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Abstract: Sterigmatocystins and aflatoxins are a group of mycotoxins mainly isolated from fungi
of the genera Aspergillus. Since the discovery of sterigmatocystins in 1954 and aflatoxins in 1961,
many scholars have conducted a series of studies on their structural identification, synthesis and
biological activities. Studies have shown that sterigmatocystins and aflatoxins have a wide range of
biological activities such as antitumour, antibacterial, anti-inflammatory, antiplasmodial, etc. The
sterigmatocystins and aflatoxins had been shown to be hepatotoxic and nephrotoxic in animals. This
review attempts to give a comprehensive summary of progress on the chemical structural features,
synthesis, and bioactivity of sterigmatocystins and aflatoxins reported from 1954 to April 2024. A
total of 72 sterigmatocystins and 20 aflatoxins are presented in this review. This paper reviews the
chemical diversity and potential activity and toxicity of sterigmatocystins and aflatoxins, enhances
the understanding of sterigmatocystins and aflatoxins that adversely affect humans and animals, and
provides ideas for their prevention, research and development.

Keywords: sterigmatocystins; aflatoxins; structural features; synthesis; biological activity

1. Introduction

Mycotoxins are a class of small molecular compounds produced by the secondary
metabolism of fungi that cause toxic reactions, and there are more than 400 formally
defined mycotoxins until 2006 [1]. Mycotoxins are toxic secondary metabolites synthesised
by specific fungi belonging to Aspergillus, Alternaria, Fusarium and Penicillium species. These
mycotoxins have the potential to contaminate produce at various points in the food supply
chain [2–4]. Aspergillus mycotoxins, including sterigmatocystin (STC) and aflatoxin (AF),
are the most important mycotoxins [5,6].

Sterigmatocystins (STCs) and Aflatoxins (AFs) are a class of compounds with similar
chemical structures and are mycotoxins produced by Aspergillus [7], which are widely
distributed in nature and are common contaminants in human food as well as animal feed [8,
9]. AFs are a specific group of mycotoxins primarily produced by toxigenic Aspergillus
species, particularly A. flavus and A. parasiticus [2]. STCs are produced by several fungal
species belonging to the genera Aspergillus, Bipolaris, Botryotrichum, Humicola and Penicillium.
The main producers are Aspergillus fungi, such as A. flavus, A. parasiticus, A. nidulans and
A. versicolor [10,11]. These two classes of compounds have characteristic bifuran ring
structural fragments, which is the active moiety of these two classes of compounds. These
compounds have received extensive attention from researchers due to their abundant
sources and diverse biological activities.

This reviews the current research progress in the isolation of STCs and AFs, including
the biosynthetic pathway, source of isolation, structure identification process, chemical
synthesis, and biological activity. SciFinder was used as the main search engine, and
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sterigmatocystins and aflatoxins were used as keywords to collect information about the
chemical structure, biological activity, and synthesis of these two classes of compounds
from 1954 to April 2024. In the study of bioactivity, the main components are antibacterial,
anti-inflammatory activities and antitumour mechanisms.

2. Biosynthesis, Structural and Biological Activity Studies
2.1. Biosynthesis

The STCs and AFs are produced from acetyl coenzyme A through a complex branching
pathway involving more than 25 enzymatic reactions. The outline of the proposed pathway
is shown in Figure 1 [12].
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Figure 1. Outline of the biosynthetic pathway of STCs and AFs.

2.1.1. Biosynthesis of Sterigmatocystins

As early as 1968, Holker et al. [13] suggested a possible biological pathway for STC.
In 1989–1990, Bhatnagar et al. [14] basically determined the synthesis pathway of STC
in the bacterium with the help of radiotracer, gene conversion and metabolism inhibitor
experiments. Acetic acid or acetate → desmethylsulphanilic acid → averantin → odorif-
erous flunaricin → heterochromatic trichothecene hemiacetal acetate → heterochromatic
trichothecene A → STC.

In 2014, Alkhayyat et al. [15] found that aflR and aflS genes are adjacent in the aflatoxin/
sterigmatocystin cluster and are involved in the regulation of aflatoxin/sterigmatocystin
gene expression and that mutational inactivation of aflR abolished the expression of any
biosynthetic genes in the cluster, and conversely, overexpression of aflR resulted in higher
gene expression and AF/STC production (Figure 2).
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2.1.2. Biosynthesis of Aflatoxins

Molecular studies have shown that the synthesis of AFs is regulated by a complex
cascade of transcriptional and post-transcriptional processes [19]. The biosynthesis of AFs
involves a series of enzymatic and biotransformation reactions, as shown in Figure 3. The
pathway is initiated by acetyl-CoA and malonyl-CoA to form hexyl-CoA, which is then
further converted to produce norsolorinic acid [2]. The reduction process is facilitated by
enzymes such as the gene aflF (norB) and dehydrogenase and NOR reductase encoded
by the aflE (norA) gene, respectively. Another important enzyme, HypC, oxidises an
intermediate to produce anthraquinone orthoformate (NA). In the third step, the gene aflG
(avnA) encodes cytochrome P450 monooxygenase, which catalyses the hydroxylation of
polyketide anthraquinone to an intermediate called 5′-oxoanthraquinone (OAVN) [19].

This conversion requires alcohol dehydrogenase encoded by the aflH (adhA) gene.
The conversion of versicolorin B and OAVN to AVF (AVF) is attributed to the aflK (vbs)
gene, which was initially associated with the conversion of versicolorin B to AVF [2,19,20].
AflV encodes the enzyme responsible for the conversion of AVF to vertical hemiacetal
acetate (VHA). Subsequent steps include the conversion of VHA to versiconal (VAL) and
versicolorin B (VER B) to versicolorin A (VER A) by specific enzymes. VER A is important
because it represents the last metabolic conversion before the major branch, leading to the
production of B- or G-type Afs (Figure 3) [2,21].

In the next step, DMST is converted to STC by the action of O-methyltransferase B en-
coded by the aflO (omtB) gene. DHST is converted to dihydromethylsterocystin (DHOMST)
and ST to O-methylsterocystin (OMST) by the action of O-methyltransferase A encoded
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by the aflP (omtA) gene. OMST and DHDMST are further converted to AFB1/AFG1 and
AFB2/AFG2, respectively, by cytochrome P450 monooxygenases encoded by the aflQ
(ordA) gene [22,23]. AFB1 is a precursor of OMST, and the hypD gene encodes integral
membrane proteins that are essential to produce AF B1 and AF G1 [20].
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2.2. Sterigmatocystins

The STCs are a group of compounds with a bifuranic ring and an anthracenone skele-
ton, which are widely distributed in nature and are very diverse [24]. STC derivatives
are based on STC with one or more substitutions on the bifuranic ring and the aromatic
ring, and the main forms of substitution are hydroxylation, alkylation, esterification, halo-
genation, etc. Depending on the presence or absence of substitutions at their 3′ and 4′

positions and the presence or absence of double bonds, they can be classified into three
types, including oxisterigmatocystins, sterigmatocystins, and dihydrosterigmatocystins.
The basic skeleton of these three classes of compounds is shown in Figure 4.

J. Fungi 2024, 10, x FOR PEER REVIEW 4 of 22 
 

 

A encoded by the aflP (omtA) gene. OMST and DHDMST are further converted to 

AFB1/AFG1 and AFB2/AFG2, respectively, by cytochrome P450 monooxygenases en-

coded by the aflQ (ordA) gene [22,23]. AFB1 is a precursor of OMST, and the hypD gene 

encodes integral membrane proteins that are essential to produce AF B1 and AF G1 [20]. 

 

Figure 3. Organisation of gene clusters of AFs biosynthesis pathway [22]. 

2.2. Sterigmatocystins 

The STCs are a group of compounds with a bifuranic ring and an anthracenone skel-

eton, which are widely distributed in nature and are very diverse [24]. STC derivatives are 

based on STC with one or more substitutions on the bifuranic ring and the aromatic ring, 

and the main forms of substitution are hydroxylation, alkylation, esterification, halogen-

ation, etc. Depending on the presence or absence of substitutions at their 3′ and 4′ positions 

and the presence or absence of double bonds, they can be classified into three types, in-

cluding oxisterigmatocystins, sterigmatocystins, and dihydrosterigmatocystins. The basic 

skeleton of these three classes of compounds is shown in Figure 4. 

 

Figure 4. The basic skeleton of Oxisterigmatocystins, Sterigmatocystins, and Dihydrosterigmato-

cystins. 

2.2.1. Oxisterigmatocystins 

Four new oxisterigmatocystins 1,2,3a,12c-tetrabydro-2-(3-chlorobenzoyloxy)-1,8-di-

hydroxy-6,11-dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-c]-xanthen-7-one (1), 1,2,3a,12c-tet-

rabydro-2,8-dihydroxy-6,11-dimethoxy- 7H-furo[3′,2′:4,5]furo[2,3-c]-xanthen-7-one (2), 

1,2,3a,12c-tetrabydro-2,8-diacetoxy-6,11- dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-c]-xanthen-

7-one (3), 1,2,3a,12c-tetrabydro-5-bromo- 2,8-diacetoxy-6,11-dimethoxy-7H-furo[3′,2′: 

4,5]furo[2,3-c]-xanthen-7-one (4) (Figure 5) were discovered [25]. Three new compounds, 

including sterigmatocystin-hemiacetal (5), sterigmatocystin-ethoxyacetal (6) and O-me-

thylsterigmatocystin-hemiacetal (7), were isolated from the Aspergillus sp. [26]. One new 

compound, acyl-hemiacetal sterigmatocystin A (8), was isolated from Aspergillus oryzae 

M395 of sponge origin [27]. One new compound was isolated from the secondary metab-

olites of an Aspergillus sp. fungus and identified as oxisterigmatocystin D (9) [28]. Four 

new compounds, sterigmatocystin-1,2-oxide (10), sterigmatocystin-1,2-dihydrodiol (11), 

methylsterigmatocystin-1,2-oxide (12) and methylsterigmatocystin-1,2-dihydrodiol (13) 

in the study of the metabolic pathways of ST and 11-methoxysterigmatocystin [29]. Two 

new compounds, Aspertenol A (14), B (15), were isolated from the secondary metabolites 

Figure 4. The basic skeleton of Oxisterigmatocystins, Sterigmatocystins, and Dihydrosterigmatocystins.

2.2.1. Oxisterigmatocystins

Four new oxisterigmatocystins 1,2,3a,12c-tetrabydro-2-(3-chlorobenzoyloxy)-1,8-
dihydroxy-6,11-dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-c]-xanthen-7-one (1), 1,2,3a,12c-
tetrabydro-2,8-dihydroxy-6,11-dimethoxy- 7H-furo[3′,2′:4,5]furo[2,3-c]-xanthen-7-one (2),
1,2,3a,12c-tetrabydro-2,8-diacetoxy-6,11- dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-c]-xanthen-7-one (3),
1,2,3a,12c-tetrabydro-5-bromo- 2,8-diacetoxy-6,11-dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-c]-
xanthen-7-one (4) (Figure 5) were discovered [25]. Three new compounds, including
sterigmatocystin-hemiacetal (5), sterigmatocystin-ethoxyacetal (6) and O-methylsterigmatocystin-
hemiacetal (7), were isolated from the Aspergillus sp. [26]. One new compound, acyl-
hemiacetal sterigmatocystin A (8), was isolated from Aspergillus oryzae M395 of sponge
origin [27]. One new compound was isolated from the secondary metabolites of an As-
pergillus sp. fungus and identified as oxisterigmatocystin D (9) [28]. Four new compounds,
sterigmatocystin-1,2-oxide (10), sterigmatocystin-1,2-dihydrodiol (11), methylsterigmatocystin-
1,2-oxide (12) and methylsterigmatocystin-1,2-dihydrodiol (13) in the study of the metabolic
pathways of ST and 11-methoxysterigmatocystin [29]. Two new compounds, Aspertenol A
(14), B (15), were isolated from the secondary metabolites of the strain Aspergillus tennesseen-
sis. [30]. Four oxisterigmatocystins analogues of oxisterigmatocystins E-H (16–19) were
isolated from secondary metabolites of the fungus Botryotrichum piluliferum [31]. A new
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compound, oxisterigmatocystin I (20), was isolated from Aspergillus versicolor A-21-2-7 of
South China Sea sediments [32]. Five new compounds, sterigmatocystin B (21), C (22) and
oxisterigmatocystin A–C (23–25), were isolated from Aspergillus versicolor 15XS43ZD-1 [33].
Three new compounds, oxisterigmatocystin J–L (26–28), were isolated from the marine-
derived fungus Aspergillus nomius NC06 [7,34]. One new compound, acyl-hemiacetal sterig-
matocystin B (29), was isolated from Aspergillus nidulans of Nyctanthes arbor-tristis [35].
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2.2.2. Sterigmatocystins

One new compound, O-methylsterigmatocystin (30), was isolated and identified
from the secondary metabolites of the fungus Aspergillus flavus [36]. (Figure 6) Three
new compounds, including sterigmatocystin (31), 5-methoxysterigmatocystin (32) and
O-acetates (33), were isolated from a mutant strain of Aspergillus versicolor [37]. One
new compound, aspertoxin acetate (34), was isolated from secondary metabolites of As-
pergillus flavus [38]. Two new compounds O-methyl-5-methoxysterigmatocystin (35) and
O-acetyl-5-methoxysterigmatocystin (36), were isolated from Aspergillus sp. [39]. Four
new compounds, 5-methoxy-O-hydroxysterigmatocystin (37), 3a,12c-dihydro-9- allyl-8-
hydroxy-6,11-dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-c]xanthen-7-one (38), 3a,12c- dihydro-9-
(or10)-nitro-8-hydroxy-6,11-dimethoxy-7H-furo[3′,2′:4,5]furo [2,3-c]xanth-en- 7-one (39),
3a,12c-dihydro-9-amino-8-hydroxy-6,11-dimethoxy-7H-furo [3′,2′:4,5]furo [2,3-c]xanthen-7-
one (40), were isolated by the activity tracking method to obtain [25]. A new compound,
5,6-dimethoxysterigmatocystin, was isolated and identified from Aspergillus versicolor under
the guidance of hepatocyte DNA repair assay and Salmonella assay (41) [40]. Seven new
compounds, including O-ethylsterigmatocystin (42), O-propylsterigmatocystin (43), O-
butylsterigmatocystin (44), O-penlylsterigmatocystin (45), O-propenylsterigmatocystin (46),
O-acethlsterigmatocystin (47), O-benzoylsterigmatocystin (48), were isolated from As-
pergillus sp. [41]. One new compound, 8-deoxysterigamoatocystin (49), was isolated
from the secondary metabolite of the brown-black rotting mould fungus NRRL.22980 [42].
Three new compounds, 5-hydroxysterigmatocystin (50), 8-O-methoxysterigmatocystin (51),
demethylsterigmatocystin-1-(4-O-methyl)-β-L-arabinopyranose (52), were isolated
from the winged insect endophytic fungus Aschersonia coffeae Henn. BCC 28712 [43].



J. Fungi 2024, 10, 396 7 of 22

One new compound, 11-hydroxy-O-methylsterigmatocystin (53), was isolated from
Aspergillus sp. [44]. Eight new compounds, including 9-hydroxy-sterigmatocystin (54),
12c-hydroxy-sterigmatocystin (55), 11-hydroxy-sterigmatocystin (56), 9,11-dihydroxy-
sterigmatocystin (57), 9,12c-dihydroxy-sterigmatocystin (58), 11,12c-dihydroxy-
sterigmatocystin (59), 9-hydroxy-methylsterigmatocystin (60), 9,12c-hydroxy-
methylsterigmatocystin (61) have been isolated and identified [29]. Two new halogenated
sterigmatocystins, N-0532B (62) and N-0532A (63), were isolated from the fermentation
products. And the fungal strain, Botryotrichum piluliferum, was isolated from soil and
cultured at 25–28 ◦C for 9 weeks [31]. A comparative study of the secondary metabolites
of the sponge-derived endophytic fungus Aspergillus carneus was carried out using the
OSMAC method, in which the strains were fermented and cultured in a solid medium with
sea-salt rice, solid medium without sea-salt rice and modified Czapek’s medium, and a
heterochromatic trichothecene analogue, O-demethyld-terigmatocystin (64), was isolated
from the medium without sea-salt rice [45]. An endophytic fungus, Aspergillus nidulans, was
isolated from the leaves of the plant (Nyctanthes arbortristis) and its secondary metabolite
chemistry was investigated to isolate sterigmatocystin, which was acetylated to give a new
heterochromatic trichothecene analogue, O-acetyl-sterigmatocystin (65) [45].
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2.2.3. Dihydrosterigmatocystins

Isolation of the dihydrosterigmatocystin analogue dihydrosterigmatocystin (66)
(Figure 7) from a secondary metabolite of Aspergillus versicolor and synthesis of the deriva-
tives 5-O-methyoxydihydrosterigmatocystin (67) and 5-hydroxydihydrosterigmatocystin
(68) via compound 66 [37]. One new compound, dihydrodemethylsterigmatocystin (69),
was isolated from Aspergillus versicolor [46]. A new compound was isolated and identi-
fied as 5,6-dimethoxydihydrosterigmatocystin (70) from Aspergillus versicolor [40]. One
new compound, 11-hydroxy-O-methyldihydrosterigmatocystin (71), was isolated from
Aspergillus versicolor [44]. One new compound, 8-O-methyldihydrosterigmatocystin (72),
was isolated from Aschersonia coffeae Henn. BCC 28712 [43].
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The majority of all published STCs isolated and identified in various filamentous fungi
were produced by Aspergillus sp. (76%), including Aspergillus versicolor (76%) and other
Aspergillus species (24%) (Figure 8).
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2.2.4. Activity of Sterigmatocystins
Antitumour Activity of Sterigmatocystins

Compound 15 showed better inhibitory activity against K-562 cells [30]. Com-
pounds 16–19 showed better inhibitory activity against KB, MCF-7 and NCl-H187 cell
lines with IC50 values ranging from 0.38–78.6 µM [31]. Compounds 31 and 32 have broad-
spectrum antitumour activity. Compounds 31 and 32 showed significant inhibitory effects
on transplanted mouse leukaemia P-388 and L-1210 cells, which is the first report of an-
titumour activity of this class of compounds [39]. In addition, compound 31 exhibited
significant cytotoxicity against human solid tumour cell lines (A549, SK-OV-3, SK-MEL-2,
XF-498 and HCT-15) with IC50 values ranging from 0.41–4.61 µg/mL [47]. Meanwhile, com-
pound 31 showed strong cytotoxicity against L5178Y, BT-549, HepG2, HGC-27, UMUC-3,
MCF-7, Hela, HT-29, HCT-116 and other cell lines, with IC50 values ranging from 0.3–58
µM [45,48–51]. There are many studies on the antitumour activity of compound 31, and the
mechanism of action of compound 31 mainly focuses on the induction of the G2 phase block
in GES-1 cells. Studies have shown that the activation of the ATM/Chk2 signalling pathway
by 31 may be one of the molecular mechanisms by which 31 induces G2 phase block in
GES-1 cells and that compound 31 is capable of activating the JNK, ERK, PI3K pathways,
etc. [48,51–54]. Compound 36 showed significant inhibitory effects on transplanted mouse
leukaemia P-388 and L-1210 cells [39]. Compounds 50–52 showed good cytotoxic activity
against NCl-187 cells with IC50 values of 1.17, 12.93, and 2.86 µg/mL, respectively. [43].
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Compound 64 exhibited some antibacterial activity against Fusarium oxysporum [55]. Com-
pound 66 showed strong antimicrobial activity against Bacillus cereus with a MIC value of
38.3 µM and weak inhibitory activity against Fusarium oxysporum [55,56].

Antimicrobial Activity of Sterigmatocystins

Compound 20 showed moderate bacteriostatic activity against Staphylococcus aureus
ATCC25923 and Vibrio parahaemolyticus ATCC17802 [57]. The results of antimicrobial
activity studies showed that compounds 31 and 32 showed some antimicrobial activity
against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and
Candida albicans, with MIC values ranging from 3.06–12.5 µg/mL [27,58]. In addition, 32
has good bacteriostatic activity against Streptococcus pyogenes, Branchiostoma circumcisionale,
and Micrococcus garciniae, all with MIC value of 5 µg/mL [59].

Anti-Inflammatory Activity of Sterigmatocystins

Compounds 31 and 32 had a significant effect on NO production in their anti-
inflammatory activity and a slight inhibitory effect on THF-α and IL-6 expression. Both
compounds inhibited NO production by down-regulating the expression of inducible
nitric oxide synthase (iNOS) and also reduced the nuclear translocation of NF-κB. These
experimental results suggested that these two compounds are promising candidates for the
treatment of neuroinflammatory diseases [60].

Antiplasmodial Activity of Sterigmatocystins

In the antiplasmodial activity screen against Plasmodium falciparum, compounds 16–19
were found to possess good antimalarial activity with IC50 values of 7.9–23.9 µM [31].
Compound 52 showed good antiplasmodial activity with an IC50 value of 4.39 µg/mL [43].

2.3. Aflatoxins

AFs are a class of fungal secondary metabolites with similar structural and physico-
chemical properties and are the stable class of mycotoxins with physicochemical properties
found in nature [61]. It is a class of compounds containing a difuran ring and coumarin
(oxonaphthoquinone) in their basic structure. It produces blue-violet or yellow-green
fluorescence under the wavelength of 365 nm ultraviolet light. There are about 20 AF
derivatives, which are named B1, B2, G1, G2, M1, M2, P1, GM and toxinol based on fluores-
cent colours, RF values and different structures [62]. The four main types of AFs (AFB1,
AFB2, AFG1 and AFG2) are the best-known and best-studied of the 20 different types and
metabolites identified so far [61].

The discovery of AF came about as a result of the first occurrence of “Turkey X
Disease” (the cause of which was unknown at the time, hence the name) in 1960 in a
suburb of London, England [63]. In 1961, it was found that peanut cake contaminated
with Aspergillus flavus could induce liver cancer in rats, and in 1962, AF was identified
and proved to be a strong carcinogen. AF, with a double bond at the end of the difuran
ring in its structure, is prone to form epoxidation metabolites that enhance its toxicity,
carcinogenicity, and mutagenicity [64].

Depending on whether the E-ring in the AF structure is a five-membered or six-
membered ring, AFs can be classified into two groups: Difurocoumarocyclopentenone
aflatoxins, Difurocoumarolactone aflatoxins. The basic skeleton of these two classes of
compounds is shown in Figure 9.
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2.3.1. Difurocoumarocyclopentenone Aflatoxins

There are 14 difurocoumarocyclopentenone aflatoxins in total, namely AF B1 (73),
AFB2 (74), AFB2a (75), AFM1 (76), AFM2 (77), AFM2a (78), AFP1 (79), AFQ1 (80), AFQ2a (81),
aflatoxicol M1 (82), aflatoxicol B1 (83), aflatoxicol H1 (84), AFB2b (85), 8-acetyloxyaflatoxin
B1 (86) (Figure 10).
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In 1964, the structure of AFB1 (73) was elucidated [65]. In 1967, the absolute config-
uration of AFB1 (73) and B2 (74) was determined by an X-ray single crystal diffraction
test [66]. AFB2a (75) was discovered while testing the ability of various microbes to detox-
ify AFB1 [67]. AFM1 (76), isolated from AFB1 metabolites hydroxylated by the hepatic
microsomal mixed-function oxidase system (MFO), mainly cytochromes, in the liver of
mammals [68]. AFM2 (77) was isolated from A. parasiticus [69]. AFM2a (78) was the hydra-
tion of the terminal furan ring of AFM1 in dilute acid to yield a hemiketal derivative [70].
AFP1 (79) was a demethylated metabolite of aflatoxin B1 by liver microsomal oxidase–
catalysed O-demethylase [71]. AFQ1 (80) was a hydroxylated metabolite of aflatoxin B1 by
microsomal enzymes in the liver of higher vertebrates and poultry [72]. AFQ2a (81), acid
hydration of AFQ1 (80) [73]. Aflatoxicol M1 (82) was a reduced metabolite of AFB1, AFR0,
or AFM1 catalysed by soluble NADPH-dependent reductases in the liver [68]. Aflatoxicol
B1 (83) a metabolite of AFB1 (73) formed by a reversible reduction of the pentanone group
in humans, animals and numerous bacteria and moulds [74]. Aflatoxicol H1 (84) was
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a reduced metabolite of AFB1 and AFQ1 (80) catalysed by soluble NADPH-dependent
reductases in the liver [75]. Two difurocoumarocyclopentenone aflatoxins, AFB2b (85) and
8-acetyloxyaflatoxin B1 (86), were isolated from the marine-derived fungus Aspergillus
flavus 092008 [76].

2.3.2. Difurocoumarolactone Aflatoxins

Difurocoumarolactone aflatoxins have a total of seven compounds, namely AFG1 (87),
AFG2 (88), AFG2a (89), AFGM1 (90), AFGM2 (91), AFGM2a (92) (Figure 11).
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Two difurocoumarolactone aflatoxins, including AFG1 (87) and AFG2 (88), were
isolated from A. flavus [77]. AFG2a (89) was a hydroxylated metabolite of AFG1 obtained by
catalytic addition of water to the double bond of the terminal furan under acidic conditions
in the liver, the stomach or soil [78]. AFGM1 (90) was a hydroxylated metabolite of AFG1
by MFO in the liver of mammals [79]. AFGM2 (91) was a hydroxylated derivative of
AFG2 by MFO in the liver of mammals produced in vitro by A. parasiticus from dihydro-
O-methylsterigmatocystin (DHOMST) [80]. AFGM2a (92) was hydration of the terminal
furan ring of AFM1 in dilute acid to yield a hemiketal in vitro in liver homogenates [80].

2.3.3. Activity of Aflatoxins

AFB1 (73), B2 (74) and G1 (87) modulate cytokine secretion and cell surface marker
expression in J774A.1 mouse macrophages [81]. AFB1 (73) has better activity against A549
cells [82]. Liver microsomal metabolites of AFB1 (73) induce mutations in DNA repair-
deficient bacteria [83]. Compound 73 showed good activity against Hep G2 cells with an
IC50 value of 16.9 µM. When the cell cycle was arrested at the G0/G1 phase by 73, the exper-
imental results from the flow cytometry assay demonstrated that the rate of cell apoptosis
and mitochondrial membrane potential was also additively increased in a dose-dependent
manner. Thus, the integrity of mitochondria (MMP and membrane potential) which was
the central component of cell apoptosis, is disrupted by AFB1 and sterigmatocystin in an
additive manner. With the immunocytochemistry analysis showing increased expression
of apoptosis-related proteins of Bax, Caspase-3 and p53 and decreased expression of Bcl-2
protein, the additive nature of the co-proapoptotic activity of AFB1 was revealed [84,85].
Relaxant effects of AFs: B1, B2, G1 and G2 and their major metabolites (M1, M2, P1, Q1 and
G2a) on carbachol-preconstricted guinea-pig trachea [86]. AFB2b (85) exhibited moderate
antimicrobial activity against Escherichia coli, Bacillus subtilis and Enterobacter aerogenes,
with MIC values of 22.5, 1.7 and 1.1 µM, respectively. Compound 85 also showed weak
cytotoxicity against A549, K562 and L-02 cell lines, with IC50 values of 8.1, 2.0 and 4.2 µM,
respectively. The results showed that hydration and hydrogenation of the ∆8-double bond
significantly reduce the cytotoxicity of aflatoxins, while the esterification at C-8 increases
the cytotoxicity [76].
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2.4. The Mechanism of Action of STC and AF

Based on studies of in vitro models and in vivo studies, the reported metabolic trans-
formations of STC and its ability to form DNA adducts and cause DNA damage appear to
play a key role in STC-induced carcinogenesis. In addition, STC has been associated with
diminished immune responses and dysregulation of adaptive immune system homeostasis,
as well as with the induction of oxidative stress, apoptosis, mitochondrial dysfunction and
the induction of oxidative stress, apoptosis, mitochondrial dysfunction and activation of
specific pathways [24] (Figure 12).
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This metabolite of AF is the major mutagen and carcinogen among the derived metabo-
lites of AFs. Metabolic activation of AFB1, which occurs mainly in the liver. This compound
forms covalent bonds with guanine residues in DNA, especially at N-7 guanine, leading to
depurination and, hence, cancer. This active form binds to DNA and albumin in the serum,
forming adducts that ultimately cause DNA damage [2,21,24].

3. Synthesis
3.1. Chemical Synthesis

Due to the unique skeletons of AFs and their risk to human health, numerous teams
have been working on their total synthesis over the last 60 years. However, up to now, no
reports have been found on the total synthesis of STCs.

3.1.1. Total Synthesis of (±)-Aflatoxin B1

The first total synthesis of AFB1 was completed in 1966, as shown in Figure 13 [87,88].
Compound A-2 was obtained from A-1 by a 5-step reaction including acylation, methylation
and selective benzylation. In the presence of Zn/AcOH, the tricyclic skeleton A-4 was
efficiently constructed. The construction of the tricyclic framework was then completed
by esterification, followed by the removal of the benzyl-protecting group, resulting in the
tricyclic intermediate A-5.
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Next, the D-ring was constructed by Peckman condensation reaction with β-keto ester
A-6. Subsequently, in the presence of hydrochloric and acetic acids, the two ester groups
underwent acetylmethyl hydrolysis, leading to the recycling of the C-ring. After activation
of the carboxyl group, the E-ring was constructed by the Friedel-crafts reaction catalysed
by AlCl3. AF B1 was synthesised by selective reduction of the C-ring, acylation of the
hemiacetyl hydroxyl group and pyrolysis at 240 ◦C. The first total synthesis of AF B1 was
accomplished in 13 steps with an overall yield of 0.9%.

3.1.2. Total Synthesis of (±)-Aflatoxin B2

In 1967, the first 10-step total synthesis of AFB2 was reported, as shown in
Figure 14 [89,90]. Starting from B-1, coumarin intermediates A-2 containing aldehyde
groups were obtained by selective methylation, benzylation and allyl oxidation in the
presence of SeO2. After the protection of the aldehyde group, the benzyl-protecting group
was removed, and the double bond was hydrogenated in the presence of Adam’s cata-
lyst. Subsequently, the ester group was reduced to alcohol in the presence of LiAlH4, and
the aldehyde group was released in the presence of hydrochloric acid. Intramolecular
acetals B-4 were generated spontaneously and synthesised. The first synthesis of AFB2 was
achieved by Peckman condensation and Friedel-process acylation.
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3.1.3. Total Synthesis of (±)-Aflatoxin M1

In 1969, the first chemical total synthesis of AFM1 was reported, as shown in
Figure 15 [88,90]. Based on the structural features of AFM1, dihydroxybenzofuranone
C-1 with a B-ring structure was used as a starting material to create conditions for the
introduction of hydroxyl groups and to avoid the problem of constructing a B-ring. After
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dimethylation, selective demethylation and benzylation, the hydroxyl-protected benzofura-
none C-2 was obtained. The aldehyde C-4 was then obtained by bromination (α-carbonyl),
benzyl alcohol substitution, the addition of allyl magnesium bromide to the keto carbonyl
group, and oxidative breakage of the double bond using osmium tetroxide. Removal of
the two phenyl-protecting groups by hydrogenation, followed by acylation of the phenol
and hemiacetyl hydroxyl groups and high-temperature pyrolysis (450 ◦C) to form a C-ring
double bond.
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The free phenolic hydroxyl group in the A-ring was released by hydrolysis in the
presence of a weak base. In the presence of ZnCO3, the free phenolic compound C-6 was
reacted with chlorinated unsaturated cyclopentanone C-7 to effectively construct the D,
E-bicyclic compound. The specific reaction process was as follows. First, a 1, 4- addition
reaction between the neighbouring phenolic hydroxyl group and the unsaturated carbon-
based substrate C-7 occurred smoothly under the catalysis of Zn ions. Next, the chloride
anion was left as the leaving group to form the unsaturated carbonyl intermediate. Finally,
in the presence of ZnCO3, the phenolic hydroxyl groups were esterified to form ethyl esters,
thus completing the first total synthesis of AFM1. This method is a novel approach to the
synthesis of AF.

3.1.4. Total Synthesis of (±)-Aflatoxin G1

The first total synthesis of AFG1 was accomplished in 1971 by a series of 1,4 addition,
elimination and ester exchange reactions, as shown in Figure 16 [88,91]. Intermediate D-1
was synthesised from intermediate A-4 in six steps: DIBAL-H reduction, acylation, benzyl
hydrogenation, phenolic hydroxyl acylation, hyperthermic decomposition, acylation of
phenolic hydroxyl groups, high temperature (400 ◦C) pyrolysis and deacetylation. Finally,
the D, E-bicyclic compound was formed in one step under reflux of ZnCO3 using the more
active bromo-unsaturated caprolactone D-2.
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4. Comprehensive Overview and Conclusions

STCs and AFs are the most important mycotoxins. Biologically, AFs are of concern to
human health as they can be present as contaminants in food products [2]. AFs and STCs
have attracted much attention in the last 70 years due to their unique skeletons and their
risk to human health. This paper reviews the structures, biological activities, biosynthetic
pathways, and chemical total synthesis of AFs and STCs.

Aflatoxins (AFs) are a specific group of mycotoxins primarily produced by toxigenic
Aspergillus species, particularly A. flavus and A. parasiticus. They are highly toxic, mu-
tagenic, carcinogenic, immunosuppressive compounds with severe detrimental effects
on the human liver [2]. A better understanding of the mechanisms of gene regulation
on aflatoxin biosynthesis will help us to identify natural inhibitors of fungal growth and
aflatoxin formation.

A sample of STCs and their biological activities, sources are summarized in Table 1.
Available data in the literature suggest that the cellular mechanisms of STC-induced toxicity
include the induction of oxidative stress, mitochondrial dysfunction, apoptosis, and cell
cycle arrest, as well as alteration of immune system function and activation of different
signalling pathways. In addition, STC is genotoxic, forming DNA adducts and inducing
DNA damage. Despite its high cytotoxicity, STC has not been subjected to risk assessment
due to a lack of toxicity data, and studies on the toxicological effects of STC are continuing.

Table 1. The compounds of Sterigmatocystins.

Compounds Producing Strains Habitats Bioactivities Refs.

1,2,3a,12c-tetrabydro-2-(3-chlorobenzoyloxy)-
1,8-dihydroxy-6,11-dimethoxy-7H-

furo[3′,2′:4,5]furo[2,3-c]-xanthen-7-one (1)
NR a Synthesis NA b [25]

1,2,3a,12c-tetrabydro-2,8-dihydroxy-6,11-
dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-c]-

xanthen-7-one (2)
NR Synthesis NA [25]

1,2,3a,12c-tetrabydro-2,8-diacetoxy-6,11-
dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-c]-

xanthen-7-one (3)
NR Synthesis NA [25]

1,2,3a,12c-tetrabydro-5-bromo-2,8-diacetoxy-
6,11-dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-c]-

xanthen-7-one (4)
NR Synthesis NA [25]

sterigmatocystin-hemiacetal (5) Aspergillus sp. NR NA [26]

sterigmatocystin-ethoxyacetal (6) Aspergillus sp. NR NA [26]

O-methylsterigmatocystin-hemiacetal (7) Aspergillus sp. NR NA [26]

acyl-hemiacetal sterigmatocystin A (8) Aspergillus oryzae
M395 Sponge NA [27]

oxisterigmatocystin D (9) Aspergillus versicolor
D5 Alga-derived NA [28]

sterigmatocystin-1,2 oxide (10) NR NR NA [29]

sterigmatocystin-1,2 dihydrodiol (11) NR NR NA [29]

methylsterigmatocystin-1,2-oxide (12) NR NR NA [29]

methylsterigmatocystin-1,2-dihydrodiol (13) NR NR NA [29]

Aspertenol A (14) Aspergillus
tennesseensis NR NA [30]

Aspertenol B (15) Aspergillus
tennesseensis NR

Cytotoxicity
Antiplasmodial

activity
[30]
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Table 1. Cont.

Compounds Producing Strains Habitats Bioactivities Refs.

oxisterigmatocystins E (16) Botryotrichum
piluliferum NR

Cytotoxicity
Antiplasmodial

activity
[31]

oxisterigmatocystins F (17) Botryotrichum
piluliferum NR

Cytotoxicity
Antiplasmodial

activity
[31]

oxisterigmatocystins G (18) Botryotrichum
piluliferum NR

Cytotoxicity
Antiplasmodial

activity
[31]

oxisterigmatocystins H (19) Botryotrichum
piluliferum NR

Cytotoxicity
Antiplasmodial

activity
[31]

oxisterigmatocystin I (20) spergillus versicolor
A-21-2-7

South China Sea
sediments

Antibacterial
activity [32,56]

terigmatocystin B (21) Aspergillus versicolor
15XS43ZD-1 Sponge NA [33]

terigmatocystin C (22) Aspergillus versicolor
15XS43ZD-1 Sponge NA [33]

oxisterigmatocystin A (23) Aspergillus versicolor
15XS43ZD-1 Sponge NA [33]

oxisterigmatocystin B (24) Aspergillus versicolor
15XS43ZD-1 Sponge NA [33]

oxisterigmatocystin C (25) Aspergillus versicolor
15XS43ZD-1 Sponge NA [33]

oxisterigmatocystin J (26) Aspergillus nomius
NC06

sponge
Neopetrosia

chaliniformis
NA [7]

oxisterigmatocystin K (27) Aspergillus nomius
NC06

Sponge
Neopetrosia

chaliniformis
NA [7]

oxisterigmatocystin L (28) Aspergillus nomius
NC06

Sponge
Neopetrosia

chaliniformis
NA [7]

sterigmatocystin B (29) Aspergillus nidulans Nyctanthes
arbor-tristis NA [35]

O-methylsterigmatocystin (30) Aspergillus flavus NR NA [36]

sterigmatocystin (31) Aspergillus versicolor
Irrigation of
wild-strain

spores

Cytotoxicity
Antibacterial,

Anti-
inflammatory

activity

[27,37,58,60]

5-methoxysterigmatocystin (32) Aspergillus versicolor
Irrigation of
wild-strain

spores

Cytotoxicity
Antibacterial,

Anti-
inflammatory

activity

[27,37,58–60]

O-acetates (33) Aspergillus versicolor
Irrigation of
wild-strain

spores
NA [37]
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Table 1. Cont.

Compounds Producing Strains Habitats Bioactivities Refs.

aspertoxin acetate (34) Aspergillus flavus NR NA [38]

O-methyl-5-methoxysterigmatocystin (35) Aspergillus sp. NR NA [39]

O-acetyl-5-methoxysterigmatocystin (36) Aspergillus sp. NR Cytotoxicity [39]

5-methoxy-O-hydroxysterigmatocystin (37) NR Synthesis NA [25]

3a,12c-dihydro-9-allyl-8-hydroxy-6,11-
dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-

c]xanthen-7-one (38)
NR Synthesis NA [25]

3a,12c-dihydro-9-(or10)-nitro-8-hydroxy-6,11-
dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-c]xanth-

en-7-one (39)
NR Synthesis NA [25]

3a,12c-dihydro-9-amino-8-hydroxy-6,11-
dimethoxy-7H-furo[3′,2′:4,5]furo[2,3-c]

xanthen-7-one (40)
NR Synthesis NA [25]

5,6-dimethoxysterigmatocystin (41) Aspergillus versicolor NR NA [40]

O-ethylsterigmatocystin (42) Aspergillus parasiticus NR NA [41]

O-propylsterigmatocystin (43) Aspergillus parasiticus NR NA [41]

O-butylsterigmatocystin (44) Aspergillus parasiticus NR NA [41]

O-penlylsterigmatocystin (45) Aspergillus parasiticus NR NA [41]

O-propenylsterigmatocystin (46) Aspergillus parasiticus NR NA [41]

O-acethlsterigmatocystin (47) Aspergillus parasiticus NR NA [41]

O-benzoylsterigmatocystin (48) Aspergillus parasiticus NR NA [41]

8-deoxysterigamoatocystin (49)
brown-black rotting

mould fungus
NRRL.22980

NR NA [42]

5-hydroxysterigmatocystin (50) Aschersonia coffeae
Henn.BCC 28712 Winged insect Cytotoxicity [43]

8-O-methoxysterigmatocystin (51) Aschersonia coffeae
Henn.BCC 28712 Winged insect Cytotoxicity [43]

demethylsterigmatocystin-1-(4-O-methyl)-β-L-
arabinopyranose (52)

Aschersonia coffeae
Henn.BCC 28712 Winged insect

Cytotoxicity
Antiplasmodial

activity
[43]

11-hydroxy-O-methylsterigmatocystin (53) Aspergillus parasiticus NR NA [44]

9-hydroxy-sterigmatocystin (54) NR NR NA [29]

12c-hydroxy-sterigmatocystin (55) NR NR NA [29]

11-hydroxy-sterigmatocystin (56) NR NR NA [29]

9,11-dihydroxy-sterigmatocystin (57) NR NR NA [29]

9,12c-dihydroxy-sterigmatocystin (58) NR NR NA [29]

11,12c-dihydroxy-sterigmatocystin (59) NR NR NA [29]

9-hydroxy-methylsterigmatocystin (60) NR NR NA [29]

9,12c-hydroxy-methylsterigmatocystin (61) NR NR NA [29]

N-0532B (62) Botryotrichum
piluliferum Soil NA [31]

N-0532A (63) Botryotrichum
piluliferum Soil NA [31]
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Table 1. Cont.

Compounds Producing Strains Habitats Bioactivities Refs.

O-demethyld-terigmatocystin (64) Aspergillus carneus Sponge Antibacterial
activity [45,55]

O-acetyl-sterigmatocystin (65) Aspergillus nidulans Nyctanthes
arbortristis NA [35]

dihydrosterigmatocystin (66) Aspergillus versicolor NR Antibacterial
activity [37,55,56]

5-O-methyoxydihydrosterigmatocystin (67) NA Synthesis NA [37]

5-hydroxydihydrosterigmatocystin (68) NA Synthesis NA [37]

dihydrodemethylsterigmatocystin (69) Aspergillus versicolor NR NA [46]

5,6-dimethoxydihydrosterigmatocystin (70) Aspergillus versicolor NR NA [40]

11-hydroxy-O-
methyldihydrosterigmatocystin (71) Aspergillus versicolor NR NA [44]

8-O-methyldihydrosterigmatocystin (72) Aschersonia coffeae
Henn. BCC 28712 Winged insect NA [43]

a Not reported. b No activity reported in the reference.
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