our results and these previous findings in P. roqueforti suggest a potential general role for
pcz1 in regulating specialized metabolite production in fungi.

The precise molecular mechanism by which Pcz1 exerts its regulatory role remains
unknown. As mentioned in the Introduction, Pcz1 is a protein containing a Zn(II)2Cys6
domain, a domain unique to fungi that is commonly found in “zinc finger” proteins [10,40].
Notable examples of fungal proteins containing this kind of domain include Gal4, a tran-
scription factor involved in galactose metabolism in yeast [41], and AflR, a regulator of
aflatoxin biosynthesis in Aspergillus [42]. These proteins typically bind specific DNA pro-
moter sequences of their target genes [41,42]. Therefore, it is plausible to hypothesize
that Pcz1 exerts its regulatory function by directly or indirectly interacting with promoter
sequences of one or more target genes. Further investigations, such as chromatin im-
munoprecipitation coupled with DNA sequencing, are necessary to elucidate the putative
binding sequences of Pcz1 in promoter regions. These experimental approaches are clearly
beyond the scope of the present study.

A recent review proposed a regulatory model of pcz1 based on findings in P. roque-
forti [43]. According to this model, the expression of pcz1 is negatively influenced by pga1,
a gene that encodes a heterotrimeric G protein alpha subunit [43]. The effects of Pga1 on
asexual development in P. rubens have been previously investigated [30], and these findings
match well with the proposed model for P. roqueforti and the results obtained in our study.
However, regarding penicillin production, the regulatory model of Pga1 on Pcz1 proposed
for P. roqueforti does not agree with the experimental evidence in P. rubens. According to
the model, a negative regulatory role of Pga1 on Pcz1 in P. rubens would imply a negative
regulation of penicillin production by Pga1, contradicting previous experimental data that
indicate a positive effect of Pga1 on penicillin production in P. rubens [44]. Thus, the rela-
tionship between Pga1 and Pcz1 appears to be more complex than the model proposed for
P. roqueforti, and it is possible that the relationship between Pga1 and Pcz1 differs between
P. rubens and P. roqueforti. This highlights the importance of conducting investigations to
understand the regulation of fungal specialized metabolism on a case-by-case basis, as the
functional relationships observed in one fungal species may not necessarily apply to others.

In conclusion, our study provides evidence for the significant role of Pcz1, a protein
containing a Zn(II)2Cys6 domain, in governing asexual development and functioning as a
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regulator of penicillin production in P. rubens. It is important to note that penicillin produc-
tion in this fungus is controlled by a complex network of regulatory circuits that are not yet
fully understood [3]. Pcz1 emerges as a novel component within this regulatory network,
and the future study of its mechanisms will contribute to improving our understanding of
the regulation of penicillin production.
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