machine learning & knowledge extraction

an Open Access Journal by MDPI
Message from the Editor-in-Chief

Machine learning deals with understanding intelligence to design algorithms that can learn from data, gain knowledge from experience and improve their learning behaviour over time. The challenge is to extract relevant structural and/or temporal patterns (“knowledge”) from data, which is often hidden in high dimensional spaces, thus not accessible to humans. Many application domains, e.g., smart health, smart factory, etc. affect our daily life, e.g., recommender systems, speech recognition, autonomous driving, etc. The grand challenge is to understand the context in the real-world under uncertainty. Probabilistic inference can be of great help here as the inverse probability allows to learn from data, to infer unknowns, and to make predictions to support decision making.

Author Benefits

- **Open Access** Unlimited and free access for readers
- **No Copyright Constraints** Retain copyright of your work and free use of your article
- **Thorough Peer-Review**
- **No Space Constraints, No Extra Space or Color Charges** No restriction on the maximum length of the papers, number of figures or colors
- **Coverage by Leading Indexing Services** Scopus, ESCI (Web of Science), dblp, and other databases
- **Rapid Publication** First decision provided to authors approximately 19.5 days after submission; acceptance to publication is undertaken in 3.6 days (median values for papers published in this journal in the second half of 2022)
Aims and Scope

Machine Learning and Knowledge Extraction (ISSN 2504-4990) provides an advanced forum for studies related to all areas of machine learning and knowledge extraction. It publishes reviews, regular research papers, communications, perspectives, and viewpoints, as well as Special Issues on particular subjects.

The aim of *Machine Learning and Knowledge Extraction* is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, the journal has no restrictions regarding the maximum length of papers. Full experimental details should be provided so that the results can be reproduced.

The scope of *MAKE* includes:

- Machine learning
- Knowledge representation
- Artificial intelligence
- Knowledge extraction
- Neural network
- Natural language processing
- Unsupervised learning
- Privacy
- Uncertainty
- Transfer learning
- Image classification
- Information retrieval
- Feature selection
- Visualization
- Network- and graph-based machine learning
- Geometric machine learning and topology
- Entropy and machine learning applications

Editorial Office

MAKE Editorial Office
make@mdpi.com
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
www.mdpi.com
mdpi.com/journal/make