Message from the Editor-in-Chief

Gels (ISSN 2310-2861) is recently established international, open access journal on physical and chemical gel-based materials. The journal aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. General topics include but not limited to synthesis, characterization and applications of new organogels, hydrogels and ionic gels made either from low molecular weight compounds or polymers, composite and hybrid materials where a metal is by some means incorporated into the gel network, and computational studies of these materials in order to provide a better understanding of gelation mechanism. We cordially invite you to consider publishing with us and contribute with your own grain of sand to the advance in this fascinating field.

Author Benefits

- **Open Access** Unlimited and free access for readers
- **No Copyright Constraints** Retain copyright of your work and free use of your article
- **Thorough Peer-Review**
- **No Space Constraints, No Extra Space or Color Charges** No restriction on the length of the papers, number of figures or colors
- **Journal Rank** JCR - Q1 (Polymer Science)
- **Coverage by Leading Indexing Services** Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, and many other databases
- **Rapid Publication** First decision provided to authors approximately 14.7 days after submission; acceptance to publication is undertaken in 3.4 days (median values for papers published in this journal in the second half of 2021)
Aims and Scope

Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.

The scope of *Gels* includes:

- Dried-gels;
- Colloidal gels;
- Gels made in mixtures of solvents;
- Organogels, hydrogels and ionic gels made either from low molecular weight compounds and/or polymers (i.e., physical (supramolecular) and chemical gels);
- Composite and hybrid materials where a metal is by some means incorporated into the gel network (i.e., metallogels);
- Computational modeling of these materials in order to provide a better understanding of gelation mechanism;
- Synthesis, characterization and applications of the above-mentioned materials