Friction, wear, and lubrication are tribological phenomena that govern the behavior of interacting surfaces in a wide range of machine components. Understanding the physical and chemical nature of these phenomena is critical to achieving long component lifetime and economical operation. Research in the field of tribology is highly interdisciplinary, and encompasses the fields of physics, chemistry, engineering, and mathematical modeling. *Lubricants* invites contributions on new advances in all areas of tribology for publication as peer-reviewed research articles, reviews of current research, letters, and communications. We are committed to providing timely reviews of all articles submitted. Please consider sharing your work with the scientific community through publication in *Lubricants.*

Author Benefits

- **Open Access** Unlimited and free access for readers
- **No Copyright Constraints** Retain copyright of your work and free use of your article
- **Thorough Peer-Review**
- **Discounts on Article Processing Charges (APC)** If you belong to an institute that participates with the MDPI Institutional Open Access Program
- **No Space Constraints, No Extra Space or Color Charges** No restriction on the maximum length of the papers, number of figures or colors
- **Coverage by Leading Indexing Services** Scopus, SCIE (Web of Science), Inspec, and many other databases
- **Rapid Publication upon Acceptance** First decision provided to authors approximately 12.4 days after submission; acceptance to publication is undertaken in 3.6 days (median values for papers published in this journal in the second half of 2022)
Aims and Scope

Lubricants (ISSN 2075-4442) is an international scientific open access journal. Lubricants covers all aspects of tribology, including the study and application of the principles of friction, lubrication, and wear.

The scope of *Lubricants* includes:

- Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication
- Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction
- Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring
- Cavitation and erosion
- Sub-surface stressing, fatigue spalling, pitting, micro-pitting
- Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids
- Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics
- Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning
- Physical chemistry of lubricants, boundary active species, adsorption, bonding