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Abstract: Colletotrichum lini is a flax fungal pathogen. The genus comprises differently virulent strains,
leading to significant yield losses. However, there were no attempts to investigate the molecular
mechanisms of C. lini pathogenicity from high-quality genome assemblies until this study. In this
work, we sequenced the genomes of three C. lini strains of high (#390-1), medium (#757), and low
(#771) virulence. We obtained more than 100× genome coverage with Oxford Nanopore Technologies
reads (N50 = 12.1, 6.1, 5.0 kb) and more than 50× genome coverage with Illumina data (150 + 150 bp).
Several assembly strategies were tested. The final assemblies were obtained using the Canu–Racon
×2–Medaka–Polca scheme. The assembled genomes had a size of 54.0–55.3 Mb, 26–32 contigs, N50
values > 5 Mb, and BUSCO completeness > 96%. A comparative genomic analysis showed high
similarity among mitochondrial and nuclear genomes. However, a rearrangement event and the loss
of a 0.7 Mb contig were revealed. After genome annotation with Funannotate, secreting proteins
were selected using SignalP, and candidate effectors were predicted among them using EffectorP.
The analysis of the InterPro annotations of predicted effectors revealed unique protein categories in
each strain. The assembled genomes and the conducted comparative analysis extend the knowledge
of the genetic diversity of C. lini and form the basis for establishing the molecular mechanisms of
its pathogenicity.

Keywords: Colletotrichum lini; anthracnose; flax pathogen; virulence; nanopore sequencing; de novo
genome assembly

1. Introduction

The most important aim of modern agriculture is to meet the food and raw material
demand of the growing human population. However, yield volumes of cultivated plants
depend on numerous factors [1,2]. Fungal diseases of plants are often the primary cause
of crop losses [3]. Thus, the susceptibility to various diseases can become a threat to the
harvest and economic profits. The genus Colletotrichum is pathogenic to different plant
species and often demonstrates severe virulence [4–6]. Colletotrichum lini is the causative
agent of flax anthracnose [7]. The pathogen can reside in untreated flax seeds and starts
the infection process in seedlings and mature plants [7]. The mature plant infected with C.
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lini shows stem canker and leaf spotting. For the plant seedlings, the infection can become
fatal [8]. Thus, the production of two main products—flax oil and fiber—can be affected by
harvest failure. In light of this fact, multifaceted studies on the fungus are highly important
for anthracnose management.

Pathogenic Colletotrichum species have three main lifestyles [9]—biotrophic (hemibiotrophic),
necrotrophic, and quiescent lifestyles. The genus Colletotrichum generally lacks true
biotrophic species [9]. Its representatives are usually considered hemibiotrophic, as they
establish the necrotrophic stage after the biotrophic stage [10]. Biotrophic fungi suppress
the defense mechanisms of the host and mask the hyphae to obtain nutrients from the
host [11]. This stage can be indispensable for further establishment of infection and the
death of host cells [10]. The necrotrophic stage implies the secretion of fungal toxins and
enzymes to absorb nutrients from the dead host cells [11]. The quiescent stage is the period
of dormancy of a fungus until a signal from the surrounding media is detected [9]. Then,
the fungus can complete its disease cycle [9]. Along with pathogenic species, endophytic
Colletotrichum strains also occur [12,13]. Endophytes live in plant tissues and receive the
nutrition from a plant without causing disease symptoms. Both Colletotrichum endophytes
and pathogens produce metabolites with useful bioactivities [14,15].

Colletotrichum representatives are attributed to species complexes according to intra-
specific and interspecific differences in phenotype and genotype [11]. To discriminate
between fungal species, genetic barcodes were applied, e.g., GAPDH, HIS3, APN2, MAT1-
2-1, GAP2-IGS, ACT, CHS-1, nrITS, and TUB2 [16]. However, there is no single universal
barcode for all Colletotrichum species, as they demonstrate different efficiencies in various
species complexes [17,18]. Thus, an ITS-based approach coupled with molecular characteri-
zation was applied for Colletotrichum isolates from strawberry tissues. However, the authors
observed no association with geographic origin, presence of symptoms, plant species, or
parts. In addition, the ITS marker failed to provide enough resolution for differentiation
between C. gloeosporioides isolates [18]. Therefore, multi-locus analysis can be used for
reliable results [16]. Liu et al. constructed a genome tree for 94 Colletotrichum species. The
analysis of 1893 single-copy orthologs allowed allocation of the taken species to a range of
species complexes [19].

Nevertheless, most comprehensive information can be extracted from full genomic
sequences of the Colletotrichum species [20]. Comparative genomic analysis assists in
studying the origins of pathogenicity and virulence [21]. Thus, Colletotrichum species
possess a suite of potential pathogenicity genes, including effectors and CAZymes [22]. The
comparison between the gene repertoire of fungal species can shed light on the difference
in virulence degree of fungal isolates. Meanwhile, horizontal gene transfer events can play
an important role in the evolution of pathogenicity. For instance, in C. musae, the analysis
of minichromosome sequences revealed a set of genes that can undergo horizontal gene
transfer [23].

In this study, we obtained the annotated genomes of three C. lini strains of different
virulence. The comparative analysis between the obtained assemblies revealed a difference
in effector gene content, a chromosome rearrangement, and the absence of a possible
pathogenicity chromosome in the genome of the moderately virulent strain. The obtained
data are a valuable source of information on the pathogenicity determinants of the flax
anthracnose pathogen. Further in-depth research on C. lini genomes will suggest possible
solutions to breeding anthracnose-resistant flax varieties.

2. Materials and Methods
2.1. Fungal Material

Fungal strains were provided as pure cultures by the Institute for Flax (Torzhok,
Russia). Mycelium was provided in test tubes with potato dextrose agar. The following
C. lini strains were used: highly virulent strain #390-1, moderately virulent strain #757, and
lowly virulent strain #771. The virulence of the three strains was assessed by infecting
two flax varieties: the resistant variety Leona and the susceptible variety Punjab. Plants
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were sprayed with a spore suspension (150–300 spores per cm3), and the degree of virulence
was estimated on the 8–9th day after infection. If up to 30% of plants showed the symptoms
of anthracnose, the virulence was considered low; 31–50%—medium; 51% and more—high.

2.2. DNA Extraction and Purification

DNA extraction was performed according to the previously developed protocol [24,25].
The DNA was used for library preparation for both the Oxford Nanopore Technologies
(ONT) and Illumina platforms. The quality and quantity of the extracted DNA were
evaluated with spectrophotometry (NanoDrop 2000C, Thermo Fisher Scientific, Waltham,
MA, USA) and fluorometry (Qubit 4.0, Thermo Fisher Scientific, Waltham, MA, USA).

2.3. DNA Library Preparation and Sequencing on the Oxford Nanopore Technologies and
Illumina Platforms

To prepare DNA libraries for sequencing on the ONT platform, the SQK-LSK109
Ligation Sequencing Kit (ONT, Oxford, UK) was used. Sequencing was performed on a
PromethION instrument with the R9.4.1 flow cell (ONT, Oxford, UK).

Illumina libraries were sequenced on a NovaSeq 6000 (Illumina, San Diego, CA, USA)
instrument (150 + 150 bp).

2.4. Genome Assembly

The obtained ONT reads were basecalled using Guppy 6.0.1 and the dna_r9.4.1_450bps
_sup.cfg config file with quality filtration threshold min_qscore = 10. Porechop 0.2.4
was used for removing adapters (https://github.com/rrwick/Porechop, accessed on
14 September 2023). The obtained short Illumina reads were processed using Cutadapt 2.8
(adapters removal: -a AGATCGGAAGAG -A AGATCGGAAGAG) [26] and Trimmomatic
0.39 (trimming by quality: TRAILING:30, filtration by length: MINLEN:50) [27]. For the
highly virulent strain #390-1, draft assemblies were performed using two types of assem-
blers. For assembling a genome solely from ONT reads, the following assemblers were used:
Canu 2.2 (-nanopore-raw; -minInputCoverage = 5; -stopOnLowCoverage = 5; -genomeSize
= 50 m) [28], Flye 2.8.1 (-genome-size 50,000,000) [29], and Goldrush 1.0.3 (G = 5e7) [30]. For
a hybrid assembly from both ONT and Illumina reads, the following tools were used: Haslr
0.8a1 (-g 50 m, -x nanopore) [31], Masurca 4.1.0 (GRID_BATCH_SIZE = 500,000,000) [32],
Spades 3.15.5 [33], and Unicycler 0.5.0 (--mode bold) [34]. For the moderately virulent
strain #757 and the lowly virulent strain #771, draft assemblies were produced by Canu 2.2
(-nanopore-raw; -minInputCoverage = 5; -stopOnLowCoverage = 5; -genomeSize = 50 m).
To analyze the quality of the obtained assemblies, completeness and contiguity statistics
were calculated using BUSCO 5.3.2 (glomerellales_odb10) and QUAST 5.0.2 [35,36]. The
following reference genome was used for calculating QUAST reference-based statistics:
C. higginsianum IMI 349063 (NCBI Genome, GCA_001672515.1).

The obtained draft assemblies of the three strains were polished with ONT reads using
Racon 1.4.20 (two iterations) [37] and Medaka 1.5.0 (https://github.com/nanoporetech/
medaka, accessed on 14 September 2023). Polca (Masurca 4.1.0) was used for polishing
with Illumina reads [38]. If required, read alignment was produced with Minimap2 [39]
prior to polishing.

2.5. Genome Analysis

For genome annotation, Funannotate v1.8.9 was used according to the basic assem-
bly preparation protocol (https://funannotate.readthedocs.io/en/latest/, accessed on
14 September 2023) including cleaning up repetitive contigs, sorting the assembly by length,
repeat masking, and gene prediction (https://github.com/nextgenusfs/funannotate, ac-
cessed on 14 September 2023). The received protein sequences were analyzed using KEGG
(Kyoto Encyclopedia of Genes and Genomes) BlastKOALA (KEGG Orthology And Links
Annotation, https://www.kegg.jp/blastkoala/, accessed on 14 September 2023) [40] and
InterProScan 5.65-97.0 (https://github.com/ebi-pf-team/interproscan, accessed on 14
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September 2023) [41]. The annotated genome assemblies were aligned to each other us-
ing LAST 1471 (https://gitlab.com/mcfrith/last, accessed on 14 September 2023). Tidk
0.2.31 was used for the identification of telomeric repeats and their visualization (https:
//github.com/tolkit/telomeric-identifier, accessed on 14 September 2023). RepeatMasker
4.1.5 was used for the identification of repeat content (https://www.repeatmasker.org/,
accessed on 14 September 2023) [42]. SignalP-6.0 predicted the presence of signal peptides
in protein sequences received after genome annotation (https://services.healthtech.dtu.dk/
services/SignalP-6.0/, accessed on 14 September 2023) [43]. Protein sequences containing
signal peptides were analyzed with EffectorP-3.0 to predict effector proteins [44]. Mega
11.0.13 was used for sequence alignments (https://www.megasoftware.net/, accessed on
14 September 2023) [45].

3. Results
3.1. Genome Assembly and Polishing

Three strains of C. lini with different virulence and close morphological traits (conidia
characteristics, sporulation rate, growth rate, and mycelium color) were chosen for the
study. For the highly virulent strain #390-1, we obtained 5.6 Gb of ONT data (average
read Q ≥ 10) with an N50 of 12.1 kb and 10 million Illumina reads (150 + 150 bp). For the
moderately virulent strain #757, we obtained 8.7 Gb of ONT data (average read Q ≥ 10)
with an N50 of 6.1 kb and 23 million Illumina reads (150 + 150 bp). For the lowly virulent
strain #771, we obtained 7.1 Gb of ONT data (average read Q ≥ 10) with an N50 of 5.0 kb
and 25 million Illumina reads (150 + 150 bp).

To test assembling and polishing algorithms, we used sequencing data of the highly
virulent strain #390-1. We obtained three draft assemblies using only long ONT reads
and four draft assemblies using both long ONT and short Illumina reads (Figure 1,
Supplementary Table S1). The quality of the draft genome assemblies was analyzed in
terms of completeness and contiguity using BUSCO and QUAST. For each assembly,
QUAST statistics were evaluated without and with a reference genome of C. higginsianum
IMI 349063 (NCBI Genome, GCA_001672515.1). The contiguity of the assemblies was
judged by the number of contigs, N50, and L50. The assembly completeness was evaluated
by the length and percentage of complete universal single-copy orthologs inherent to an
analyzed species group.
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Figure 1. QUAST and BUSCO statistics of the highly virulent C. lini #390-1 draft genome assemblies.
BUSCO: C—complete, D—duplicated, F—fragmented (the glomerellales_odb10 dataset). The used
colors indicate estimations of the value quality: from bright green (best) to bright red (worst).

The majority of tools produced assemblies with a BUSCO completeness of >90%, ex-
cept Goldrush. The tool constructed an assembly with a completeness of 41.3%. The highest
assembly completeness was achieved with hybrid assemblers (Masurca and Unicycler—
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BUSCO completeness of 95.9% in both cases). The average length of assemblies with a
completeness of more than 90% was 53.8 Mb (49.9–56.7 Mb). The most contiguous as-
semblies were performed by Canu and Masurca. These assemblies had 31 and 35 contigs,
respectively. The L50 values were also close—5 and 6, respectively. However, the N50
and N75 differed significantly between the two assemblies. The N50 values were 5.16 Mb
and 2.73 Mb, and the N75 values were 4.17 Mb and 1.49 Mb, respectively. Thus, Canu
assembled the genome of the best contiguity. Since the completeness of the draft assemblies
can be improved by polishing, the assembly by Canu was regarded as optimal.

The optimal genome assembly was polished according to the scheme that showed the
best results in our previous studies [24,25]: polishing with long ONT reads—two rounds of
Racon, one round of Medaka; polishing with high-precision Illumina reads—one round
of Polca (Figure 2, Supplementary Table S2). Each round of polishing improved BUSCO
completeness. The parameter reached 96.7% after Polca. Such features as the number of
contigs, N50, N75, L50, and other contiguity characteristics did not change during polishing
(Figure 2). The reference-based QUAST statistics, such as genomic features and covered
genome fraction, which also describe the assembly completeness, increased after polishing.
Indels per 100 kbp and mismatches per 100 kbp improved from 182.4 to 169.0 and from
4425.1 to 4373.7, respectively (Supplementary Table S2). It is not the absolute values of these
parameters that play a key role during polishing, but the general trend in improvement.
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Figure 2. QUAST and BUSCO statistics of the polished genome assemblies of the highly virulent
strain C. lini #390-1. BUSCO: C—complete, D—duplicated, F—fragmented (the glomerellales_odb10
dataset). The used colors indicate estimations of the value quality: from bright green (best) to bright
red (worst).

The algorithm applied for strain #390-1 was used to assemble and polish the genomes
of the moderately virulent strain #757 and the lowly virulent strain #771 (assembling
with Canu and polishing with Racon ×2–Medaka–Polca). The final assemblies were
54.0–55.3 Mb in length, consisted of 26–32 contigs, and had an N50 of 5.2–5.8 Mb and
an L50 of 5 (Figure 3, Supplementary Table S2). The BUSCO completeness of the final
assemblies was 96.6–96.8%.
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Green color is used to highlight the most important statistics.
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3.2. Genome Annotation and Search for Effector Proteins

To predict genetic features in the obtained assemblies, we used Funannotate, which
was tailored to annotate fungal genomes (Supplementary File S1). Before annotation, the
final assemblies were preprocessed by filtering out the repetitive contigs, sorting the input
contigs by their size (from the longest to the shortest), relabeling the contigs, and masking
repeats. Gene prediction was performed using the basic Funannotate commands. The tool
annotated the majority of genes using the Pfam 36.0 (~60% of genes) and BUSCO (~10%
of genes) databases. After annotation, we obtained the following: 12,891 gene models
(12,521 mRNAs and 370 tRNAs) for the highly virulent strain #390-1, 12,520 gene models
(12,146 mRNAs and 374 tRNAs) for the moderately virulent strain #757, and 12,736 gene
models (12,374 mRNAs and 362 tRNAs) for the lowly virulent strain #771. All obtained
protein sequences were analyzed using KEGG BlastKOALA and InterProScan. In the
genome of each strain, KEGG annotated ~33% of proteins and InterPro annotated ~80%
of proteins (Supplementary Tables S3 and S4). The largest protein categories in the KEGG
annotation were associated with genetic information processing, carbohydrate metabolism,
and signaling and cellular processes (Figure 4).
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To identify the possible effector proteins, we determined the presence of signal pep-
tides using SignalP and then predicted effectors from the positive hits with EffectorP
(Supplementary Table S5). In the highly virulent strain #390-1, 1308 proteins contained
a signal peptide, 489 (37.4%) of them were effectors: 187 (14.3%) cytoplasmic effectors
and 302 (23.1%) apoplastic effectors. In the moderately virulent strain #757, 1303 proteins
contained a signal peptide, 472 (36.2%) of them were effectors: 184 (14.1%) cytoplasmic
effectors and 288 (22.1%) apoplastic effectors. In the lowly pathogenic strain #771, 1288 pro-
teins contained a signal peptide, 476 (37.0%) of them were effectors: 191 (14.8%) cytoplasmic
effectors and 285 (22.1%) apoplastic effectors. The predicted effectors were also analyzed
with KEGG BlastKOALA and InterProScan. We searched for unique accessions in the anno-
tations of the effector proteins. The protein was regarded as unique for a strain if it did not
occur in the database annotation of the other two strains. In the KEGG BlastKOALA anno-
tations, unique accessions were found only in the highly virulent strain #390-1 (C_lini_390-
1_FUN_004740-T1, C_lini_390-1_FUN_004122-T1, C_lini_390-1_FUN_001342-T1). How-
ever, in the InterProScan annotations of effectors, eight accessions were unique for the
same strain (three of them were annotated with KEGG) (C_lini_390-1_FUN_004637-T1,
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C_lini_390-1_FUN_004750-T1, C_lini_390-1_FUN_004740-T1, C_lini_390-1_FUN_004688-
T1, C_lini_390-1_FUN_001551-T1, C_lini_390-1_FUN_004122-T1, C_lini_390-1_FUN_001342-
T1, C_lini_390-1_FUN_009633-T1), seven accessions in the moderately virulent strain
#757 (C_lini_757_FUN_004039-T1, C_lini_757_FUN_005381-T1, C_lini_757_FUN_010924-
T1, C_lini_757_FUN_000684-T1, C_lini_757_FUN_003376-T1, C_lini_757_FUN_000430-
T1, C_lini_757_FUN_000370-T1), and two accessions in the lowly virulent strain #771
(C_lini_771_FUN_009418-T1, C_lini_771_FUN_009066-T1) (Supplementary Table S6). Unique
accessions were related to the metabolism (catabolism) of carbohydrates and nitrogen
and cell signaling pathways. This fact points to the possible role of these enzymes in the
processes of plant colonization and nutrition, i.e., infection, and suggests the direction of
further studies. However, other proteins related to virulence can also exist. To establish the
factors of strain differentiation by virulence, further research is needed.

3.3. Comparative Genomic Analysis

In each assembly, we identified a mitochondrial contig by blasting the previously
obtained sequence of the mitochondrial genome of C. lini #811 (highly virulent) [25]. The
extracted mitochondrial genomes were aligned to each other in Mega. The mitochondrial
genomes had similar sizes: 38,956–39,090 bp. Only several mismatches were observed
in the multiple alignment. Furthermore, the annotations of the received mitochondrial
genomes had no differences.

The final genome assemblies of three C. lini strains were aligned to each other using
LAST (Figure 5). The obtained plots showed that the majority of scaffolds of the moderately
virulent strain #757 aligned to the scaffolds of the lowly virulent strain #771. However, the
scaffolds of the highly virulent strain #390-1 were shifted by one. Scaffold 1 of the strain
#771 consisted of scaffolds 6 and 11 of strain #390-1. In scaffold 6 in the lowly virulent
strain #771, we detected a rearrangement. The beginning of scaffold 6 and a little part
at the end of this scaffold aligned to scaffold 5 in strain #390-1 and scaffold 6 in strain
#757 in forward orientation. Meanwhile, the middle part of scaffold 6 aligned in reverse
orientation to the same scaffolds in the two other strains. Scaffold 12 in the lowly virulent
strain #771 corresponded to scaffold 13 in the highly virulent strain #390-1. Yet a similar
scaffold was missing from the genome of the moderately virulent strain #757. To confirm
the absence of the missing scaffold, its sequence was blasted to the genome of the strain
#757 genome assembly. However, no significant hits were found. The missing scaffold was
0.7 Mb in size. We blasted amino acid sequences of predicted proteins from this scaffold
against the NCBI database. The found protein hits were helicases.

Next, we searched for telomeric repeats (‘TTAGGG’) in the obtained genome assem-
blies using Tidk [46]. The output Tidk files with diagrams of the occurrence frequency of
the target sequence are presented in Supplementary Figures S1–S3. High peaks at both ends
of a scaffold indicated the presence of telomeric repeats. Such a scaffold could be a com-
plete chromosome. Therefore, the assembled genomes can have from four to six complete
chromosomes. We also observed several scaffolds with telomeric repeats at only one end.
Assuming the karyotype of n = 13 [47], nearly a third or a half of the assembled contigs
could be complete chromosomes. The scaffold missing in the assembly of the moderately
pathogenic strain #757 (scaffold 12 in the assembly of the lowly virulent strain #771 and
scaffold 13 in the assembly of the highly virulent strain #390-1) had telomeric repeats at
both ends. Thus, this genomic locus is likely a complete 0.7 Mb-long chromosome and
might be a minichromosome associated with pathogenicity [23].
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4. Discussion

Colletotrichum species are widely distributed plant pathogens which cause significant
economic losses. The representatives of the genus are actively studied, including at the
level of complete genomes. At the time of writing the manuscript, 270 assemblies of Col-
letotrichum species were deposited in the NCBI Genome database (the size of the genomes
is about 50–60 Mb). The advances in long-read sequencing technologies allowed obtain-
ing high-quality genome assemblies of Colletotrichum species [48,49]. Thus, high-quality
genomes became the basis for further molecular genetic studies. Genomics and transcrip-
tomics of Colletotrichum species provided valuable information on the genes regulating
their life cycle and the ability to produce proteins and secondary metabolites damaging
plant cells [50–56]. To identify molecular genetic factors that determine pathogenicity,
special attention is paid to research on the interaction of Colletotrichum species and their
hosts [57–59]. Using high-quality genome assemblies of Colletotrichum species, a range of
pathogenicity-associated genome regions were identified, including rapidly evolving re-
gions in telomeres, repeat-rich minichromosomes, clusters of effector genes, and a number
of genes co-expressing upon infection of a host [46,60–62].

The causative agent of flax anthracnose, C. lini (syn. C. linicola), has been unfairly
deprived of attention in molecular genetic studies. The species was mainly studied using
DNA markers [20,63,64]. In this study, we sequenced the genomes of three C. lini strains
with different virulence on flax and conducted a comparative analysis of the obtained
fungal genomes to reveal pathogenicity-associated factors. To exclude the contribution of
multiple factors in further genomic analysis, we studied the strains with close morpho-
logical characteristics. The strains represented three degrees of virulence—low, medium,
and high.

The combination of long ONT reads and short precision Illumina reads allows obtain-
ing high-quality genomes of the fungal pathogens [24,25,65]. In this study, we obtained
from ~100× to 160× genome coverage with ONT reads (average read Q ≥ 10), having an
N50 from ~5 to 12 kb. Coverage with Illumina data ranged from ~50× to 140×. To construct
the most contiguous and complete assemblies, two approaches were tested on the highly
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virulent strain #390-1. The first was based on constructing a draft assembly from long reads
and polishing it with both long and short precision reads. The second approach implied
the use of hybrid assembly software, taking both ONT and Illumina data as input. We used
recently developed tools and software that demonstrated optimal results in our previous
studies [24,25,65]. The most contiguous assembly was obtained using Canu—31 contigs,
N50 = 5.2 Mb, L50 = 5. However, its BUSCO completeness (92.1%) was lower than the
completeness of the assemblies obtained with hybrid tools. Thus, Masurca and Unicycler
assembled genomes with a BUSCO completeness of 95.9%. Since polishing can increase
the parameter, the draft assembly by Canu was considered optimal. According to the
scheme that showed the best results in our previous studies, the chosen draft assembly was
polished using Racon ×2–Medaka (ONT reads) and Polca (Illumina reads) [24,25,65]. Thus,
the BUSCO completeness of the assembly rose from 92.1 to 96.7%. The final value was
higher than that achieved by Masurca and Unicycler. Thus, the Canu–Racon ×2–Medaka–
Polca scheme allowed us to assemble a contiguous and complete genome. The scheme was
employed to assemble the genomes of strains #757 and #771. The final genomes consisted
of 26–32 contigs, had N50 values in the megabase range (5.2–5.8 Mb), and were more than
96% complete.

Thus, the obtained genomes had high contiguity. After the search for telomeric repeats
and their visualization (Supplementary Figures S1–S3), we observed peaks at one or both
ends of the obtained contigs. This indicated that the assembled contigs were possibly big
parts or complete chromosomes. At the time of writing the manuscript, two chromosome-
level assemblies were available in the NCBI database (Colletotrichum higginsianum IMI
349063 GCA_001672515.1 and Colletotrichum graminicola GCA_029226625.1). The contig
N50 values of these two assemblies are 5.2 and 5.0 Mb, respectively. The L50 values for both
assemblies are 5. In this study, we constructed contig-level assemblies of C. lini. However,
the analysis of telomeric repeats suggested the presence of complete chromosomes. Thus,
high coverage with long ONT reads probably allowed assembling the sequences of complete
chromosomes. Furthermore, the contiguity of the obtained assemblies is comparable to
that of the chromosome-level assemblies prior to anchoring to chromosomes.

The assemblies were annotated using Funannotate. The resulting annotations had
close numbers of predicted gene models. The highly virulent strain had the highest
number of gene models (#390-1)—12,891, and the moderately virulent strain (#757) had
the lowest number of gene models—12,520. Meanwhile, strain #757 had lower BUSCO
completeness than strain #390-1. Although the completeness of an assembly impacts
the accuracy of gene prediction, the highest number of gene models in the genome of
the highly virulent strain can still correlate with its high pathogenicity. In C. graminicola,
~15,000 genes were predicted [66]. Thus, the number of predicted gene models for C. lini
was in the order of the values from the literature data. To conduct a primary analysis of
virulence genes, we searched for the encoded effector proteins in the obtained genome
assemblies. Effector proteins are the small cysteine-rich proteins influencing plant cellular
processes to facilitate the infection process [67]. The lowly virulent strain #771 contained
the lowest number of proteins with signal sequences, i.e., potentially secreting, and 37.0%
of them were predicted as effectors. The highly virulent strain #390-1 had the highest
number of potentially secreting proteins and 37.4% of them were predicted as effectors.
Meanwhile, the moderately virulent strain #757 had the lowest number of effectors (36.2%
of proteins with signal sequences), but it also had the lowest number of gene models.
According to protein annotations with KEGG, the genome of the highly virulent strain
#390-1 contained the highest number of effectors with unique annotations, and the lowly
virulent strain #771 contained the smallest number of effectors with unique annotations.
This fact can correlate with the degree of pathogenicity of a strain. In a similar study,
the strain of C. scovillei was characterized by defective growth and virulence, along with
a reduced number of effectors [68]. Possibly, higher numbers of effector proteins and
uniquely annotated effectors are related to higher pathogenicity. However, the obtained
results can still be prone to fluctuations in predicted values. Furthermore, the detection of
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an effector protein can also trigger plant immunity mechanisms, decreasing the virulence
of a fungus [69]. Therefore, further research is needed to collect more information on the
effector proteins of the studied fungi and elucidate true virulence mechanisms.

To reveal the possible effect of genome rearrangements, we performed whole-genome
alignment of the three C. lini genomes with each other. In the assembly of the lowly virulent
strain #771, scaffold 6 contained one big inversion. Such genome rearrangements might be
crucial for the function of certain genomic regions. Small scaffold 12 (0.7 Mb) in the lowly
virulent strain #771 aligned to scaffold 13 in the highly virulent strain #390-1. However,
this sequence was completely missing in the genome of the moderately virulent strain #757.
Since this scaffold had an increased occurrence of repeats at its ends, we assumed that it
could be a small pathogenicity-associated chromosome [23]. Furthermore, BLAST analysis
of the annotated proteins from the scaffold showed that it contained helicases, peptidases,
and hydrolases. Therefore, the minichromosome can be implicated in replication events,
the growth of the fungus, and necrotrophy.

In this work, using ONT and Illumina data, we obtained the first three high-quality C.
lini genomes. We performed primary comparative analysis of the obtained assemblies. The
difference in the number of effector proteins and the presence of a putative minichromo-
some suggested possible determinants of the high virulence. The assembled whole genome
sequences created the foundation for a further in-depth search for molecular determinants
of pathogenicity both at the chromosome and gene levels. Such data are indispensable for
the advancement of anthracnose management techniques and conceiving of new strategies
for breeding resistant varieties. Moreover, the obtained high-quality genomes of C. lini
expand the knowledge of the genetic diversity of the genus Colletotrichum.
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//www.mdpi.com/article/10.3390/jof10010032/s1, Table S1: QUAST statistics of Colletotrichum lini
strain #390-1 draft genome assemblies; Table S2: QUAST statistics of polished genome assemblies of
Colletotrichum lini highly virulent strain #390-1, moderately virulent strain #757, and lowly virulent
strain #771; Table S3: The full list of InterPro-annotated proteins with IP, definition, and GO terms for
Colletotrichum lini highly virulent strain #390-1, moderately virulent strain #757, and lowly virulent
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30. Wong, J.; Coombe, L.; Nikolić, V.; Zhang, E.; Nip, K.M.; Sidhu, P.; Warren, R.L.; Birol, I. Linear time complexity de novo long read

genome assembly with GoldRush. Nat. Commun. 2023, 14, 2906. [CrossRef]
31. Haghshenas, E.; Asghari, H.; Stoye, J.; Chauve, C.; Hach, F. HASLR: Fast Hybrid Assembly of Long Reads. iScience 2020,

23, 101389. [CrossRef]
32. Zimin, A.V.; Puiu, D.; Luo, M.C.; Zhu, T.; Koren, S.; Marcais, G.; Yorke, J.A.; Dvorak, J.; Salzberg, S.L. Hybrid assembly of the

large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm.
Genome Res. 2017, 27, 787–792. [CrossRef]

33. Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinform.
2020, 70, e102. [CrossRef]

34. Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing
reads. PLoS Comput. Biol. 2017, 13, e1005595. [CrossRef] [PubMed]

35. Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and
annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [CrossRef] [PubMed]

36. Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013,
29, 1072–1075. [CrossRef] [PubMed]
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