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Abstract: Reducing the use of chemical inputs is becoming a major challenge in developing
sustainable agriculture. Fungi, known as biocontrol agents (BCAs) and biofertilisers, are
crucial in scientific research and are celebrated for their efficacy, eco-friendliness, and
multifaceted roles. In this study, a bibliometric analysis was conducted on 5349 articles
related to fungi as BCAs and biofertilisers over the past half-century using the Web of
Science Core Collection (WoSCC) database. The publications on fungi, such as BCAs and
biofertilisers, have increased significantly over the last 20 years, with a maximum growth
rate of 33.7%. The USA and China lead in this field. Keyword clustering analysis revealed
that entomopathogenic fungi, including Hemiptera, Coleoptera, and Lepidoptera, can
be used to manage plant pests. It also showed that fungi can be used as biofertilisers to
promote plant growth. The analysis of research trends shows that Beauveria bassiana in
biological control is highly significant. This study also showed that entomopathogenic
fungi control plant pests by infiltrating the insect cuticles. Trichoderma spp. exert biocontrol
effects by producing antibiotics. Arbuscular mycorrhizal fungi can trigger plant defence
mechanisms by modulating secondary metabolite synthesis. This study contributes to the
current knowledge of fungi as BCAs and biofertilisers and can guide future research.

Keywords: biocontrol agents; biofertilisers; bibliometric; arbuscular mycorrhizal fungi;
Trichoderma; entomopathogenic fungi

1. Introduction
To improve the performance of agricultural and food systems globally, crop pests and

pathogens, barriers to food production, must be addressed [1]. Chemical pesticides and
fertilisers play an essential role in satisfying the escalating global food demand; however,
their application often has adverse effects, including soil fertility imbalances, acidification,
and groundwater contamination [2,3]. Therefore, there is a need to develop alternative, cost-
effective, and eco-friendly biocontrol agents (BCAs) and biofertilisers. These alternatives
are essential for promoting sustainable agriculture, ensuring optimal nutrient uptake, and
maintaining crop productivity [4,5].

Beneficial microorganisms, such as BCAs and biofertilisers, are promising sustainable
alternatives to chemical treatments [1]. Microorganisms, including bacteria and fungi, have
been developed over several decades to improve plant health and growth [3,6]. BCAs are
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favoured for their cost-effectiveness, efficiency, safety to beneficial organisms, environmen-
tal compatibility, low residual effects, and their role in fostering biodiversity [7–10]. Fungal
BCAs have been widely applied because of their high reproductive rate, short generation
time, and target specificity. Most biocontrol fungi are saprophytic, with Trichoderma ex-
hibiting the most significant potential. Trichoderma has been extensively studied for its
ability to inhibit soilborne pathogens and promote plant growth [11,12]. Trichoderma virens
and Trichoderma harzianum are the most common commercially developed BCAs. They
are particularly effective against root rot, fruit rot, damping-off, and wilt, which are often
caused by pathogens such as Pythium, Fusarium, and Rhizoctonia [13,14].

Biofertilisers are substances that contain live microorganisms. When applied to seeds,
plants, or soil, they colonise the rhizosphere or plant interior and promote its growth by
increasing the nutritional availability for the host plant [4,15,16]. They boost crop yield,
with potential increases ranging from 10−40%. Biofertilisers typically consist of bacteria
or fungi that can fix nitrogen, solubilise phosphates, oxidise sulfur, produce hormones,
or decompose organic compounds [5,17]. Beneficial fungi contribute to plant growth by
producing siderophores, gluconase antagonists, antibiotics, and enzymes, such as cellulases
and glycosidases, that degrade cell walls. The key plant growth-promoting fungi are
Penicillium, Trichoderma, Fusarium, and Phoma. These fungi are non-pathogenic saprophytes
that support crops by enhancing their growth and offering protection against diseases [18].
Additionally, Glomus spp., Laccaria spp., Rhizoctonia solani, Glomus intraradices, and Paxillus
involutus can mobilise phosphates or enhance zinc solubilisation, thereby promoting plant
growth [19–22]. Beneficial fungi contribute to plant growth by producing siderophores,
gluconase antagonists, antibiotics, and enzymes that break down the cell walls of pathogens.
The key plant growth-promoting fungi include Trichoderma and Arbuscular mycorrhizal
fungi (AMF). Among these, Trichoderma is notable for its ability to release volatile organic
compounds and dissolve soil phosphates, promoting plant growth [23–25]. Moreover,
Trichoderma has been shown to effectively prevent and control soil-borne diseases in various
crops, as well as certain leaf and ear diseases [26]. Similarly, numerous studies have
demonstrated the role of AMF in enhancing the growth of crops such as watermelon
seedlings, upland cotton (Gossypium hirsutum L.), and tomato [27–29]. Overall, fungi, such
as BCAs and biofertilisers, are promising crucial tools for sustainable agriculture.

Beneficial fungi reduce the impact of chemical pesticides and fertilisers on the envi-
ronment and improve plant health, growth, and nutrient absorption [5,30]. Bibliometrics
is a robust analytical tool for measuring scholarly literature. Bibliometrics tracks the
progress of research fields and facilitates the identification of emerging trends and chal-
lenges (Figure 1) [31–33]. Data visualisation plays a key role in presenting analytical results
and converting complex, large-scale bibliometric data into intuitive and interactive graphics
for various audiences [34,35]. Visualisation also enhances the understanding and inter-
pretation of bibliometric analyses by highlighting patterns, trends, clusters, gaps, outliers,
and relationships within the data [36]. Using a comprehensive bibliometric analysis and
literature review, this study seeks to reveal the current application status and research
trends of fungi as BCAs and biofertilisers. We explored the potential of various fungi
and elucidated their mechanisms of action in the field. We introduced strategies aimed
at enhancing the efficacy of these applications. This study provides prospects for future
developments in this field.
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Figure 1. Comprehensive overview and flowchart of the study design.

2. Materials and Methods
2.1. Data Collection and Processing

Web of Science Core Collection (WoSCC) database was used to search the literature in
fields related to the application of fungi as BCAs and biofertilisers from 1976 to 2024. The
specific retrieval formula was: Topic Search (TS) = (“fung*” OR “fung* extract” OR “fung*
metaboli*” OR “fung* secondary metaboli*” OR “Beauveria bassiana” OR “ Metarhizium
anisopliae” OR “Trichoderma” OR “Penicillium” OR “Arbuscular Mycorrhizal Fungi”)
AND TS = (“bio*inoculant*” OR “bio-inoculant*” OR “biological inoculant*” OR “mi-
crob* inoculant*” OR “fung* inoculant*” OR “bio*fertiliz*” OR “bio-fertiliz*” OR “bio*
organic fertiliz*” OR “bioorganic fertiliz*” OR “fungus fertilizer*” OR “fungal fertilizer*”
OR “promote plant growth” OR “bio* control” OR “Biocontrol” OR “Bio*-control” OR “
Biological * control” OR “ Biolo* Management”) AND TS = (“plant disease resistance” OR
“pest” OR “insect” OR “plant defense” OR “weed” OR “weedicide” OR “herbicide” OR
“pesticide” OR “insecticide”) NOT TS = (Bacill*) NOT TS = (pseudom*) NOT TS = (plant
growth-promoting rhizobac*).

2.2. Data Analysis

In this study, we used Excel 2021, Origin Pro 2021 to organise data. Bibliometrix 4.0
will serve as the primary tool for visualizing key metrics of each topic and the network
linkages connecting them from various perspectives. VOSviewer 1.6.20 performs visual
collinearity analysis on keywords.

3. Results
3.1. The Increasing Number of Publications Signifies That BCAs and Biofertilisers Have Emerged
as Focal Research Topics

The first article on BCAs and biofertilisers was published in 1976 [37]. We performed
a bibliometric analysis of the literature in this domain from 1976 to 2024. As of July
2024, 5349 articles have been retrieved from the WoSCC database. Through extensive
data analysis and visualisation of these papers, we found that publications related to the
application of fungi as BCAs and biofertilisers showed different developmental periods
(Figure 2A). Very few articles in this field were published between 1976 and 1990. There
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was a marked increase in publications from 1990 to 2016. The number of publications
significantly increased from 2016 to 2021, with an average annual growth rate of 33.7%.
Since 2021, the number of publications in this field has remained relatively constant. The
citation analysis of publications from 2016 to 2021 showed that, although the publications
have been cited for <10 years, the research results have a major impact. The total annual
citations of these publications exceeded 4500, highlighting the influence of these research
results in the field (Figure 2A).

Figure 2. Literature publication and citations of fungi as BCAs and biofertilisers. (A) Number of
publications on fungi as BCAs and biofertilisers and total citations per year, 1976–2024. (B) Total
citations and average annual citations of the top ten most cited literatures on fungi as BCAs and
biofertilisers [38–47].

We conducted a detailed analysis of the top 10 research papers with the highest ci-
tations to assess their influence within the field (Table 1) [38–47]. The first high-citation
article established a phylogenetic framework that served as a basis for further taxonomic,
phylogenetic, and comparative biological studies of Beauveria and their corresponding
Cordyceps teleomorphs [38]. The second article presents a comparative analysis of the
genome sequences of Metarhizium anisopliae, a broad-spectrum insect pathogen, and M.
acridum, which specifically targets the acridids [39]. The third article explored the po-
tential of T. harzianum T-203 to trigger plant defence responses by inoculating cucumber
seedling roots in a hydroponic system [40]. This study demonstrated that T. harzianum
penetrates the root system without causing extensive damage and transiently trigger-
ing host defence mechanisms. Other studies have primarily focused on the potential of
insect pathogenic fungi for biocontrol, focusing on species such as B. bassiana and the
Cordyceps/Metarhizium complex. Genome sequencing and genetic analyses were used to
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elucidate their potential roles (Figure 2B). B. bassiana, M. anisopliae, and Cordyceps sinensis
(Isaria) are entomopathogens that affect soil-dwelling insects [48]. This prevalence could
majorly contribute to their extensive research interest.

Table 1. Top 10 most-cited articles published between 1976 and 2024.

No. Title TC TC/Y Journal Year Country DOI

1

A Beauveria phylogeny inferred from nuclear
ITS and EF1-alpha sequences: evidence for
cryptic diversification and links to Cordyceps

teleomorphs

1332 66.60 Mycologia 2005 USA
https://doi.org/10
.3852/mycologia.

97.1.84

2
Persistent negative effects of pesticides on

biodiversity and biological control potential
on European farmland

898 59.87 Basic Appl. Ecol. 2010 The Netherlands
https://doi.org/10
.1016/j.baae.2009.1

2.001

3 Natural products in crop protection 840 52.50 Bioorg. Med. Chem. 2009 USA
https://doi.org/10
.1016/j.bmc.2009.0

1.046

4 Soil biota and exotic plant invasion 712 33.90 Nature 2004 USA https://doi.org/10
.1038/nature02322

5 Trichoderma: The genomics of opportunistic
success 617 44.07 Nat. Rev. Microbiol. 2011 Austria https://doi.org/10

.1038/nrmicro2637

6 Mycorrhiza-induced resistance and priming
of plant defenses 599 46.08 J. Chem Ecol. 2012 Spain

https://doi.org/10
.1007/s10886-012

-0134-6

7 Soil biota, ecosystem services and land
productivity 574 31.89 Ecol. Econ. 2007 Colombia

https://doi.org/10
.1016/j.ecolecon.20

07.03.004

8 Twenty years of postharvest biocontrol
research: Is it time for a new paradigm? 545 34.06 Postharvest Biol.

Technol. 2008 USA

https:
//doi.org/10.101
6/j.postharvbio.20

08.11.009

9 Fungal entomopathogens: new insights on
their ecology 540 33.75 Fungal Ecol. 2009 USA

https://doi.org/10
.1016/j.funeco.20

09.05.001

10 The sooty moulds 517 47.00 Fungal Divers. 2014 China
https://doi.org/10
.1007/s13225-014

-0278-5

TC: total citations; TC/Y: average annual citations since publication.

3.2. The USA and China Dominate the Field of BCAs and Biofertilisers

Fungi have garnered global interest from scientists in BCAs and biofertilisers. From the
annual growth curve of the frequency in each country (Figure 3A), the USA published its
first paper in this field in 1977 [49]. The USA also has the most papers published in this field,
reaching 859, indicating that it dominates the global scientific community. In 1996, China
published its first English paper in the WoSCC database in this field in 1996 [50]. Despite
starting later, China has recorded continuous growth in the number of published papers,
ranking second after the USA, with 665 publications. In 2015, the Chinese government
introduced the “Action Plan for Zero Growth of Fertilizer Use by 2020” and the “Action
Plan for Zero Growth of Pesticide Use by 2020” [51]. These policies likely contributed to
the exponential growth of publications by Chinese scientists, indicating that government
initiatives played a key role in driving biofertiliser research.

The citations of publications in each country highlighted that the USA (28,746) and
China (12,922) had more citations compared to other countries (Figure 3B). The USA
accounts for half of the top ten highly cited documents, further showing the USA’s vital
contribution to this field (Table 1). Among the top ten countries with the most citations,
Germany ranked first regarding the average number of citations (42.6). This demonstrates
that the results obtained by German researchers have significantly impacted this field.

https://doi.org/10.3852/mycologia.97.1.84
https://doi.org/10.3852/mycologia.97.1.84
https://doi.org/10.3852/mycologia.97.1.84
https://doi.org/10.1016/j.baae.2009.12.001
https://doi.org/10.1016/j.baae.2009.12.001
https://doi.org/10.1016/j.baae.2009.12.001
https://doi.org/10.1016/j.bmc.2009.01.046
https://doi.org/10.1016/j.bmc.2009.01.046
https://doi.org/10.1016/j.bmc.2009.01.046
https://doi.org/10.1038/nature02322
https://doi.org/10.1038/nature02322
https://doi.org/10.1038/nrmicro2637
https://doi.org/10.1038/nrmicro2637
https://doi.org/10.1007/s10886-012-0134-6
https://doi.org/10.1007/s10886-012-0134-6
https://doi.org/10.1007/s10886-012-0134-6
https://doi.org/10.1016/j.ecolecon.2007.03.004
https://doi.org/10.1016/j.ecolecon.2007.03.004
https://doi.org/10.1016/j.ecolecon.2007.03.004
https://doi.org/10.1016/j.postharvbio.2008.11.009
https://doi.org/10.1016/j.postharvbio.2008.11.009
https://doi.org/10.1016/j.postharvbio.2008.11.009
https://doi.org/10.1016/j.postharvbio.2008.11.009
https://doi.org/10.1016/j.funeco.2009.05.001
https://doi.org/10.1016/j.funeco.2009.05.001
https://doi.org/10.1016/j.funeco.2009.05.001
https://doi.org/10.1007/s13225-014-0278-5
https://doi.org/10.1007/s13225-014-0278-5
https://doi.org/10.1007/s13225-014-0278-5
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Figure 3. Number of publications on fungi as BCAs and biofertilisers in different countries and
international cooperation. (A) The annual growth curve of article frequency for the top six countries
on fungi as BCAs and biofertilisers from 1976 to 2024. (B) The top ten countries by total citation
count. Numbers represent separately the total citations and the average article citations. (C) Global
cooperation network in the field of fungal BCAs and biofertilisers. The intensity of the colour shades
corresponds to the scientific productivity levels, with deeper colours indicating higher productivity.
The numbers indicate the number of publications from each country.

The collaborative network confirmed that the application of fungi as BCAs and biofer-
tilisers is a globally recognised field of research (Figure 3C). The USA partnered with
nations, including China and Australia, on 132 journal publications, achieving an inter-
national collaboration rate of 15.4% (Figure S1). China co-authored 181 publications with
authors from the United States, Canada, Brazil, and other countries, achieving an interna-
tional collaboration rate of 27.2% and positioning itself as a major contributor in the field
(Figure S1). Effective international cooperation plays an important role in promoting the
development of this field and solving the challenges of sustainable agriculture.

3.3. Sankey Analysis Links the Institutes from Countries, Keywords, and Journals

Sankey diagrams offer an overview of the distribution of research topics across vari-
ous institutions and countries and their preferred publication outlets, providing valuable
insights into research trends and patterns (Figure 4). The results showed that the core
research topics in the field included biocontrol, B. bassiana, M. anisopliae, entomopathogenic
fungi (EPF), growth, resistance, and virulence (Figure 4A). Notable institutions contribut-
ing to this research include the United States Department of Agriculture (USDA), State
University System of Florida, and University of Florida (Figure 4A). In addition, Biocontrol,
Journal of Invertebrate Pathology, Pest Management Science, and Biocontrol Science and
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Technology were the preferred journals for publishing research on BCAs and biofertilisers
(Figure S2). Overall, 14.8% of the journal articles were related to these fields (Figure S3).
The aforementioned research institutions and academic journals encompass a comprehen-
sive array of relevant subjects related to BCAs and biofertilisers (Figure 4A). The USDA
predominantly publishes its research findings in renowned journals such as Biocontrol,
Journal of Invertebrate Pathology, and Pest Management Science. The USA and China
have led the field of biocontrol, focusing on the study of EPF, B. bassiana, and M. anisopliae
(Figure 4B). The scholarly achievements of those nations are predominantly featured in
biocontrol journals.

Figure 4. Sankey diagram showing the proportion of fungi as research subjects for BCAs and
biofertilisers by affiliation and journal (A) and by country and journal (B) The sankey diagram
consists of a series of “Nodes” and “Arcs”, that are read from left to right, with the thickness of each
line proportional to the value it is representing.

3.4. High-Frequency Keywords Show That B. bassiana and M. anisopliae Are the Key Fungi Used
as BCAs and Biofertilisers

Keywords were used to describe the subject and main points of the study, with
high-frequency keywords reflecting popular research topics. Visual analysis of keyword
co-occurrence clustering highlights that biocontrol is a central focus in using fungi as BCAs
and biofertilisers (Figure 5A,B). This study revealed three principal research trajectories in
this field (Figure 5A). The first avenue focused on fungi as BCAs in managing plant pests.
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EPF, notably B. bassiana and M. anisopliae, are predominantly used to address the challenges
posed by plant pests. The second research dimension mainly focused on the various insect
pests that fungi can eliminate, such as Hemiptera, Coleoptera, and Lepidoptera. Research
in these two areas was primarily conducted after 2016 (Figure 5B). The third research
highlights fungi as BCAs and biofertilisers to combat plant diseases and promote plant
growth, respectively. Trichoderma and AMF as BCAs are used to manage plant diseases and
promote plant growth. Research on these two fungi was mainly conducted before 2016
(Figure 5B).

Figure 5. Keywords co-occurrence map on fungi as BCAs and biofertilisers. (A) Keywords co-
occurrence network map. The blue sections illustrate the role of fungi as BCAs and biofertilisers in
the comprehensive management of plant pests. The green section provides the types of pests that
fungi can eliminate. The red sections of the analysis highlight the application of fungi as BCAs and
biofertilisers in the effective control of plant diseases. (B) Co-occurrence network map of the year of
occurrence (Frequency 100). Different colours correspond to different years. The closer the colour is
to yellow, the more recent the year it represents. (C) Word cloud of keywords. The size of the font
indicates the frequency of keyword occurrences. The larger the font, the higher the frequency. The
circle indicates the frequency of keyword occurrence.

We used word clouds to conduct keyword mapping visualisations focusing on the most
frequently occurring keywords. The word cloud prominently featured biocontrol and EPF,
such as M. anisopliae and B. bassiana, highlighting their pivotal roles (Figure 5C). B. bassiana is
an effective entomopathogen used to manage pests during red chilli cultivation [52]. It has
several benefits, such as high insect mortality rates >85%, rapid colonisation, non-toxicity
to treated plants, and plant growth enhancement. M. species have also been extensively
studied and used as sustainable mycoinsecticides to control various pests [53,54].
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3.5. The Evolution of Keywords Highlights B. bassiana as a Prominent Candidate for Future
Biocontrol

Analysing research trends enables researchers and practitioners to remain informed
about the latest developments and align their work with the most relevant and current
studies in the field. Our study explored the prospects of BCAs and biofertilisers by visually
analysing the research trends of high-frequency keywords (Figure 6). The research findings
showed a significant increase in the number and frequency of high-frequency themes
related to the use of fungi in biological control and biofertilisers since 2016. From 2018
to 2020, the research focused mainly on biological control, emphasising EPFs such as
B. bassiana and M. anisopliae. These highlight that these years have been pivotal for the
expansion and in-depth exploration of this scientific field (Figure 6A). The core research
topics in this field, biocontrol and insect pathogenic fungi with great development potential,
such as B. bassiana and M. anisopliae, have become research hotspots and have been highly
developed (Figure 6B). Growth resistance showed similar developmental trends. Basic
topics such as reproduction, management, and insect impacts are in the later stages of
research and are no longer currently researched extensively.

Figure 6. Trends on topics related to fungi as BCAs and biofertilisers. (A) The development trend of
keywords with a frequency exceeding 100 occurrences. The size and colour intensity of the circles
represent changes in frequency. Larger circles and darker colours indicate higher occurrence rates.
(B) Thematic map of keywords. The horizontal axis represents the level of importance, while the
vertical axis indicates the level of development. The first quadrant represents niche topics, characterised
by low importance but high development. The second quadrant includes popular topics, which are
highly important and well developed. The third quadrant represents declining topics with low
importance and low development, while the fourth quadrant contains basic topics, which are of high
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importance but still in the early stages of development. (C) The thematic evolution of keywords
in three stages. The length of the stripes represents the frequency of keyword occurrence. Longer
stripes signify higher keyword frequencies during that period. The thickness of each line is directly
proportional to the value it represents.

In addition, we visualised the development of keywords across three distinct periods
(1976–2000, 2001–2010, and 2011–2024) using Sankey diagrams (Figure 6C). The keywords
“Beauveria bassiana” and “biocontrol” appeared in all three stages, further confirming
their importance in this field. In the first stage (1976–2000), the keywords were mainly
basic keywords in this field and research on fungi, such as Chondrostereum purpureum
and Trichoderma harmzianum. In the second stage (2001–2010), the research in this field
focused mainly on B. bassiana. In addition to B. bassiana, biological controls, BCA, and
their expression have also become research hotspots. The research focus of the third stage
(2011–2024) was similar to that of the second stage (2001–2010), and further research was
conducted on B. bassiana in biocontrol. Although B. bassiana and M. anisopliae are present
in various ecosystems, B. bassiana tends to be dominant in natural habitats because it is
susceptible to disturbances such as soil tillage and agricultural practices [55–58]. This may
partly explain why research on B. bassiana is more prevalent than on M. anisopliae.

4. Discussion
As global food and environmental safety concerns intensify, agricultural sectors in-

creasingly focus on using BCAs and biofertilisers. Beneficial microorganisms, particularly
fungi, offer promising solutions to sustainable agriculture by enhancing crop growth and
health and have blossomed over time. This section explores the species and mechanisms
with the potential for biocontrol and plant growth promotion.

4.1. Species and Mechanisms of EPF with the Potential to Serve as BCAs

EPF are the high-frequency keywords that appeared in this study. EPF are highly
effective natural pest enemies, making them valuable for biocontrol applications as envi-
ronmentally friendly alternatives to chemical insecticides [59,60]. EPF can control various
insect stages, from larvae to adults [61], and are known to infect all developmental stages
of 20 out of 31 insect orders, including eggs, larvae, pupae, nymphs, and adults, being
susceptible to infection [62,63]. Lecanicillium spp. are particularly important for manag-
ing small sucking insects such as aphids, thrips, whiteflies, and nematodes, especially in
greenhouse settings [64,65]. B. bassiana is another well-known EPF used to control insect
pests, such as whiteflies, thrips, mites, and aphids, across various developmental stages in
numerous crops [66,67]. Using B. bassiana as a BCA offers several advantages, including
high reproductive capacity, durable spore formation, environmental friendliness, and high
pathogenicity against target pests [68]. Reportedly, B. bassiana effectively controlled Aphis
gossypii, achieving an 80.00% mortality rate at a spore concentration of 106 on the 4th day
post-application [69].

Currently, more than 170 commercial products based on EPF are available, most of
which contain B. bassiana and M. anisopliae [70]. Currently, there are about 750 species of
fungi that can infect a wide range of insects and mites. EPF such as Entomophtoromycota,
Chytridiomycota, Ascomycota, Basidiomycota, Oomycetes, and Microsporidia can infect and kill
arthropods [71,72]. Unlike bacteria and viruses, which require ingestion to be effective,
fungal BCAs directly penetrate the insect cuticle (Figure 7A) [73,74]. After penetration, the
fungal spores germinate and form germ tubes that breach the cuticle, allowing them to
enter the host. Upon invasion, spores proliferate and release toxins, eventually leading
to death [75,76]. The infection rate depends on the fungal species and the number of
spores involved [77]. Under favourable environmental conditions, the fungus emerges
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from the insect carcass, dispersing spores that can infect new hosts. Additionally, EPF
secrete various extracellular enzymes that degrade insect cuticles, thereby facilitating
infection [63,78]. Researchers have also observed other infection routes through studies
on Oryctes larvae, desert locusts (Schistocerca gregaria), pine weevils (Hylobius pales), and
Sitophilus granaries [79–84]. The conidia invaded the insect mouthparts and germinated
in the insect gut (Figure 7A). Although fungal spores can adhere to the buccal cavity,
the mechanism of insect death via spore ingestion remains largely unknown [70]. Further
physiological and molecular studies are required to elucidate these underlying mechanisms.

Figure 7. Mechanism of fungi as BCAs and biofertilisers. (A) Mechanism and effect of EPF as BCAs
(insecticides). (B) The biocontrol mechanism and effect of Trichoderma in controlling plant pathogens
and promoting crop health. (C) Mechanism and effect of AMF in controlling plant diseases and
promoting plant growth. Figures created with BioRender.com.

4.2. Trichoderma Is a Key Fungal Species That Functions as BCAs and Biofertilisers

Trichoderma was another high-frequency keyword used in our study. The genus Tricho-
derma has garnered considerable attention because of its beneficial role and can serve as
BCAs and biofertilisers (Figure 7B). Approximately 50−60% of fungal BCAs belong to this
genus, and the European Union has approved approximately 77 commercial biofungicides
based on Trichoderma [13,85]. Notable species with promising biocontrol potential include T.
harzianum, T. hamatum, T. asperellum, T. viride, T. koningii, T. pseudokoningii, T. afroharzianum,
and T. cyanodichotomus [86]. Research on T. harzianum was extensive before 2000, with
a gradual shift towards its role in biocontrol from 2000 to 2010 (Figure 6C). T. viride is
particularly effective against soil-borne pathogens such as Fusarium, Sclerotium, Rhizocto-
nia, and Pythium [3]. Various rhizospheric and epiphytic Trichoderma species are used in
products because they can mitigate abiotic and biotic stresses in host plants by controlling
a wide range of pathogens and nematodes [67]. Integrating T. guizhouense NJAU 4742
into bio-organic fertilisers augmented cucumber production in field settings [87,88]. The
growth-promoting properties of Trichoderma extend to various crops, including soybean [89],
cotton [90], sugarcane [91], and rice [92].

Trichoderma employs various mechanisms to exert biocontrol, including mycopara-
sitism, secondary antibiotic metabolite production, nutrients and space competition, and
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systemic immune response induction in plants [93–95] (Figure 7B). Mycoparasitism is
a key biological control strategy employed by Trichoderma spp. to detect and degrade
phytopathogens [96]. Trichoderma releases various cell-wall-degrading enzymes (CWDEs)
through contact with plant pathogens, which break down the structural components of the
phytopathogen’s cells [93,97]. Trichoderma strains produce low-molecular-weight volatile or
non-volatile antibiotics or diffusible compounds that interact with and restrict the growth
of deleterious plant pathogenic fungi in a process called antibiosis. Metabolites produced
by Trichoderma, including antibiotics, mycotoxins, and phytotoxins, play crucial roles in
antagonism through mechanisms such as antibiosis, competition, and hyperparasitism.
The fungus secretes enzymes such as glucanases, chitobiosidases, and chitinases with
antibiotics such as viridin, gliotoxin, and peptaibols, further contributing to its antagonistic
capabilities [98]. Trichoderma generates many secondary metabolites, including trichoder-
min, gliotoxin, viridin, and peptide-based antibiotics [99]. Antibiosis is crucial in managing
Pythium ultimum and Rhizoctonia solani, which cause damping-off in zinnias. Gliotoxin,
produced by the BCA Gliocladium virens, inhibits the growth of R. solani and P. ultimum
by disrupting membrane integrity and causing metabolite leakage [100]. Furthermore,
Trichoderma employs a dual strategy involving CWDEs and antimicrobial secondary metabo-
lites to counteract its host, thereby facilitating the formation of attachment and infection
structures [100].

The rhizosphere competence of Trichoderma enables it to colonise root surfaces, effec-
tively competing with other microorganisms for root-secreted nutrients in rhizospheric
soil [101]. Trichoderma spp. often outcompete other microorganisms in the soil because
they can mobilise and absorb essential nutrients such as copper (Cu), phosphorus (P), iron
(Fe), manganese (Mn), and sodium (Na) [102] (Figure 7B). Trichoderma’s root colonisation
further enhances plant growth, development, and stress tolerance. In addition, Trichoderma
forms mutualistic associations with the rhizosphere, naturally enhancing plant nutrition,
growth, and abiotic stress resistance [103]. Notably, antimicrobial compounds produced by
Trichoderma can also stimulate plant growth, highlighting its multifaceted role in promoting
plant health [100,104] (Figure 7B).

4.3. Mechanisms of Mycorrhizal Fungi with the Potential to Serve as BCAs and Biofertilisers

Mycorrhizal fungi also appeared frequently in the articles analysed in this study.
Mycorrhizal fungi contribute to abiotic stress reduction and play a role in biocontrol by
suppressing root-damaging pathogens, including nematodes and species from the genera
Fusarium, Pythium, and Phytophthora [105,106]. Among mycorrhizal fungi, AMF are the
most prevalent, producing the largest biomass and being beneficial to plants. AMF possess
well-documented antagonistic and inhibitory effects on soil-borne pathogens [107,108].
Over 30 AMF species have proven effective in controlling plant diseases caused by these
pathogens [43,109]. Mycorrhizal fungi are widely used as biofertilisers because they can
extend the root systems of host plants, thereby facilitating water and nutrient uptake, partic-
ularly phosphorus. Field trials have demonstrated that mycorrhizal inoculation can increase
crop yields, such as potatoes [110], maise [111], and yams [112], indicating that mycorrhizal
fungi can directly enhance crop yield and quality. Numerous biocontrol and biofertiliser
products based on mycorrhizal fungi, particularly strains of Glomus iranicum, enhance crop
water and nutrient uptake and increase nematode tolerance. Other mycorrhizal inoculants,
including Rhizophagus irregularis, Funneliformis mossae, and Claroideoglomus etunicatum, im-
prove fruit production [113]. In addition to their direct benefits in plants, AMF indirectly
enhances soil characteristics, promoting plant growth (Figure 7C). AMF improves soil
resistance to erosion by wind and water through soil structure enhancement, facilitated by
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glomalin production, a glycoprotein that aids soil carbon sequestration [114–116]. Glomalin
promotes water retention within the soil due to its positive effect on soil structure [117].

Studies have demonstrated that AMF regulates secondary metabolite production
in host plants through multiple mechanisms. These mechanisms include altering the
morphology and anatomical structure of plant roots and enhancing the physical and chem-
ical properties of the rhizosphere. These mechanisms also include They also encompass
competition with pathogens for photosynthetic resources and infection space, improving
photosynthesis and nutrient uptake, and activating plant disease resistance and defence
systems. These mechanisms include altering the morphology and anatomical structure of
plant roots, enhancing the physical and chemical properties of the rhizosphere, competing
with pathogens for photosynthetic resources and infection space, improving photosynthesis
and nutrient uptake, and activating plant disease resistance and defense systems [118–121]
(Figure 7C). AMF produces compounds such as phytochemicals, calluses, alkaloids, and
phenols on the surfaces of inner and outer root hyphae, which help plants withstand disease-
induced stress [122]. Glomus mosseae induces a phytotoxin stress response in plant roots,
enhancing disease resistance [123]. In strawberries inoculated with G. mosseae, the incidence
and severity of diseases caused by Fusarium oxysporum and Colletotrichum gloeosporioides
were reduced in the aerial parts and roots. Concurrently, this treatment increased the total
polyphenol and ascorbic acid contents [124,125]. AMF also induced “Mycorrhiza-Induced
Resistance”, protecting against various pests [126] (Figure 7C).

4.4. Limitations of This Study

Although our study adhered to the established principles of bibliometrics and content
analysis, there were some limitations. First, we focused on English language articles
published within a specific timeframe. While these publications represented over 97%
of the retrieved articles, the study was subject to language and temporal constraints.
Second, our search strategy aimed to capture various relevant studies by including terms
related to fungi, such as BCAs and biofertilisers, while attempting to exclude irrelevant
literature using the NOT operator. However, given the inherent limitations of the search
algorithms, a few unrelated publications may have been inadvertently included. Third,
bibliometric analysis lacks universally accepted standards, and variations in analytical
tools and methods can introduce subjectivity into the research process. Despite these
limitations, the large dataset analysed in this study offers a comprehensive overview and
valuable insights into the current state of research. It also serves as a meaningful guide for
future investigations.

5. Conclusions
The results of this study highlighted the value of bibliometric techniques in revealing

global research trends in fungi, such as BCAs and biofertilisers in the field of biocontrol. Ac-
cording to the survey results, fungal biocontrol has attracted increasing academic attention
recently. This research field differs in various countries and regions. China and the USA are
the main promoters and leaders of fungal biocontrol and biofertiliser research. This study
mainly focused on the core themes of biocontrol, fungi with biocontrol potential, types of
diseases solved, and their effects. Among them, EPF, such as B. bassiana and M. anisopliae,
are research hotspots. This article presents several types of fungi that exhibit promise as
BCAs and biofertilisers for fungal applications and outlines their mechanisms of action.
This study helps to understand the current status of fungi as BCAs and biofertilisers and
can be used to guide future research.
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