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Abstract: The growing concern over the environmental impacts of industrial chemicals on aquatic
ecosystems has prompted increased attention and regulation. Aromatic amines have drawn scrutiny
due to their potential to disturb aquatic ecosystems. 4-chloroaniline and 3,4-dichloroaniline are
chlorinated derivatives of aniline used as intermediates in the synthesis of pharmaceuticals, dyes,
pesticides, cosmetics, and laboratory chemicals. While industrial applications are crucial, these
compounds represent significant risks to aquatic environments. This article aims to shed light on
aromatic amines’ ecological and ecotoxicological impacts on aquatic ecosystems, given as examples 4-
chloroaniline and 3,4-dichloroaniline, highlighting the need for stringent regulation and management
to safeguard water resources. Moreover, these compounds are not included in the current Watch List
of the Water Framework Directive, though there is already some information about aquatic ecotoxicity,
which raises some concerns. This paper primarily focuses on the inherent environmental problem
related to the proliferation and persistence of aromatic amines, particularly 4-chloroaniline and
3,4-dichloroaniline, in aquatic ecosystems. Although significant research underscores the hazardous
effects of these compounds, the urgency of addressing this issue appears to be underestimated. As
such, we underscore the necessity of advancing detection and mitigation efforts and implementing
improved regulatory measures to safeguard the water bodies against these potential threats.
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1. Understanding Aromatic Amines

Aromatic amines are organic nitrogen compounds that consist of an amine coupled to
an aromatic ring [1]. Many compounds belong to this class, such as phenylenediamines,
toluidines, diaminotoluenes, naphtylamines, aminopyridines, aminopyrimidines, amino-
quinolines, aminopurines, aminoacridines and anilines [2]. The simplest aromatic amine is
named aniline or benzenamine (originated from benzene). In 1843, A. W. von Hofmann
established those multiple substances identified before as “krystallin” (O. Unverdorben,
1826), “anilin” (C. J. Fritzche, 1841) and “benzidam” (N. Zinin, 1842), were a single nitroge-
nous base, that nowadays is named as aniline [3]. Aromatic anilines are commonly used in
the production of dyes (e.g., Milliken, Netherlands), pharmaceuticals (e.g., DKSH Portugal,
Unipessoal, Lda.), cosmetics (e.g., BASF Portuguesa, S.A., Portugal), laboratory chemicals
(e.g., Lanxess, Germany), polymers (e.g., Covestro, Germany) and pesticides (e.g., Bondalti,
Portugal) [4,5]. Considering aniline production, an increase from 2011 to 2021 at a rate of
>1.1% per year was recorded. In 2021 it was estimated at around 605 thousand tons, and
the biggest producers in the European Union (EU) were Belgium, Czechia, and Portugal,
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with 293, 105, and 85 thousand tons exported, respectively. Total aniline consumption in
the EU was around 905 thousand tons in 2021, where the most relevant countries were the
Netherlands, Germany, Hungary, Spain, Portugal, the Czech Republic, and Belgium [5].
The country that presented a more significant increase in consumption from 2011 to 2021
was Belgium (+15.6%), comparatively, to the others mentioned [5].

Chloroanilines, such as 4-chloroaniline (4-CA) and 3,4-dichloroaniline (3,4-DCA), are
used as building blocks in the synthesis of pharmaceutical products such as chlorhexidine
and triclocarban, used in the production of antiseptic mouthwashes, deodorants, soaps,
etc. [6,7]. These aromatic amines play a crucial role in the development of active phar-
maceutical ingredients and are incorporated into the chemical structures of diverse drug
classes, including analgesics, antipyretics, and antivirals [8]. The vibrant coloration in
many dyes and pigments is also attributed to the presence of aromatic compounds such as
chloroanilines [9]. These aromatic amines are used as precursors in the production of azo
dyes, which are widely used in the textile, printing, and cosmetic industries [10]. They are
also utilized in the synthesis of agrochemicals, such as herbicides and fungicides, which
play a vital role in crop protection and enhancement [11]. The significance of chloroanilines
in these industrial sectors underscores their economic importance and the extensive use of
these aromatic amines in various manufacturing processes [4,5]. However, it is essential to
consider the potential environmental impacts associated with their production, use, and
disposal [12].

The synthesis of 4-CA can be achieved through different processes: (i) the reduc-
tion of 4-chloronitrobenzene using SnCl2 as a reducing agent, producing the interme-
diates 4-chloronitrosobenzene and 2-amino-4-chlorophenol [13]; (ii) the reaction of 1,4-
dichlorobenzene with ammonia, producing HCl as a byproduct [11]; (iii) the hydrogenation
of chloronitrobenzene using a heterogeneous catalyst (e.g., PtZn), which can produce
chloroanilines, bromoanilines, and iodoanilines as byproducts; and (iv) biodegradation
of linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) [14,15]. Meanwhile, 3,4-DCA
is a biodegradation product of various phenylurea, acylanilide, and phenylcarbamates
herbicides, including: (i) linuron, producing N,O-dimethylhydroxylamine as a byproduct;
(ii) 3,4-Dichloropropionanilide (propanil), producing propionate as a byproduct; and (iii)
diuron (3-(3,4-Dichlorophenyl)-1,1-dimethylurea), producing a dimethylamine [16,17]. 3,4-
DCA can also be degraded by Acinetobacter baylyi to form 4-CA [18]. 4-CA and 3,4-DCA
can also be used for the synthesis of some herbicides (4-CA: monolinuron, monuron, and
diflubenzuron; 3,4-DCA: linuron, diuron, and propanil) [19]. Linuron and diuron are
considered as more relevant substances, being the two parent compounds and/or byprod-
ucts of 4-CA and 3,4-DCA where there is more knowledge relative to the ecotoxicological
effects on various organisms, also making a connection with the toxicity of 4-CA and/or
3,4-DCA [14–17,19].

The chemical processes involved in the synthesis of 4-CA and 3,4-DCA certainly
have associated challenges and potential environmental problems. Chemical waste can
include spent catalysts, unreacted starting materials, and byproducts that are not part of the
desired final product, degrade slowly, bioaccumulate, contaminate the water, and impact
soil health [12]. High concentrations of compounds used in the synthesis of 4-CA and
3,4-DCA can harm ecosystems through air pollution and soil damage, for example, via
eutrophication, when excess nutrients are introduced in the soil, which can disrupt the
balance of nutrients, negatively impacting the growth and health of plants, or altering the
structure and functioning of soil microbial communities [20,21]. This can have cascading
effects and consequently lead to biodiversity loss [22]. Herbicides based on 4-CA and
3,4-DCA can leach into groundwater and induce poor health conditions in the individuals
exposed. Some of these compounds disrupt hormone production and are potentially
genotoxic, mutagenic, and carcinogenic [23,24]. On the other hand, the acidification of
water bodies caused by the substances involved in the synthesis of 4-CA and 3,4-DCA is also
a concern. As the pH of water decreases, aromatic amines properties and bioavailability
can be affected through their protonation, leading to a decrease in their solubility and
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potentially altering the speciation and transformation of these compounds, which can
impact their toxicity and persistence in the environment [25].

These risks necessitate careful waste management practices to prevent contamination
of water and soil and the release of harmful substances into the atmosphere. Moreover,
workers’ exposure to these chemicals must be carefully managed to prevent health risks.
However, the specific risks and waste products depend on the methods used and cannot be
universally defined, depending on various factors, including the starting materials, intended
applications, specific methods, and conditions used in the synthesis process [26–29]. Due
to the lack of information concerning the environmental presence and impact of aromatic
amines (compounds with high and diverse use) on aquatic ecosystems, this opinion paper
intends to review the information available concerning these two compounds (4-CA and
3,4-DCA), identifying their environmental effects on aquatic organisms and measures to be
taken into consideration to safeguard the environment.

2. Environmental Presence

The entrance of 4-CA and 3,4-DCA into the environment can occur through various
pathways, including wastewater discharges, accidental spills, and atmospheric deposi-
tion [30]. These pathways can lead to the contamination of water bodies and pose risks to
aquatic organisms. Even after undergoing treatment, trace amounts of these chemicals can
still be present in wastewater-discharged effluents, potentially affecting downstream ecosys-
tems [31]. In Table 1, environmentally relevant concentrations (ERC) of 4-CA and 3,4-DCA,
already detected worldwide and from different aquatic matrices, are evidenced [32–40]. The
information resumed in Table 1 is a result of a literature review (1988–2022) where specific
keywords were used: aromatic amine, chloroaniline, 4-chloroaniline, 4-CA, p-chloroaniline,
3,4-dichloroaniline, 3,4-DCA, drinking water, wastewater influent, wastewater effluent,
river, superficial water “https://scholar.google.com/ (accessed on 15 June 2023)”.

Table 1. Literature review of environmental concentrations (µg/L) of 4-chloroaniline (4-CA) and 3,4-
dichloroaniline (3,4-DCA) recorded in drinking water treatment plant (DWTP) influents, wastewater
treatment plant (WWTP) influents and effluents, river superficial water, and groundwater.

Compound Type of Water Site µg/L Reference

4-CA
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Table 1. Cont.

Compound Type of Water Site µg/L Reference

3,4-DCA
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In addition, accidental spills during the transportation, storage, or handling of
chloroanilines can lead to direct contamination of water bodies and, consequently, to
immediate exposure in nearby aquatic ecosystems, with potential toxic effects on organ-
isms [41]. These compounds can also be released into the atmosphere during industrial
operations, combustion processes, or volatilization from contaminated surfaces. Once in
the air, chloroanilines can be transported over long distances and eventually be deposited
into land or water surfaces through precipitation or dry deposition, contaminating remote
water bodies, even in areas far away from the pollution source [42]. 4-CA and 3,4-DCA
can undergo diverse transformation processes (e.g., reductive dichlorination and micro-
bial mineralization), may exhibit relative stability, adsorb to suspended particles in water
bodies, and have leaching potential [43,44].

These compounds are considered persistent in the environment regarding the chem-
ical properties in water. 4-CA presents a boiling point of 232 ◦C, a vapor pressure of
0.015 mm Hg at 25 ◦C [11], it can be volatilized (35.7 days half-life in rivers), photo oxidized
in surface water (1 to 3 h half-life with low organic matter) and is biodegraded (several
days to months half-life) [45]. 3,4-DCA showed a boiling point of 272 ◦C, vapor pressure of
1 mm Hg at 81 ◦C [46], and no evidence of hydrolysis, volatilization, and biodegradation.
However, it undertakes photolysis in surface water (18-day half-life) and can bioaccumulate
in groundwater sediments due to its very slow degradation rate (1000 days half-life) [47].

3. Impact on Aquatic Organisms

The freshwater biodiversity threat refers to the substantial decline in species diversity
and abundance within freshwater ecosystems, including rivers, lakes, and wetlands [48].
This occurs due to multiple factors, including habitat loss, water pollution, invasive species,
overfishing, climate change, altered water flow, and insufficient conservation efforts [49].
The repercussions of this crisis extend widely, affecting ecosystem services and human
livelihoods alike [50]. Successfully addressing the environmental impacts is important for a
comprehensive approach involving habitat protection, pollution management, sustainable
water practices, invasive species control, and international cooperation [51].

Aromatic amines, despite being utilized in industrial and commercial sectors, present a
notable hazard to freshwater ecosystems and can exacerbate the ongoing biodiversity threat.
Entering water bodies through diverse pathways, these compounds endure, resulting in
water pollution [52]. Exhibiting toxicity to aquatic organisms induces species depletion,
degrades habitats, and fosters bioaccumulation [12]. Regarding these effects, it is urgent
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to implement measures to mitigate the impact of aromatic amines on the preservation of
freshwater biodiversity.

As previously reported, 4-CA and 3,4-DCA have been detected at the ng/L to µg/L
in the aquatic compartment (Table 1) and are classified as persistent in aquatic environ-
ments, leading to potential bioaccumulation in organisms across the food web [52]. Some
ecotoxicological studies have demonstrated that these compounds can disrupt behav-
ior, growth, reproduction, and development, as well as cause sub-individual alterations
(Table 2) [38,53–69].

Table 2. Literature review of ecotoxicological effects in different species after exposure to 4-
chloroaniline (4-CA), 3,4-dichloroaniline (3,4-DCA), linuron and diuron (parent compounds and/or
byproducts of 4-CA and 3,4-DCA).

Compound Organisms Updated
Species/Strains Ecotoxicological Effects µg/L Reference

4-CA
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(Chick, 1903) 
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Algae
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EC50 (96 h)
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[58]
Chlorella pyrenoidosa

(Chick, 1903)
EC50 (72 h)

(growth inhibition) 8440

Invertebrates
Daphnia magna EC50 (48 h)

(immobilization) 310–226,000 [59,60]

Magallana gigas
(Thunberg, 1793)

Genotoxicity
(6 h) ≥0.05 # [61]
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Danio rerio LC50 (96 h)
(death of juveniles) 3200 [62]
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Table 2. Cont.

Compound Organisms Updated
Species/Strains Ecotoxicological Effects µg/L Reference

Linuron
(parent

compound
and/or

byproduct of
4-CA and
3,4-DCA)

Vertebrates Oncorhynchus mykiss
(Walbaum, 1792)

Histopathological damage
in the liver and gills and

oxidative stress
(21 days)

≥30 [64]

Diuron
(parent

compound
and/or

byproduct of
3,4-DCA)

Plants

Elodea canadensis
(Michaux, 1803)

Phytotoxic
(5 weeks) ≥0.2 [65]Myriophyllum spicatum

(Linnaeus, 1753)
Potamogeton lucens
(Linnaeus, 1753)

Invertebrates Magallana gigas

Genotoxic, embryotoxic
(24 h) ≥0.05 [61,66]

Immunotoxic
(4 weeks) ≥0.3 [67]

Vertebrates Oreochromis niloticus Endocrine disruptor
(25 days) ≥0.2 [63]

Mammals Male Wistar rat and
human urothelial cell

Carcinogenic, mutagenic,
cytotoxic and neurotoxic
alterations. Disruption of
endocrine, cardiovascular
and respiratory functions

(3 days)

0.05–0.5 [68,69]

1 Fibromas, fibrosarcomas, hemangiosarcomas, osteossarcomas or sarcomas. 2 Hemangiosarcomas or heman-
giomas. 3 Reduction in spawning rate, fertilization, gonadosomatic index, and disruption in oocyte development.
* Exposure via feeding. # Environmentally relevant concentrations (ERC) (Table 1).

Considering this literature review (Table 2), behavioral changes (e.g., feeding patterns,
locomotion, predator-prey interactions, and avoidance), as well as the disruption of growth,
reproduction, and development of aquatic organisms (e.g., reduced growth rates, gamete
production, fertilization, and impaired development) after exposure to xenobiotics, can
impact the ability of individuals to find food, evade predators, reduce fitness and repro-
ductive capacity [64]. This can ultimately affect survival and reproductive success, having
long-term implications for aquatic ecosystems’ population dynamics and health [70]. How-
ever, the literature has limited information on the ecotoxicological impacts of 4-CA and
3,4-DCA at environmentally relevant concentrations.

4. Status in Water Framework Directive

The Water Framework Directive (WFD, adopted in 2000) is a legislation in the EU
focused on water policy that aims to achieve and maintain all water bodies with a good
ecological and chemical status. Both 4-CA and 3,4-DCA compounds are listed as candidates
for the 4th Watch List under the WFD [71]. 4-CA and 3,4-DCA were originally selected as
Priority 1, but after Member States and Stakeholder experts’ input regarding uncertainties
considering the predicted no-effect concentration (PNEC), Joint Research Center experts
chose to gather more data before including them in the Watch List, being moved into the
Priority 2 category [71]. Priority 1 and Priority 2 substances contain the “most suitable
candidates for inclusion in the next Watch List” and “almost suitable candidates for the next
Watch List, but for which a reliable PNEC or analytical method is missing”. However, these
two categories include compounds that may represent a risk in the aquatic compartment,
having limited or low-quality monitoring data in the EU for risk assessment.
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5. Environmental Concerns about Aromatic Amines

Detecting and measuring chemicals such as aromatic amines in the environment
poses several challenges due to the low concentrations (ng/L to µg/L), complex matrices,
and the need for sensitive and selective analytical quantification techniques. However,
advancements in analytical methods, through the implementation of specific techniques
such as a derivatization step prior to gas chromatography (GC), extraction processes (e.g.,
liquid–liquid extraction or solid-phase extraction) followed by high-performance liquid
chromatography (HPLC), capillary zone electrophoresis (CZE) and spectrophotometric
methods, can provide improved capabilities for the detection of these specific compounds
in natural waters [72].

Moreover, it is crucial to address the issue of contaminated water sources and im-
plement appropriate measures to reduce the exposure of aquatic individuals to aromatic
amines. The specific mechanism of action of aromatic amines on aquatic environments and
organisms cannot be understated. The evidence gathered from scientific studies, such as
the potential for long-range transport and the persistence of aromatic amines in the envi-
ronment, highlights the need for stringent regulation and management practices to prevent
the release of these chemicals into water bodies [73]. Efforts should focus on reducing the
use with the promotion of alternative substances, for instance, non-halogenated anilines
(e.g., methylanilines, nitroanilines, or methoxyanilines) or less toxic aromatic compounds,
as intermediates in the industry where chloroanilines are currently used [74]. On the other
hand, it is important to implement effective wastewater treatment processes that have
been referred to in the literature for aniline removal, such as Electro-Fenton® and peroxy-
coagulation processes using a flow reactor, implementing the use of a sequencing batch
reactor, zero-valent ion coupled with hydrogen peroxide, among others [75–77]. These
methods can reduce the concentration of aromatic amines in wastewater treatment plant
(WWTP) effluents, mitigating the impact on the ecosystems. Striving for a sustainable
future demands proactive measures to protect water resources and the delicate ecosystems
they support.

6. Future Developments

The big challenge for the future is to reduce the impacts of anthropogenic activities on
natural resources and protect ecosystems to achieve an ecologically sustainable environ-
ment. Given the wide use of these compounds in industry for different purposes, as well as
the wide dissemination to the environment via elimination processes or as a result of degra-
dation products, it adds greater concern to the environmental presence. Additionally, it is
empirical to anticipate the environmental impacts of aromatic amines before their undue
occurrence, employing more effective analytical methodologies to study the interrelation
between the health of organisms, even at sub-individual levels (more sensitive and early
warning responses) and the ecosystem. A response at sub-individual levels to stressors, i.e.,
at the cellular level, such as perturbations of oxidative metabolism, after exposure to these
compounds, can potentially initiate outcomes at individual levels, manifesting as changes
in behavior and reproductive irregularities or even death. In such scenarios, a cascade
effect can incite implications at the population level, such as altered abundance, species
decay, or population dynamics. Consequently, sequential effects on the community level
may be detected, such as disruption in food chains, alterations in community composition,
or changes in biodiversity. Lastly, these influences can scale up to the ecosystem level,
inducing functional changes such as nutrient cycling disturbance, a shift in energy flow,
or alteration in ecosystem services [78]. Therefore, effective anticipatory measures require
complex and comprehensive prospective risk assessments, taking into consideration this
complex web of interactions.

Although in the Water Framework Directive, 4-CA and 3,4-DCA are still not included
as compounds for monitorization to ensure a good ecological water status, they are currently
detected between the ng/L and µg/L range, as evidenced in Table 1. These environmentally
relevant concentrations are also the threshold values to be taken into consideration for risk
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assessment and policies implemented for these compounds. It is also empirical to consider
that at these concentrations, and as evidenced above, several harmful ecotoxicological
effects are reported at the sub-individual and individual level in several organisms and
populations, including in the aquatic compartment. Therefore, these findings cannot be
disregarded.

Considering that WWTP can only partially remove these compounds from wastewa-
ter [31] and the production and consumption of aromatic amines has increased in recent
years [5], this will likely lead to an increase in the concentrations in surface waters. In this
case, an environmental risk assessment concerning aromatic amines becomes crucial for
the implementation of policies to restrict their usage and diffusion through the aquatic en-
vironment. Particularly for compounds with low rates of degradation and directly applied
in the environment, that can have a more detrimental impact on aquatic organisms.

Due to its wide use, the diverse possibilities of reaching the environment, persistence,
analytical methods of analysis (often inappropriate), and the lack of scientific evidence on
the real risks to aquatic ecosystems (considering the above factors) reinforce the silent threat
that aromatic amines, mainly 4-CA and 3,4-DCA, represent for a sustainable environment
balanced with anthropogenic needs.
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