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Abstract: In England, Cryphonectria parasitica was detected for the first time in 2011 in a nursery and in
2016 in the wider environment. Surveys between 2017 and 2020 identified the disease at different sites
in Berkshire, Buckinghamshire, Cornwall, Derbyshire, Devon, Dorset, London, West Sussex, and the
island of Jersey, while the present study comprises the results of the 2020–2023 survey with findings in
Derbyshire, Devon, Kent, Nottinghamshire, Herefordshire, Leicestershire, London, West Sussex, and
the islands of Jersey and Guernsey. A total of 226 suspected samples were collected from 72 surveyed
sites, as far north as Edinburgh and as far west as Plymouth (both of which were negative), and
112 samples tested positive by real-time PCR and isolation from 35 sites. The 112 isolates were tested
for the vegetative compatibility group (VCG), mating type, and Cryphonectria hypovirus 1 (CHV1).
Twelve VCGs were identified, with two of them (EU-5 and EU-22) being the first records in the
UK. Both mating types were present (37% MAT-1 and 63% MAT-2), but only one mating type was
present per site and VCG, and perithecia were never observed. Cryphonectria hypovirus 1 (CHV1),
consistently subtype-I haplotype E-5, was detected in three isolates at a low concentration (5.9, 21.1,
and 33.0 ng/µL) from locations in London, Nottinghamshire, and Devon.

Keywords: chestnut blight; detection; hypovirus; mating types; vegetative compatibility groups

1. Introduction

Chestnut blight of Castanea species is the main fungal disease affecting chestnut trees
both in North America, and in Europe including several outbreaks in England. It is caused
by infections of the ascomycete Cryphonectria parasitica (Murrill) M. E. Barr. Other major
diseases of the same tree hosts are caused by Gnomoniopsis smithogilvyi L.A. Shuttlew.,
E.C.Y. Liew & D.I. Guest (seed and twigs brown rot), Phytophthora ramorum Werres, De
Cock & Man in ’t Veld (Ramorum decline), Phytophthora cinnamomi Rands (root rot), and
Phytophthora cambivora (Petri) Buisman (ink disease).

Blight-infected trees show top dieback (the tree finishes dying) above cankers on trunk
and/or branches and dense epicormic growth below. Other symptoms are orange stromata
that appear through swollen lenticels and sometimes internal creamy pale mycelial fans
beneath the bark [1]. The fungus originates from Eastern Asia [2] and has little effect on the
native host trees (Japanese chestnut Castanea crenata Sieb. & Zucc. and Chinese chestnut
Castanea mollissima Meiling) [3].
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In contrast, it has caused serious infections of American chestnut (Castanea dentata
(Marshall) Borkh.) in North America, where it was introduced in the late XIX century
initially through the New York Zoo [4], and of sweet chestnut (Castanea sativa Mill.) in
most continental Europe, where it was first introduced into Italy [5]. The United Kingdom
was considered free and protected zone from chestnut blight until 2011 when C. parasitica
infections were discovered at a nursery farm in Warwickshire, England [6]. This stimu-
lated surveys between 2011–2012, 2013–2015, and 2016 where all the infected trees were
destroyed and tighter controls on the import, movement, and export of chestnut trees were
introduced [7]. Until 2016, all findings were exclusively in nurseries affecting young trees
and, thus, their eradication was easy. However, in December 2016, C. parasitica was isolated
from four mature trees growing in a car park in Devon and this implied additional Forestry
Commission surveys, subsequently diagnosing C. parasitica in multiple positive findings in
south and mid England [8–10].

Two types of spores can be produced, conidia and ascospores, with the latter depend-
ing on the presence of both mating-types [11]. Conidia or asexual spores are spread short
distances by rain splash and can be produced all year around [12], while ascospores can
be ejected longer distances [13]. Dispersal aided by human activities, such as the move-
ment of planting stock, timber, and bark, are pathways of long-distance spread [1]. Bark
wounds, such as those produced by hailstorms [14] and the Oriental Chestnut Gall Wasp
(OCGW) (Dryocosmus kuriphilus Yasumatsu), also present in some areas of England like
London [15,16], serve as entry points for this fungus.

Cryphonectria hypovirus 1 (CHV1) is the type member of the family Hypoviridae [17].
Hypoviruses are RNA viruses located in the cytoplasm vesicles of their fungal hosts,
without a coat protein, and utilizing a double-stranded RNA replication form [18]. Its mode
of transmission is through hyphal anastomosis of donor and receptor isolates of the same
vegetative compatibility group (VCG) and conidia. Cryphonectria hypovirus 1 acts as a
biocontrol agent of chestnut blight in Europe and some parts of North America (Maryland,
Virginia, Wisconsin) [13]. In England, this virus was firstly detected in November 2017 [8],
and since then, it has been observed in small proportion and low concentration.

In 2020–2023, surveys continued in England and the Channel Islands of Jersey and
Guernsey. The tasks of this study were to: (1) follow confirming/refuting the prevalence of
C. parasitica in symptomatic plant material using real-time PCR and isolation; (2) determine
the VCG of each isolate assessing the diversity of the fungus in the area; (3) elucidate their
mating type; and (4) screen them for the presence, concentration, and sequence of CHV1.

2. Material and Methods
2.1. Sampling and Isolation

New and old sites (Figure 1) were sampled from March 2020 to June 2023. Bark panels
(5 × 8 cm) were excised using a chisel to include the margin of each lesion. They were
doubled-bagged, labelled with their grid reference coordinates, and sent to the laboratory.
Branches with OCGW (15% of total collected samples) galls were also received and analysed
because lesions were noted on some galls. In the laboratory, the panels and galls were
processed as previously described by Pérez-Sierra et al. [8].
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DNA was extracted from each approximate 0.5 g subsample using the DNeasy Plant 

Pro kit (Qiagen, Manchester, UK), following the manufacturer’s protocol. Three homoge-
nisation cycles of 2000 rpm for 20 s each with a dwell time of 5 min between cycles in the 
PowerLyzer 24 homogeniser (Qiagen) were used. A species-specific real-time PCR was 
performed using a slightly modified version of the TaqMan dual hydrolysis probe assay 
[19]. PCRs were carried out on a LightCycler® 480 (Roche, Welwyn, UK). For the assay, a 
10 µL reaction volume was prepared, comprising 5 µL of Takyon Blue (Eurogentec, Se-
raing, Belgium), 0.5 µL (final concentration 500 nM) of the primers (namely, Cp-F4 (5′-
GATACCCTTTGTGAACTTATAA-3′), Cp-R3 (5′-GGGGAGAAGGAAGAAAATC-3′), 
18SF (5′-GCAAGGCTGAAACTTAAAGGAA-3′), and 18SR (5′-

Figure 1. Geographical distribution of sampling sites in England between 2017 and 2023 ([8,10],
current study): Cryphonectria parasitica positive and CHV1-uninfected (orange circle); C. parasitica
positive and CHV1-infected (orange star); C. parasitica negative (white circles).

2.2. Fungal Detection by Real-Time PCR from Plant Material

A species-specific real-time PCR was performed using a slightly modified version of
the TaqMan dual hydrolysis probe assay described by Chandelier et al. [19].

Among the modifications, DNA was extracted from each approximate 0.5 g subsample
using the DNeasy Plant Pro kit (Qiagen, Manchester, UK). Three homogenisation cycles
of 2000 rpm for 20 s each with a dwell time of 5 min between cycles in the PowerLyzer 24
homogeniser (Qiagen) were used. PCRs were carried out on a LightCycler®480 (Roche,
Welwyn, UK). For the assay, a 10 µL reaction volume was prepared, comprising 5 µL of
Takyon Blue (Eurogentec, Seraing, Belgium), 0.5 µL (final concentration 500 nM) of the
primers [10], and 0.25 µL (final concentration 250 nM) of the probes [10]. Moreover, 2 µL of
molecular grade water and 0.5 µL of DNA extract were used.

2.3. Vegetative Incompatibility Genes (Vic) Profiles

DNA extracts obtained from the plant material above were used. The alleles at six
vic loci were amplified using a modified version of the PCR assays described by Cornejo
et al. [20], but without fluorescent primers and thus normal reaction mixtures and normal
end-point electrophoresis as previously described [10]. Multilocus genotype profiles were
determined, and comparisons were made between the profiles and those stated by Cortesi
and Milgroom [21].
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A normal PCR 96-well plate permitted the processing of eight isolates simultaneously
with alternative allele reactions for the six genes vic1a, vic2, vic3a, vic4, vic6, and vic7,
respectively, situated in each uneven and even well (12 columns) per row.

The diversity of VCGs was assessed using the Shannon and Wiener index H’, calcu-
lated as H’ = −Σpi ln pi, where pi is the frequency of the VCG in each county [4].

2.4. Mating Types

Mating types were also determined following Cornejo et al. [20] and the same DNA.
The reaction mixture was as previously described [10]. At times, if space was available,
multiplex PCRs were performed simultaneously with the vic profile generation because
the thermocycling conditions were the same (see Section 2.3). Electrophoresis conditions
were the same [10].

2.5. Cryphonectria Hypovirus 1 (CHV1) Concentration and Sequencing

Even when the concentration of this virus is medium–high—detectable with just
toothpick colony reverse-transcription PCR directly from the PDA plates, as outlined by
Romon-Ochoa et al. 2022 and references therein—the samples we receive from the wider
environment usually contain low loads and no colour change, regardless of the presence or
absence of the virus. So, from each isolate, a 5 mm diam. plug was subcultured into 2 mL
Eppendorf tubes containing 1 mL of 2% malt extract broth (MEB), maximising the extracted
mycelium amount, and processed as previously described by Romon-Ochoa et al. [10].

RNA was then reverse-transcribed and amplified using a one-step reverse transcription
polymerase chain reaction (RT-PCR) kit (Qiagen) with the primers stated in Gobbin et al. [22]
and the described procedure [10]. Amplicon electrophoresis was the same as for the
vic profiles (described in Section 2.3) and quantified with Biorad Gel Doc XR+ band
quantification software Image Lab 6.1.0. in comparison with a CSL-MDNA-1 kb ladder
(Cleaver Scientific, Rugby, UK). CHV1 298 bp band was quantified.

Amplified products were purified using the DNA clean and concentrator kit (Zymo
Research, Cambridge, UK) and sequenced by Source Bioscience, Ltd. (Cambridge, UK).
Forward and reverse sequences were aligned, and consensus was determined with SE-
QUENCHER 5.4.6. BLAST searches were conducted and a dataset encompassing the most
up to date hypovirus sequences from GenBank was compiled in MEGA5 [23]. Sequences
were aligned online with MAFFT6 [24] using the FFT-NS-i option. The dataset was anal-
ysed using maximum likelihood (ML). DNA alignments were converted to PHYLIP format
using ALTER [25]. ML analyses were performed using PhyML 3.0 [26], simultaneously
determining the substitution model at the ATCG Montpellier Bioinformatics Platform and
with 1000 bootstrap replicates in the analysis.

Each virus-infected fungal isolate was preserved by the two methods stated in the
work by Romon-Ochoa et al. [27], while the negative isolates were conserved in 15%
glycerol in cryotubes at −80 ◦C.

3. Results
3.1. Isolations

A total of 226 suspected samples were collected from 72 surveyed sites. Chestnut
blight was identified at 35 (48% of the surveyed sites) sites: 1 site in Derbyshire, 4 in Devon,
3 in Kent, 2 in Nottinghamshire, 1 in Herefordshire, 1 in Leicestershire, 10 in London, 1 in
West Sussex, 9 in the island of Jersey, and 3 in the island of Guernsey (Figure 2, Table 1).
The presence of C. parasitica was confirmed by molecular and/or culture methods on
112 samples (49% of the suspect samples, Table 1). In total, 20 new positive sites were
discovered in addition to 15 sites, which were among those already detected during the
previous surveys in 2017–2018 [8] and 2019–2020 [10]. Thirty-seven sites surveyed were
negative. Out of 17 twigs suspected to have OCGW galls, 5 tested positive for C. parasitica
in real-time and culture tests.
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Figure 2. Diversity of vegetative compatibility groups (VCGs) of Cryphonectria parasitica (A) detected
in England (B), Jersey (C), and Guernsey (D). The VCGs are grouped in their respective counties or
islands, according to Table 1.

3.2. Fungal Detections

All samples were tested for the presence of C. parasitica using real-time PCR, of which,
112 tested positive; from which, axenic cultures were successfully isolated (Table 1). Most
of the other potential canker agents, isolated from the samples that tested negative for C.
parasitica, based on ITS sequencing, were Gnomoniopsis smithogilvyi L.A. Shuttlew., E.C.Y.
Liew (61 isolates), Sirococcus castaneae (Prill. & Delacr.) J.B. Mey., Senn-Irlet & T.N. Sieber (8),
Pezicula pseudocinnamomea Chen Chen, Verkley & Crous (8), Diaporthe rudis (Fr.) Nitschke
(16), Alternaria infectoria E.G. Simmons (13), and Fusarium lateritium Nees (8 isolates).

3.3. VCGs

The allele profiles obtained for the six vic genes of all the VCGs identified in the
present survey are shown in Figure 3. A total of 12 VCGs were identified in this survey
(Figure 2, Table 1). The dominant VCGs were EU10 (thirty-nine isolates from London),
EU17 (fourteen isolates from Kent, and one from London), EU9 (eleven isolates from Devon,
six from Nottinghamshire, one from Jersey, and one from Guernsey), EU2 (four isolates
from Kent, three from Derbyshire, three from Herefordshire, one from Devon, one from
Leicestershire, and one from West Sussex), EU37 (seven isolates from Kent, two from
London, and one from Guernsey), and EU46 (eight isolates from Jersey island and one from
Guernsey island).
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Table 1. Vegetative compatibility groups (VCGs), virus-infected isolates of Cryphonectria parasitica (shown in parentheses), and Shannon diversity index (H’) of
isolates obtained from affected sites (surveyed 2020–2023) in England, Jersey, and Guernsey.

County No. Positive
Sites/Total Sites

No. Molecular
Detections

Cultured
Isolates

No. Isolates per VCG H’

EU1 EU2 EU5 EU9 EU10 EU11 EU13 EU17 EU22 EU37 EU46 EU67

Derbyshire 1/6 3 3 3 0

Devon 4/8 13 13 1 11
(1) 1 0.51

Kent 3/5 26 26 1 4 14 7 1.06

Nottinghamshire 2/2 6 6 6
(1) 0

Herefordshire 1/1 3 3 3 0
Leicestershire 1/1 1 1 1 0

London 10/16 45 45 1 39 1 1 1 2
(1) 0.57

West Sussex 1/9 2 2 1 1 0.69
Island of Jersey 9/20 9 9 1 8 0.35

Island of Guernsey 3/4 4 4 1 1 1 1 1.38

Total 35/72 112 112 2 13 1 19 39 1 1 15 1 10 9 1
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Figure 3. Agarose gel view with the results for the six PCR assays [20] for all the vegetative compati-
bility Cryphonectria parasitica groups that were detected during the present study, with one allele (1)
in the upper gel of the pair and the opposite allele (2) in the lower gel of the pair.

The EU2 VC group was the most widespread (present in 6/10 counties). Other,
relatively minor groups of VCGs were EU1 (one from Kent and one from London), EU11
(one from London), EU13 (one from London), EU22 (one from Devon), EU67 (one from
West Sussex), and EU5 (one from Guernsey). European VCGs EU5 and EU22 had not been
found in the UK previously. EU5 was found at a new site in Guernsey. The EU22 VCG was
identified at an existing infected site, from which only one previous sample had been taken
from a different tree that yielded EU12.

Guernsey returned the highest VCG diversity among the surveyed regions, followed
by Kent, while Jersey, Devon, London, and West Sussex (ascending order) returned the
lowest (Table 1).

3.4. Perithecia Occurrence

Both MAT idiomorphs were detected in this population of C. parasitica. Of 112 cultures,
41 (37%) were identified as MAT-1 and 71 (63%) as MAT-2 (Table 2). No isolates were
amplified for both mating types. Only one mating type was identified at each site per VCG.
Perithecia of C. parasitica were never observed.



J. Fungi 2023, 9, 1036 8 of 13

Table 2. Distribution of Cryphonectria parasitica mating types (MAT-1 and MAT-2) among the vegetative compatibility groups (VCGs) detected in the 2021–2022
surveyed sites.

VCG
Derbyshire Devon Kent Nottinghamshire Herefordshire Leicestershire London West Sussex Island of Jersey Island of

Guernsey

MAT-1 MAT-2 MAT-1 MAT-2 MAT-1 MAT-2 MAT-1 MAT-2 MAT-1 MAT-2 MAT-1 MAT-2 MAT-1 MAT-2 MAT-1 MAT-2 MAT-1 MAT-2 MAT-1 MAT-2

EU1 1 1
EU2 3 1 4 3 1 1
EU5 1
EU9 11 6 1 1
EU10 39
EU11 1
EU13 1
EU17 14 1
EU22 1
EU37 7 2 1
EU46 8 1
EU67 1

Total 3 - 2 11 22 4 6 - 3 - 1 - 3 42 - 2 - 9 1 3
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3.5. Hypovirus Detection and Sequencing

The 112 isolates were screened for CHV1. The virus was detected in only three of
those isolates. One of the positive isolates was isolated from a site in Nottinghamshire
(VCG EU9, MAT-1, 21.1 ng/µL), which represents the furthest north that the virus has been
detected, and another isolate was from one site in London (VCG EU37, 5.9 ng/µL). CHV1
was detected again in an isolate obtained from Devon (EU9, MAT-2, 33.0 ng/µL) as in a
previous study [8]. CHV1 isolates identified during this survey were sequenced (GenBank
accession numbers OQ549936–OQ549938). CHV1-positive isolates of C. parasitica from the
UK clustered with non-mutated subtype-I haplotype E-5 of this hypovirus (Figure 4). In the
ML analyses, the best-fitted substitution model was K80+G with a gamma shape parameter
of 2.386. Overall, the virus was observed at a low frequency and low concentration.
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4. Discussion

When compared with the previous two surveys from 2017 to 2018 [8] and 2019 to
2020 [10], no infected trees were detected in Berkshire, Buckinghamshire, Cornwall, or
Dorset, concluding that the eradication campaign did not fail there, while sampling efforts
rendered new cultures in Kent, Nottinghamshire, Herefordshire, and Leicestershire (totally
new areas). Mostly, the situation is not expanding since the cankers are very contained and
they are progressing very slowly [8,10].

Twelve C. parasitica VCGs were identified in this surveillance campaign across sites in
England, Jersey, and Guernsey. There was no major shift from the previous two surveys,
despite EU5 and EU22 being recorded for the first time in the area. The previously detected
VCGs EU65 [8], and EU12 and EU33 [10], were not observed, although this is not surprising
as they only formed a minority of findings when first detected, respectively, in 2017 and
2019. EU10 (35%), EU9 (17%), EU17 (13%), EU2 (11%), EU37 (9%), and EU46 (8%) were the
most common VCGs in the population obtained in this study.

Some of the observed VCGs occur across Europe. For example, VCG EU10 is present in
Bulgaria, Bosnia, Macedonia, Greece, Italy, and Switzerland [5,28–31]. VCG EU9 is present
in Portugal, Spain, France, and Hungary. VCG EU17 is present in Croatia, Bosnia, Italy,
France, Slovakia, Hungary, Switzerland, and some parts of the U.S.A. [32–35]. Vegetative
compatibility group EU2 has been recorded, for example, in Croatia, U.S.A., and in the
oaks in Hungary [36].

The C. parasitica population observed in this and previous UK studies is among the
most diverse populations in Europe, although the diversities of local populations in certain
regions such as Nottinghamshire, Herefordshire, London, Devon, and Jersey are smaller.
The reduced pattern of disease spread [18], the unsuitability of the weather [37], and the
dominance of certain VCGs at several outbreaks are clear indications of several introduction
events at different times and from different sources, particularly by the human trade of
living plants [8]. Eradication or containment measures are being implemented at affected
sites [7]; therefore, it is expected that the diversity of the UK population will reduce because
of these measures.

Regarding CHV1, the hypovirus was amplified from two different C. parasitica VCGs
(EU37 and EU9). The findings of CHV1 in this survey were made from isolates collected in
London, Devon, and Nottinghamshire. No positive detections of the hypovirus were made
from Derbyshire, despite previous observations in this location [8], which is normal since
the Derbyshire population is among one of the most diverse populations globally, showing
the highest Shannon diversity index in 2017 [8]. No mycovirus was present in the Channel
Islands.

The findings of the hypovirus were always subtype-I haplotype E-5, as previously
in England [8–10]. Six different subtypes of CHV1 have been characterised in Europe:
subtypes I, F1, F2, E, D, and G [38]. CHV1 subtype I, commonly known as the Italian
subtype, is the most spread in Europe, and is common in Italy, Bosnia-Herzegovina,
Croatia, France, Greece, Macedonia, Slovenia, Switzerland, and Turkey [39,40]. It causes
mild reduced virulence in the chestnut blight fungus and, thus, it is widespread used
for biological control in most of Europe. Its presence could be an indicator of how long
chestnut blight has been endophytically present in the UK because natural hypovirulence
starts to appear several decades after the establishment of a new fungal population [41].
The E-5 haplotype was present in total (among all recent surveys up to date ([8,10], this
study) in thirteen English isolates. Its distribution is very poorly studied in general but
was described as rare by Gobbin et al. [22], and it has been experimentally introduced for
example in a pilot site near Monthey (D. Rigling, per. com.) becoming very established in
western Switzerland.

Further research is ongoing to determine the diversity of C. parasitica. Indeed, further
surveillance efforts are needed in the area located between Leicestershire and London coun-
ties. Infected sites are discovered during routine surveillance or reports submitted rather
than the presence of clear symptoms or widespread tree decline. Eradication measures have
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been taken, depending on the practicality of operations and presence of CHV1. Contrary to
North America, where the CHV1 spread is highly hampered by the high number of VCGs,
research in England is now mainly focused on possible biocontrol using CHV1 on sites
where one dominant VCG is present and where CHV1 has been detected, such as London
(EU10), Devon (EU9), and Nottinghamshire (EU9). CHV1 from highly infected fungal
strains from continental Europe (mainly EU10 and EU9) has been successfully transmitted
to uninfected English C. parasitica isolates of the same VCGs, and further experiments
about the in planta behaviour under controlled conditions of these virus-infected isolates
have been completed successfully [27,42,43]. This success, along with the evidence of three
findings of naturally occurring CHV1 observed in this study, is encouraging, and paves
the way for further research into its use as a biocontrol agent in the UK, subject to the
relevant field permits and regulatory consent, given that this fungal pathogen is considered
a protected-zone quarantine pest in the European Union according to the Commission
Implementing Regulation 2019/2072.

In the meantime, further transmissions for Kent (EU17) or Jersey (EU46) will be
experimentally achieved. Furthermore, the population structure of the fungus in England is
being investigated using haplotyping by sequencing and microsatellites, to discern the exact
number of introductions, establish the relatedness of those introductions to neighbouring
countries, and identify a possible hidden sexual recombination.
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