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Abstract: Medical imaging techniques, such as (cone beam) computed tomography and magnetic
resonance imaging, have proven to be a valuable component for oral and maxillofacial surgery
(OMFS). Accurate segmentation of the mandible from head and neck (H&N) scans is an important step
in order to build a personalized 3D digital mandible model for 3D printing and treatment planning of
OMFS. Segmented mandible structures are used to effectively visualize the mandible volumes and to
evaluate particular mandible properties quantitatively. However, mandible segmentation is always
challenging for both clinicians and researchers, due to complex structures and higher attenuation
materials, such as teeth (filling) or metal implants that easily lead to high noise and strong artifacts
during scanning. Moreover, the size and shape of the mandible vary to a large extent between
individuals. Therefore, mandible segmentation is a tedious and time-consuming task and requires
adequate training to be performed properly. With the advancement of computer vision approaches,
researchers have developed several algorithms to automatically segment the mandible during the
last two decades. The objective of this review was to present the available fully (semi)automatic
segmentation methods of the mandible published in different scientific articles. This review provides
a vivid description of the scientific advancements to clinicians and researchers in this field to help
develop novel automatic methods for clinical applications.

Keywords: mandible segmentation; 3D virtual surgical planning; convolutional neural networks;
machine learning

1. Introduction

Three-dimensional (3D) medical imaging techniques have a fundamental role in the
field of oral and maxillofacial surgery (OMFS) [1,2]. 3D images are used to guide diagnosis,
assess the severity of disease and for pre-operative planning and per-operative guidance
using 3D images and virtual surgical planning (VSP) [3]. In the field of oral cancer, where
surgical resection requiring the partial removal of the mandible is a common treatment,
resection surgery is often based on 3D VSP to accurately design a resection plan around
tumor margins [4]. In orthognathic surgery and dental implant surgery, 3D VSP is also
extensively used to precisely guide mandibular surgery [3]. Image segmentation from the
radiography images of the head and neck (H&N), which is a process to create a 3D vol-
ume of the target tissue, is a useful tool to visualize the mandible and quantify geometric
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parameters [5]. Studies have shown that 3D VSP requires accurate segmentation of the
mandible, which is currently performed by medical technicians [4,6]. Mandible segmenta-
tion, especially for 3D VSP, was usually done manually, which is a time-consuming and
poorly reproducible process [7,8].

The mandible is located in the lower part of the facial skeleton and consists of the
body, rami, angle, and condyles. The different anatomical regions of the mandible have
varying densities, which is especially true if the teeth and surrounding soft tissue are also
considered, which makes accurate manual segmentation of the mandible time-consuming
and challenging [9]. Because a 3D model of the mandible is necessary for 3D VSP in
OMFS, and time is often a limiting factor in the clinical workflow, fast mandible segmen-
tation has become a frequent topic of research in recent decades [7]. Researchers have
attempted to automate the segmentation process of the mandible, as well as all kinds of
tissues from medical images, to reduce the processing time and also the inter-observer
variability [10]. Recent advances in image segmentation [11–15] have enabled their appli-
cations to medical image segmentation, which stimulate progress in automating mandible
segmentation. Although significant progress has been made in mandible segmentation,
state-of-the-art methods still experience unsatisfactory outcomes, with several challenges
to be solved. For oncology segmentation, the segmentation has to be made for an affected
bone (with the tumor), which is a different task from segmenting a bone in implantology or
for orthognathic purposes. In implantology, many patients have incomplete teeth, which
can accordingly lead to resorption of the bone causing shape variation in the mandible
among patients. In orthognathic surgery, the population considered varies greatly in shape
in addition to asymmetric, which is also a possible challenge for (automatic) segmentation.
Figure 1 shows research challenges in automatic segmentation algorithms for the mandible.
The challenges associated with mandibular bone segmentation can be categorized as follows:

• The presence of anatomically complex bony structures in the scans. As the examples
show in Figure 1a, a normal H&N scan includes other bony structures, with a complex
anatomy and a similar density. Determining the correct boundaries and separating
the mandibular bone from the other bones may be challenging.

• Artifacts. When X-rays pass through high-density structures or materials, including
teeth, postoperative metal implants, etc., the signal on the detectors will change, which
will lead to attenuation calculation errors in the (cone beam) computed tomography
(CBCT/CT) reconstruction process and consequently cause high noise and strong arti-
facts in the visual impression of the scans [16]. The mandible boundaries nearby teeth
tend to be blurred and hard to detect. In particular, the boundaries of mandible rami
are difficult to be identified when dental braces and metal implants badly affect the
image quality [17], as shown in Figure 1b. Furthermore, the fact that the superior and
the inferior teeth are at the same slice and even overlapping that makes segmentation
methods challenging, as shown in Figure 1c.

• Low contrast. Due to the tomography process and the thinness of condyles, the slices
in condyles commonly have low contrast [18], as shown in Figure 1d. Especially in
cone-beam CT (CBCT) scans, the condyles in the scans are more blurred than in CT
because of its intensity inhomogeneity [19,20].

• Variation in the appearance. As the examples show in Figure 1e, mandibular shapes
vary in shape and size between individuals [18]. Additionally, the shape of the
mandibular condyles and body is extremely variable among patients and different
age groups [21].

• Annotation Bias. The manual mandible segmentation often leads to inter-observer
variability (Dice score of 94.09% between two clinical experts) [22], which directly
influences the quality of treatment planning.
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Figure 1. Examples of typical cases that challenge accurate mandible segmentation. (a) Various bone-structured organs in
the H&N scans. (b) Metal artifacts. (c) Presence of inferior and superior teeth in the same slice. (d) Lower intensity in the
condyles. (e) Large variation in mandibles between patients.

In the present article, a review has been conducted, where the literature available in
PubMed and Web of Science databases relating to these studies was considered. In the litera-
ture, a variety of segmentation methods, based on statistical shape model, atlas and machine
learning, are proposed for head and neck scanning. The selected publications were divided
into several categories depending on the type of method used and discussed extensively.

2. Method for Literature Selection

In February 2021, a search was conducted on the Web of Science (https://apps.
webofknowledge.com (accessed on 23 February 2021)) and PubMed (https://www.ncbi.nlm.
nih.gov/pubmed/ (accessed on 23 February 2021)), with the topic keywords and search
builder: (automat* AND segment* AND mandible AND 3D). While searching the literature,
no specific time line was set. The literature search was performed by the two observers.

In this article, the lists of literature acquired by the above-mentioned database search
were imported into Rayyan QCRI [23]. Using the web application, duplicates were searched
and removed accordingly. Subsequently, another search was performed to exclude the
articles that did not include “segment” or “mandible” keywords in their title and abstracts.
Consequently, the irrelevant studies were removed by manually screening the titles and
abstracts of journal articles. The obtained relevant publications were further supplemented
with selected publications found in their list of references. A detailed analysis of the
resulting publications was then conducted from the perspective of image modality, image
database, evaluation metrics, and methodology.

3. Results

In the field of automatic 3D mandible segmentation, the search on the Web of Sci-
ence and PubMed databases yielded 33 and 45 results, respectively. After detecting the
duplicates in Rayyan, 23 duplicates were removed. After reviewing their abstracts by two
observers, 12 were considered to be relevant and were further supplemented with selected
publications from their list of references. In total, we collected 77 publications focused on
mandible segmentation or organs at risk (OARs) (including mandible) segmentation in
the H&N region. Here, we emphasize that we collected 41 publications from the reference
of [24]. An overview of the results of the literature search is presented in Figure 2.

https://apps.webofknowledge.com
https://apps.webofknowledge.com
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
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Figure 2. Flowchart of the literature review article selection process.

3.1. Image Modality

CT imaging is primarily performed for mandibular bone segmentation in their works
since CT images provide a promising visibility of the bone structures. There are 70, 7 and
4 publications using CT, CBCT and magnetic resonance imaging (MRI), respectively, to
visualize H&N (note: some articles applied the scans from multiple image modalities).
CBCT images are applied in H&N because of its lower radiation dose, lower cost and
faster scanning time than conventional CT [25]. In particular, CBCT is often used for
validating patient settings or adjusting treatment plans to adapt to anatomical changes.
While CT images provide a good visibility of the bony anatomy, the contrast differences
between various soft tissues are much lower than those in MRI. In the consensus on manual
delineation of the mandible based on CT, it is also necessary to use MR images, in addition
to CT, to help delineate surrounding tumors and soft tissues (note: PET(/CT) imaging
technique is also helpful for the tumor delineation [26–28]). Furthermore, considering
the ionizing radiation of CT/CBCT scanning and the development of computer vision
techniques, a strategy of MRI-only treatment planning has become increasingly valuable
and feasible in the field of 3D VSP [3].

3.2. Image Database

Among the reviewed publications, there are four databases of H&N images that are
publicly available. The Public Domain Database for Computational Anatomy (PDDCA)
(http://www.imagenglab.com/newsite/pddca/ (accessed on 24 January 2019)) [29], an
open-access resource of medical images for cancer research, consists of 48 patient CT im-
ages from the Radiation Therapy Oncology Group (RTOG) 0522 study of Head-Neck
Cetuximab [30] database of The Cancer Imaging Archive (TCIA) [31], together with
manual annotation of the mandible, brainstem, etc. [29]. The organizer of PDDCA pro-
vides 40 CT scans with mandible annotations. This dataset has been used for the Head

http://www.imagenglab.com/newsite/pddca/
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and Neck Auto Segmentation MICCAI Challenge (2015) [29]. According to the proto-
col of the Challenge, 25 of 40 scans (0522c0001-0522c0328) are employed as the training
dataset, and the other 15 scans (0522c0555-0522c0878) are employed as the test dataset
[29]. ‘Organ-at-risk segmentation from head & neck CT scans’ is one of four tasks in Struct-
Seg 2019 (https://structseg2019.grand-challenge.org/Dataset/ (accessed on 23 February
2021)), consisting of 50 nasopharynx cancer patient CT scans with several manually delin-
eated organs at risk including mandibles (left and right). The StructSeg 2019 dataset has
been used for the Automatic Structure Segmentation for Radiotherapy Planning Challenge
2019. Each of the annotated CT scans is marked by one experienced oncologist and verified
by another experienced oncologist.

Furthermore, a dataset has been augmented or combined into new publicly available
databases by Tang et al. [32] in 2019, for example, the manual delineations of 28 OARs
in 35 CT scans from the Head-Neck Cetuximab and 105 CT scans from Head-Neck-PET-
CT [33] databases (https://github.com/uci-cbcl/UaNet#Data (accessed on 23 February
2021)). A subset of 31 CT scans, which was used for the test and validation set in the study
from Nikolov et al. [24], was collected from two datasets of The Cancer Genome Atlas
Head-Neck Squamous Cell Carcinoma [34] and Head-Neck Cetuximab [30] from TCIA.
The subset with the ground truth added is available at https://github.com/deepmind/
tcia-ct-scan-dataset (accessed on 23 February 2021).

3.3. Evaluation Metrics

In addition to the differences in the used dataset, the results are evaluated and pre-
sented in different ways in the reviewed papers. Moreover, there are no standard metrics
for the segmentation evaluation, so different evaluation metrics are used to report the
segmentation performance. For segmentation, the evaluation metrics are mainly divided
into three categories: overlap-based metrics, distance-based metrics, and volume-based
metrics. The metrics are summarized in Table 1. The overlap-based metrics indicate the
difference in overlap measurement between automatic prediction and manual segmenta-
tion, which can be obtained by four indicators: true positive (TP), false positive (FP), false
negative (FN) and true negative (TN). The TP value is the number of pixels segmented
correctly as foreground. The count of pixels falsely classified as the foreground is given by
the FP value. The total count of falsely classified as background pixels is represented by FN.
The TN value represents the correctly classified background pixels. The most commonly
used overlap-based metrics include the Dice similarity coefficient (Dice), Sensitivity (Sen),
false positive volume fraction (FPVF) [35], false negative volume fraction (FNVF) [35],
etc. To measure the contour difference between automatic and manual segmentation,
the most commonly used metrics are distance-based metrics. In the context of mandibular
segmentation, the following distance-based metrics have been frequently used: average
symmetric surface distance (ASD), Hausdorff distance (HD), 95th-percentile Hausdorff
distance (95HD), mean square error (MSE) [36], and root mean square error (RMSE) [36].
In some medical image segmentation tasks, the volume of the object is also very impor-
tant for treatment planning, and the metric based on volume is helpful to evaluate the
performance of the segmentation method. Volume overlap error and volume error are the
common indices to evaluate the results of mandibular segmentation.

3.4. Methodology

In this paper, the mandible segmentation approaches have been broadly divided into
six categories, namely, (1) statistical shape model-based (SSM-based), (2) active shape
model-based (ASM-based), (3) active appearance model-based (AAM-based), (4) atlas-
based, (5) level set-based, (6) classical machine learning-based and (7) deep learning-
based approaches, as depicted in Table 2. There are several hybrid segmentation methods
proposed in the collected literature. The hybrid methods are introduced in the listed
seven categories.

https://structseg2019.grand-challenge.org/Dataset/
https://github.com/uci-cbcl/UaNet#Data
https://github.com/deepmind/tcia-ct-scan-dataset
https://github.com/deepmind/tcia-ct-scan-dataset
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Table 1. Performance metrics applied to performance measurement of automatic segmentation of the mandible and the
corresponding references and mathematical definitions. Note: Yr indicates the pixels in the reference standard (ground
truth), and Yp is the pixels in the automatic segmentation. |.| represents the number of voxels. ‖.‖ represents the L2 norm.
a and b are corresponding points on the boundary of A and B.

Metric Abbreviation Definition

Overlap-based metrics, reported in percents (%)

Dice similarity index Dice Dice = 2|Yr∩Yp |
|Yr |+|Yp | =

2TP
2TP+FP+FN

Sensitivity Sen Sen =
|Yr∩Yp |
|Yr | = TP

TP+FN

Recall Rec Recall = Sen

Positive Predictive Value PVV PVV =
|Yr∩Yp |
|Yp | = TP

TP+FP

Jaccard similarity coefficient Jac Jac = |Yr∩Yp |
|Yr∪Yp | =

TP
TP+FP+FN

Intersection over union IoU IoU = Jac

Specificity Spe Speci f icity =
|(1−Yp)∩(1−Yr)|

|Yp | = TN
TN+FP

False positive volume fraction FPVF FPVF =
|Yp−Yr |
|Yr | = FP

TP+FN

False negative volume fraction FNVF FNVF =
|Yr−Yp |
|Yr | = FN

TP+FN

Distance-based metrics, reported in millimeters (mm)

Average symmetric surface distance ASD
ASD(A, B) = d(A,B)+d(B,A)

2 ,

where d(A, B) = 1
N ∑a∈A minb∈B ‖a− b‖,

Hausdorff distance HD
DHD(A, B) = max(h(A, B), h(B, A)),

where h(A, B) = maxa∈A minb∈B ‖a− b‖

95th-percentile Hausdorff distance 95HD
95HD = max(h95%(A, B), h95%(B, A)),

where h95%(A, B) = maxa∈A minb∈B95% ‖a− b‖

Mean square error MSE
MSE = 1

n ∑n
i=1 ‖Ai − Bi‖2,

where Ai is the boundary of the i-th OAR and
Bi is the boundary of the i-th prediction.

Root mean square error RMSE RMSE =
√

MSE

Volume-based metrics, reported in percents (%)

Volume overlap error VOE 1− |Yr∩Yp |
|Yr∪Yp |

Volume error VE VE =
Yr−Yp

Yr
or Yp−Yr

Yr

Table 2. Methodology applied to automatic mandible segmentation in the head and neck region,
and the corresponding references.

Methodology Categories Publications Number of Publications

SSM-based [18,37–39] 4
ASM-based [40–42] 3
AAM-based [43,44] 2
Atlas-based [45–62] 18

Level set-based [9,63] 2
Classical machine learning-based [19,36,64–76] 15

Deep learning-based [5,24,32,77–106] 33

3.4.1. SSM-Based, ASM-Based and AAM-Based Methods

Statistical shape model-based (SSM-based) segmentation algorithms take advantage
of the prior shape information to extract the structures of the objects. A dataset of object
shapes is needed for training in this technique. Procrustes alignment is applied to align
the landmark point set of the objects, which is placed at key features and/or along the
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contour of the object shapes [107]. Principal component analysis (PCA) is employed to
build a template shape of the objects [108].

The active shape model (ASM) [109] is the one of the commonly used image seg-
mentation techniques based on the SSM approach. In 2006, Lamecker et al. [40] used a
vanilla SSM-based segmentation method to extract the anatomical variability of developed
mandible shapes in the training stage and match the statistical mandible shape to a given
CT dataset via a deformable model approach in the testing stage. Kainmueller et al. [42]
developed a segmentation method based on an SSM and a Dijkstra-based optimization for
reconstructing the mandible including the course of the alveolar nerve. Albrecht et al. [41]
adopted a multiatlas-based segmentation to obtain the coarse segmetnation for the OARs
and then employed the active shape model (ASM) to finely segment the OARs based on
the results from coarse segmentation.

The active appearance model (AAM) [110] is an extension of SSM and ASM to further
statistically model the texture information of the object. Two statistical models of shape
and texture are further merged into an appearance model [110]. Babalola et al. [44] ap-
plied the AAM approach to automatic mandible and brainstem segmentation. Mannion-
Haworth et al. [43] utilized the groupwise image registration method-based minimum
description length approach [111] and AAM [110] built from manually segmented objects
in CT images.

Moreover, several publications on SSM-based segmentation methods have been used
in combination with other strategies to enhance the segmentation outcomes. Hybrid
methods have demonstrated good results [18,37–39]. Kainmueller et al. [39] used SSM
adaptation for mandible segmentation and then utilized the graph cut algorithm for fine
segmentation in the MICCAI 2019 challenge [112]. Gollmer et al. [37] applied the SSM
method with optimized correspondence for mandible segmentation. The authors estab-
lished correspondence by optimizing a model-based cost function. Moreover, the authors
introduced a relaxed SSM method for mandible segmentation [38]. Abdolali et al. [18]
proposed a framework based on SSM and fast marching for automatic segmentation of
the mandibular bone and canal. Moreover, the authors utilized low-rank decomposi-
tion for preprocessing. Table 3 presents the segmentation performance using SSM-based,
ASM-based and AAM-based approaches.

3.4.2. Atlas-Based Methods

Atlas-based segmentation methods first utilize deformable registration approaches
to register a known reference segmentation mask (that form an atlas) to a patient [50].
The registration optimization problem is usually solved by searching the deformation
space. Then, this deformation is applied to contours made on the atlas to project the
contours back to the patient-space.

In 2007, Zhang et al. [50] used an atlas-based image segmentation method to auto-
matically segment ROIs in H&N CT images. Chuang et al. [45] presented an atlas-based
semiautomatic segmentation for the mandible. The authors firstly cropped a minimum
enclosing box of the mandible in a raw CT image followed by a user-determined global
threshold to remove nonosseous tissue and then used the output from these registrations to
transform the 3D mandible template model of the respective template scans into a mandible
model that maps to the input test scan. In another paper [62], a semisupervised registration
algorithm based on the atlas was developed to accurately segment the OARs with a real
ground contour and all other coarse OARs in the atlas. The method concatenates rigid
and deformable blocks, takes an atlas image, a group of atlas-space segmentations and a
patient image as inputs and outputs the patient-space segmentation of all OARs defined
on the atlas. Qazi et al. [51] combined atlas registration and organ-specific model-based
segmentation in a common framework to segment various organs at risk in H&N CT im-
ages. The authors applied atlas registration and organ-specific model-based segmentation
at a global level and then used a probabilistic refinement step to refine at the voxel level.
Ayyalusamy et al. [54] applied an atlas-based method for OAR segmentation in H&N and
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analyzed the dependence of atlas-based automatic segmentation for different levels on
anatomy matching between sample patients and atlas patients.

In the case of mandible segmentation, the atlas-based method has become increasingly
popular, so it has been frequently implemented in commercial or open-source tools. There
are several articles using an atlas-based tool, for instance, Advanced Medical Imaging
Registration Engine (ADMIRE) v1.05 (Elekta Software) used by [56], Smart Probabilistic
Image Contouring Engine (SPICE) used by [57,58], and PLASTIMATCH MABS provided
by [61]. Moreover, La Macchia et al. [60] quantitatively analyzed three different automatic
atlas-based segmentation software offerings for adaptive radiotherapy in a small dataset.

In regard to the fusion strategy, Mencarelli et al. [46] built a knowledge base and
thresholding technique for nine high-contrast structures (including the mandible) for an
online or offline image-guided radiotherapy (RT) application. Then, they further used a
hidden Markov model to identify the structures. Wang et al. [49] developed a mandible
and maxilla segmentation approach in an H&N CBCB scan that estimated a patient-
specific atlas applying a sparse label fusion strategy from predefined CT atlases and then
converted it into a convex optimization problem using maximum a posteriori probability
for mandible/maxilla segmentation. Gorthi et al. [52] developed a novel segmentation
method that used active contour-joint registration and an atlas selection strategy.

A multiple atlas strategy or its modified version is also commonly used because
the propagated label cannot be generalized in conventional atlas-based models. To ad-
dress this issue, multiatlas approaches have been proposed. Chen et al. [47] presented a
multiatlas-based method for multiple structure segmentation in CT scans. The authors
registered CT images with the atlases at the global level so that structures of interest
are aligned approximately in space. Based on that approach, the multiatlas-based seg-
mentation can be performed at the local level. A method presented by Haq et al. [55]
dynamically selected and weighted the proper number of atlases for weighted label fusion
and predicted the segmentations and consensus maps, indicating voxel-wise agreement
between different atlases that were selected from those exceeding an alignment weight
called the dynamic atlas attention index. Alignment weights were computed at the image
level (called global weighted voting) or at the structure level (called structure weighted
voting). McCarroll et al. [59] studied an automatic segmentation strategy for H&N cancer
to better provide a fully automated radiation treatment planning solution for low- and
middle-income countries using an atlas-based deformable-image-registration algorithm.
Han et al. [48,53] adopted a novel hierarchical multiatlas registration approach for OAR
segmentation. Table 4 shows the summary of atlas-based method used.

3.4.3. Level Set-Based Methods

The level set-based image segmentation algorithm is modified from the snake algo-
rithm [113]. It requires an initial contour curve, and then, the curve evolution is performed
via minimizing the functional energy. To obtain a better prediction, the studies [9,63]
make use of the atlas method to generate an initial contour in their segmentation tasks.
Patch-based sparse representation has been applied to estimate the patient-specific atlas
and then combined with a level set framework using the rule of maximizing a posteriori
probability. With these methods, the mandible segmentation problem can be converted
into a convex optimization problem [9]. Table 5 shows a summary of the level set-based
method used.
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Table 3. Summary of SSM-based, ASM-based and AAM-based methods.

Study Year Datasets No. of
Patients

Performance Image
Modalities

Time/
Equipment Category

Dice (%) ASD (mm) HD (mm) 95HD (mm) VOE (%)

Abdolali [18] 2017 In-house 120 91.38± 2.06 0.71± 0.09 — — — CBCT 5 min/CPU SSM-based

Gollmer [37] 2012 In-house 30 — 0.50± 0.00 11.30± 3.50 — 14.0± 1.9 CT — SSM-based

Gollmer [38] 2013 In-house 30 + 6 — 0.40± 0.08 10.26± 3.16 — 11.0± 2.0 CT(train)/
CBCT(test)

— SSM-based

Kainmueller [39] 2009 MICCAI 2009 18 88.40 — 8.40 — — CT 15 min/CPU SSM-based

Lamecker [40] 2006 In-house 15 — — — — — CT — ASM-based

Albrecht [41] 2015 PDDCA 40 88.13± 5.55 — — 2.83± 1.18 — CT 5 min/CPU ASM-based

Kainmueller [42] 2009 In-house 106 — 0.50± 0.10 6.20± 2.30 — — CBCT — ASM-based

Mannion-Haworth [43] 2015 PDDCA 48 92.67± 1.00 — — 1.98± 0.59 — CT 30 min/CPU AAM-based

Babalola [44] 2009 MICCAI 2009 18 76.10± 5.10
(exclude the 13th case) — — — — CT 17 min/CPU AAM-based
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Table 4. Summary of atlas-based methods. (1) Values estimated from figures; actual values not reported.

Study Year Datasets No. of
Patients

Performance Image
Modalities

Time/
Equipment Category

Dice (%) ASD (mm) HD (mm) 95HD (mm) VE (%) Sen (%)/PPV (%)

Chuang [45] 2019 In-house 54 + 20 97.60± 10.60 — — — — — CT 3–8 h/CPU Atlas-based

Mencarelli [46] 2014 In-house 188 — — — — — — CT — Atlas-based

Chen [47] 2015 PDDCA 40 91.70± 2.34 — — 2.49± 0.76 — — CT 100 min/CPU Atlas-based

Han [48] 2008 In-house 10 90.00 — — — — — CT 1 h/CPU Atlas-based

Wang [49] 2014 In-house 13 + 30 91.00± 2.00 0.61± 0.17 0.92± 0.47 — — — CBCT + CT — Atlas-based

Zhang [50] 2007 In-house 7 80.00 0.85 — — — — CT — Atlas-based

Qazi [51] 2011 In-house 25 93.00 — 2.64 — — — CT 12 min/CPU Atlas-based

Gorthi [52] 2009 MICCAI 2009 18 77.80± 7.40 — 16.87± 6.75 — — — CT — Atlas-based

Han [53] 2009 MICCAI 2009 18 90.33± 1.49 — 8.07± 3.12 — — — CT 1 min/GPU Atlas-based

Ayyalusamy [54] 2019 In-house 40 85.00 (1) — 9 (1) — — — CT — Atlas-based

Haq [55] 2019 In-house
PDDCA

45
32

85.00 (1)

83.00 (1) — — 3.00 (1)

3.00 (1)
−5.00 (1)

52.00 (1) — CT — Atlas-based

Liu [56] 2016 In-house 6 89.50 — — — — — CT 10 min/— Atlas-based

Zhu [57] 2013 In-house 32 89.00± 4.00 — 9.80± 4.10 — — — CT 11.1 min/— Atlas-based

Walker [58] 2014 In-house 40 98.00± 2.00 — — — — — CT 19.7 min/— Atlas-based

McCarroll [59] 2018 In-house 128 84.00± 7.00 1.89± 1.55 18.63± 14.90 — — — CT 11.5 min/CPU Atlas-based

La Macchia [60] 2012 In-house 5 89.00± 2.00 — — — −4.76± 7.12 87.00± 5.00/
92.00± 2.00 CT 10.6 min/CPU Atlas-based

Zaffino [61] 2016 In-house 25 88.00± 7.00 — — — — — CT 120 min/CPU Atlas-based

Huang [62] 2019 In-house 500 84.50± 1.60 — — — — — CT —/GPU Atlas-based



J. Pers. Med. 2021, 11, 629 11 of 26

Table 5. Summary of level set-based methods.

Study Year Datasets No. of
Patients

Performance Image
Modalities

Time/
Equipment Category

Dice (%) ASD (mm) HD (mm)

Wang [9] 2014 In-house 15 92.00± 2.00 0.65± 0.19 0.96± 0.53 CBCT 5 h/CPU Level set-based

Zhang [63] 2009 MICCAI 2009 18 87.93± 2.06 — 8.70± 3.28 CT — Level set-based

3.4.4. Classical Machine Learning-Based Methods

In the past few decades, the role of machine learning in medical applications has
greatly increased. Classical machine learning (CML) methods include thresholding tech-
niques, linear regression, support vector machines, random forests, etc. Many studies have
used CML methods to segment the mandible, as listed in Table 6.

Normally, this technique is implemented in a hybrid way. A multiple threshold
method by Otsu [114] was used to calculate proper thresholding values in the segmentation
phase in the article from Barandiaran et al. [67]. After thresholding, region growing
was applied so that many bone structures could be segmented, such as parts of the jaw
bone or spine. The largest connected component of the segmented image volume can
be simply selected for mandible segmentation [67]. Later, Wang et al. [65] made use of
random forests to segment the mandible and maxilla in their expended CBCT database
and achieved better results than their previous method [9]. Linares et al. [19] proposed a
semiautomatic two-stage segmentation method for CBCT. The authors first performed bone
segmentation using a supervoxel technique and then implemented graph clustering with
an interactive user-placed seed process that was used for mandible and skull segmentation.
In this way, supervoxel methods can reduce the excessive number of voxels of CBCT
3D volume, leading to shorter processing time. Orbes-Arteaga et al. [68] introduced
a new patch-based label fusion approach to weight the label votes using a generative
probabilistic approach, in which local classifiers from the dictionary of atlas patches were
generated for weighting the probability of the target. Wang et al. [69] integrated shape
priors with a hierarchical learning model, in which they introduced 3 novel strategies:
hierarchical critical model vertex identification, joint learning of shape and appearance,
and hierarchical vertex regression. Qazi et al. [70] applied point-based registration and
model-based segmentation and introduced a novel voxel classification approach to improve
the results from model-based segmentation. Torosdagli et al. [71] adopted random forest
regression to detect the mandible in 3D and then utilized a 3D gradient-based fuzzy
connectedness image segmentation algorithm for final segmentation. Wu et al. [72] built
population fuzzy anatomy models to find the hierarchical relationship of the objects. Then,
the authors further utilized the anatomical information in the hierarchical relationship to
locate the objects. Finally, the segmentation could be generated according to the location
results. Tam et al. [36] presented support vector regression to predict all the boundary
points of the organs of interest. Gacha et al. [75] performed histogram equalization
and grayscale morphology for mandible segmentation. Then, image binarization was
performed after grayscale method. Finally, 3D template matching was performed using
cross-correlation to find a point inside the mandible followed by a geodesic dilation using
the binary image as mask. Tong et al. [73] introduced new features into the automatic
anatomy recognition approach from [66] in which they combined texture and intensity
information into the recognition procedure. Wu et al. [74] developed a methodology, called
AAR-RT, which extended their previous AAR framework [66] to RT planning in H&N.
Spampinato et al. [76] applied a fully automatic mandible segmentation method to support
orthodontists in assessing facial asymmetry, in which they used morphological operations
for extraction of the mandible, and then, the connected components were computed and
considered part of the mandible in each 2D slice.
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Table 6. Summary of classical machine learning-based methods.

Study Year Datasets No. of
Patients

Performance Image
Modalities

Time/
Equipment Category

Dice (%) ASD (mm) HD (mm) Jac (%) FPVF/FNVF (%) MSE/RMSE (mm)

Ji [64] 2013 In-house 12 97.90± 1.10 0.20± 0.13 — 95.80± 2.00 — — MRI 128 s/CPU CML

Wang [65] 2015 In-house 30
60

94.00± 2.00
95.00± 2.00

0.42± 0.15
0.33± 0.11

0.74± 0.25
0.41± 0.20 — — — CBCT

CT 20 min/— CML

Udupa [66] 2014 In-house 15 — — 3.30± 0.56 — 1.00± 0.00/
49.00± 8.00 — MRI 54 s/CPU CML

Linares [19] 2019 In-house 16 92.88 — — 86.48 — — CBCT 5 min/CPU CML

Barandiaran [67] 2009 In-house 12 — — — — — — CT 10 s/CPU CML

Orbes-Arteaga [68] 2015 PDDCA 40 93.08± 2.36 — — — — — CT — CML

Wang [69] 2016 PDDCA 48 94.40± 1.30 0.43± 0.12 — — — — CT —/CPU CML

Qazi [70] 2010 In-house 25 90.19 — — — — — CT 3 min/CPU CML

Torosdagli [71] 2017 PDDCA 40 91.00 — <1.00 — — — CT —/CPU CML

Wu [72] 2018 In-house 216 89.00 — 1.60 — — — CT — CML

Tam [36] 2018 In-house 56 85.20± 5.30 — — — — 0.10/3.16 CT 1 s/CPU CML

Tong [73] 2018 In-house 246 — — — — — — CT — CML

Wu [74] 2019 In-house 216 89.00 — — — — — CT 30 s/CPU CML

Gacha [75] 2018 PDDCA 30 80.49 — — — — — CT — CML

Spampinato [76] 2012 In-house 10 — — — — — — CT — CML
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Along with the quick development of computer and MRI imaging technology, MRI im-
ages have also been used in mandible segmentation. Ji et al. [64] presented a two-stage
rule-constrained seedless region growing approach for the mandible segmentation in MRI
images. A 3D/2D seedless region growing approach is used to detect a trabecular bone
and cortical bone of mandible after using a thresholding technique. The mandibular body
was finally merged with some morphological processes. Udupa et al. [66] developed
an automatic anatomy recognition methodology in H&N MRI scans that is based on
fuzzy modeling ideas and tightly integrated fuzzy models with the iterative relative fuzzy
connectedness delineation algorithm to locate and delineate organs in different body scans.

3.4.5. Deep Learning-Based Methods

In recent years, deep learning-based segmentation algorithms have become popu-
lar among researchers. With the development of deep learning technology, deep learn-
ing methods have shown a tremendous performance in the area of image segmentation.
Deep learning techniques provide more flexibility and powerful capabilities than the tradi-
tional machine learning methods and require less expert analysis, facilitating extension to
the other segmentation tasks [115]. For instance, the popular deep learning architectures,
including UNet [13], SegNet [12], etc., are widely used for automatic image segmenta-
tion. Consequently, the deep learning approach has shown promising applications in the
problem of mandible segmentation. Over the years, many studies have provided better so-
lutions using deep learning architectures than other classical image segmentation methods,
as shown in Tables 7–11.

Ibragimov et al. [77] proposed the first attempt of using the CNN-based concept
to segment OARs in H&N CT scans. Furthermore, the authors smoothed the obtained
segmentation results through a Markov random fields algorithm. To address the challenge
of low performance on small low-contrast structures in CT, a new loss function, namely,
the batch soft Dice loss function, was developed by Kodym et al. [78]. The authors used
the new loss function in UNet and achieved better results than the methods using other
loss functions. Yan et al. [79] developed a symmetric convolutional neural network to force
convolution and deconvolution computation to be symmetric. Table 7 shows the summary
of using deep learning-based methods.

Table 7. Summary of deep learning-based methods.

Study Year Datasets No. of
Patients

Performance Image
Modalities

Time/
Equipment Category

Dice (%) ASD (mm) HD (mm) IoU (%)

Ibragimov [77] 2015 In-house 50 89.50± 3.60 — — — CT 4 min/GPU DL

Kodym [78] 2019 PDDCA 35 94.60± 0.70 0.29± 0.03 — — CT — DL

Yan [79] 2018 In-house 93 90.76± 2.45 — — 85.44± 3.99 CT —/GPU DL

Xue [80] 2021 PDDCA 48 94.00± 2.00 0.49± 0.18 2.36± 0.62 — CT —/GPU DL

Another intuitive method of 3D segmentation is to train a 3D network to process
volume data directly. In this way, the 3D segmentation network can extract 3D structure
information. AnatomyNet [82] is built in the 3D U-net architecture using residual blocks in
encoding layers. Moreover, a new loss function combining the Dice score and focal loss is
applied in the training process. Xia et al. [83] presented a methodology to automatically
measure the masseter thickness and locate the ideal injection point for botulinum toxin
into the masseter from a CT scan, in which a 3D UNet with a Resblock is used for the
mandible and masseter segmentation. Willems et al. [84] applied the 3D segmentation
network from [116]. The method consists of a 3D CNN and fully connected 3D CRF.
Ren et al. [85] introduced multiscale patches as input for representing the center voxel
and designed a 3D CNN network for segmentation of OARs. In addition, the authors
interleaved the CNNs designated for the individual tissues since the neighboring tissues
are often related on the anatomical side. With this strategy, the patch segmentation result
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of a specific tissue can be refined by the other neighboring tissues. This study can deal
with large tissues, while the small tissues are still not that promising in terms of Dice and
95HD. For contending with the imbalance between classes mainly caused by small organs,
He et al. [86] proposed a combined UNet model that consists of 2D UNet, 3D UNet and
3D small UNet. The first model is a 2D UNet model, which has advantages in processing
thick slice images. The second model is a 3D UNet model, which can cover most organs
with the original resolution in the transverse plane via clipping the scans. The third model
is a 3D small UNet model, which focuses on the segmentation of small organs, clipping
from the boundary box of the 2D UNet model. Rhee et al. [87] proposed a CNN-based
autocontouring tool that can be used to detect the errors in autocontours from a clinically
validated atlas-based autocontouring tool. They used the DeepMind model [24] to detect
the ill-defined contours from an atlas-based autocontouring tool. Nikolov et al. [24] ap-
plied a 3D UNet architecture for OAR segmentation and demonstrated that the 3D UNet
approach achieved expert-level performance in delineating multiple organ segmentation
in the H&N region. Tong et al. [88] proposed a novel deep learning-based approach based
on a generative adversarial network (GAN) with a shape constraint (SC-GAN), where a
DenseNet was used to predict the segmentation and a CNN-based discriminator network
was applied to correct the predicted errors and image-level inconsistency between the pre-
dicted image and ground truth. Moreover, a shape representation loss was applied into the
segmentation and adversarial loss function for reducing the false positives. Chan et al. [81]
provided a lifelong learning protocol to improve the prediction accuracy of OAR segmen-
tation, in which they used a multitask learning scheme coupled with transfer learning to
accomplish this. In this way, the network transfers its shared knowledge to single tasks
to help improve the generalizability of the network on limited datasets. To cope with the
lack of overall shape and smoothness of OARs, Xue et al. [89] developed the feasibility
of learning the signed distance map (SDM) directly from medical scans, in which SDM
is usually calculated from object boundary contours and the binary segmentation map.
To utilize more information in traditional segmentation training, the authors introduced an
approximated Heaviside function to train the model by predicting SDMs and segmentation
maps simultaneously. Table 8 lists the summary of literature that used 3D networks for
mandible segmentation.

However, 3D networks require clipping or resampling the input data into small
3D patches to reduce GPU memory [92]. In addition, integration of 3D patches in post-
precessing is a time-consuming workflow. Therefore, to overcome the drawback of 3D
networks, using a 2.5D or multiview training strategy instead of 3D is a potential strat-
egy [5,90]. Qiu et al. [5] adopted 2.5D volume of CTs as input in UNet and then combined
the resulting 2D segmentations from three orthogonal planes (axial, sagittal and coronal)
into a 3D segmentation. This architecture can take into account the spatial information of
adjacent slices in order to preserve the connectivity of anatomical structures. Lei et al. [90]
first presented a segmental linear function to enhance the intensity of CT images, which
makes the organs more separable than the existing simple window width method. Then,
the authors proposed a novel 2.5D network for accurate OAR segmentation. Addition-
ally, they applied a novel hardness-aware loss function to make the network give more
attention to hard voxels. Liang et al. [91] developed a novel multiview (i.e., axial, coronal,
and sagittal view) spatial aggregation framework for joint localization and segmentation of
multiple OARs. Additionally, the authors proposed a region-of-interest-based fine-grained
representation CNN for predicting the probability maps of OARs for each 2D view of CT
images. In this way, the approach unifies the OAR localization and segmentation tasks
and trains them in an end-to-end fashion. Qiu et al. [92] integrated a recurrent unit and a
vanilla network, which enable the network to learn the continuity of neighborhood slices
for the scans in the 2D architecture. Table 9 shows the summary of using 2.5D networks for
mandible segmentation.
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Table 8. Summary of 3D network strategies of deep learning-based methods.

Study Year Datasets No. of
Patients

Performance Image
Modalities

Time/
Equipment Category

Dice (%) ASD (mm) HD (mm) 95HD (mm) Rec/Sen (%) RMSE (mm) PPV (%)

Chan [81] 2019 In-house 200 91.00± 9.00 — — — — 0.66± 0.31 — CT 20 s/GPU DL

Zhu [82] 2019 PDDCA + TCIA 48 + 223 92.30 — — — — — — CT 0.12 s/GPU DL

Xia [83] 2019 In-house 53 94.60± 1.10 0.24± 0.034 — — 95.60± 1.20 — — CT 1 s/GPU DL

Willems [84] 2018 In-house 70 95.90 0.60 6.48 — — — — CT 1 min/GPU DL

Ren [85] 2018 PDDCA 48 92.00; — — 1.89 — — — CT —/GPU DL

He [86] 2020 StructSeg2019 50 90.30 (L);
90.80 (R) — — — — — — CT 1 min/GPU DL

Rhee [87] 2019 In-house + TCIA 1403 + 24 86.80± 3.30 — 12.80± 9.50 — — — — CT 2 min/GPU DL

Nikolov [24] 2018
In-house

TCIA
PDDCA

459
30
15

93.10± 1.90
92.90± 3.50
93.80± 1.90

— — — — — — CT —/GPU DL

Tong [88] 2019 PDDCA
In-house

32
25

93.91± 1.30
81.64± 4.44

0.55± 0.14
1.13± 0.48 — 2.09± 0.63

2.72± 1.31
91.25± 2.70
86.65± 6.00 — 96.82± 1.70

78.50± 4.30
CT

MRI 14 s/GPU DL

Xue [89] 2019 PDDCA 48 95.70± 1.80 — — 0.60± 0.49 — — — CT —/GPU DL

Table 9. Summary of 2.5D networks deep learning-based methods.

Study Year Datasets No. of
Patients

Performance Image
Modalities

Time/
Equipment Category

Dice (%) ASD (mm) 95HD (mm) RMSE (mm)

Qiu [5] 2019 In-house
PDDCA

109
40

88.10
93.28± 1.44

— —
1.43± 0.56

0.58
—

CT 2.5 min/GPU DL

Lei [90] 2021
StructSeg2019 50 91.10± 2.90 (L); 91.70± 1.50 (R)

—
2.81± 0.45 (L); 2.70± 0.40 (R)

— CT 2 min/GPU DLStructSeg2019 +
PDDCA + In-house 50 + 48 + 67 90.00± 4.20 6.54± 19.14

Liang [91] 2020 PDDCA
In-house

48
96

94.10± 0.70
91.10± 1.00 (L); 91.40± 2.00 (R)

0.28± 0.14
0.76± 0.13 (L); 0.86± 0.14 (R) — — CT —/GPU DL

Qiu [92] 2020 In-house
PDDCA

109
40

97.53± 1.65
95.10± 1.21

0.21± 0.26
0.14± 0.04

2.40± 4.61
1.36± 0.45 — CT 1.5 min/GPU DL
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The attention model has been widely used in various fields of deep learning in recent
years [117–119]. The attention mechanism focuses limited attention on key information
to save resources and obtain the most effective information quickly [118]. Gou et al. [93]
designed a self-channel-and-spatial-attention neural network for H&N OAR segmentation,
in which spatial and channelwise attention learning mechanisms can adaptively force the
network to emphasize the meaningful features and weaken the irrelevant features at the
same time. A novel simple local blockwise self-attention-based segmentation approach
was presented by Jiang et al. [94]. This approach can more easily make the network
learn the spatial location and interrelation within input images. This study demonstrated
that adding the additional attention blocks increases the contextual field and captures
focused attention from anatomical structures. Sun et al. [95] presented an end-to-end CNN,
called AttentionAnatomy, which was trained with three partially annotated datasets to
segment OARs from the whole body. AttentionAnatomy retains the basis structure of
UNet and has two branches: a CT region classification path and an OAR segmentation
path. The CT region classification path outputs region prediction and attention vectors
for OARs, which represent the inference of possible combinations of OARs in the current
image. Then, the OAR segmentation path applies these attention vectors to modulate the
final output mask. The authors further proposed a recalibration mechanism to solve the
partial annotation problem. Moreover, a hybrid loss function composed of batch Dice
loss and spatially balanced focal loss is used to address the extreme category imbalance.
Liu et al. [96] developed a cross-layer spatial attention map fusion network to combine
different spatial attention maps and establish connections for significant features in the
feature maps. Furthermore, the authors adopted a top-k exponential logarithmic Dice loss
for the imbalanced dataset in their segmentation tasks. Table 10 shows the summary of
using attention strategies for mandible segmentation.
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Table 10. Summary of attention strategies of deep learning-based methods.

Study Year Datasets No. of
Patients

Performance Image
Modalities

Time/
Equipment Category

Dice (%) ASD (mm) 95HD (mm) Rec/Sen (%) PPV (%)

Gou [93] 2020 PDDCA 48 94.00± 1.00 0.47± 0.11 1.40± 0.02 93.00± 2.00 95.00± 2.00 CT 2 s/GPU DL

Jiang [94] 2019 In-house + PDDCA 48 + 48 93.00± 1.00
(trained in in-house dataset) — — — — CT 0.1 s/GPU DL

Sun [95] 2020 In-house 129 94.05± 1.08 — — — — CT —/GPU DL

Liu [96] 2020 StructSeg2019 50 90.28 (L); 90.81 (R) — — — — CT —/GPU DL
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There are several two-stage training strategies, such as cascaded CNNs [97–99,105],
the combination [101,103] of Faster R-CNN [120] and CNNs. Zhang et al. [97] developed
a cascaded CNN architecture for multitasks segmentation in H&N scans, in which a
slice classification network is proposed to classify CT slices into the corresponding target
categories. Then, the irrelevant slices without the targets were excluded. Next, the slices in
the corresponding categories were pushed to a refined 3D segmentation network for target
segmentation. In this case, the prediction performance was further improved with the help
of the slice classification network. Tappeiner et al. [98] trained two hierarchical 3D neural
networks to segment multiple OARs in H&N CT scans. The authors first implemented
a coarse network on size-reduced scans for locating the OARs. Then, a subsequent fine
network on the original resolution scans was trained for a final accurate segmentation
based on the results from the coarse network. Mu et al. [99] applied two cascade networks
for location and fine segmentation of organ segmentation, in which the network is modified
based on the squeeze and exception module, the residual module and V-Net [121]. There are
still some shortcomings in this research. The network input is accomplished by resampling
the input images with the same voxel size. However, the difference of the thickness and
the resolution within the slices is often too large. Therefore, the operation of resampling
in the first network can easily cause localization failure when organs have small volumes.
Wang et al. [100] proposed a framework similar to [99]. Tang et al. [32] presented a novel
network Ua-Net which contains detection and segmentation stages. The approximate
location of the OARs can be identified in the detection stage, and then, fine segmentation
can be further performed utilizing the results from the detection stage as a guide in the fine
stage. Lei et al. [101,102] adopted a 3D Faster R-CNN to locate the H&N OARs in MRI and
CT images and then applied an attention UNet to segment the OARs based on the location
results. Liang et al. [103] developed an automatic detection-segmentation network for
OAR segmentation in H&N CT scans, in which the authors applied a Faster R-CNN [120]
to locate the OARs and a fully convolutional network (FCN) [11] to further predict OAR
masks based on the organ bounding boxes from the detection stage. Dijk et al. [104] applied
a deep learning-based method from Mirada for OAR segmentation in H&N, in which the
method was applied in the AAPM Challenge 2017 [122]. The method first used a CNN
network to predict all OARs at a coarse resolution and then applied a series of organ-
specific 10-layer networks for each organ segmentation using the predicted coarse results
with full resolution images as input. Men et al. [105] developed a cascade CNN for the
OAR delineation for radiotherapy in head-and-neck squamous cell carcinoma (HNSCC) of
TCIA [33]. The cascaded CNN contains two stages (i.e., a coarse detection stage and a fine
segmentation stage). The authors first used a shallow network as coarse detection to find
the ROIs. In the fine segmentation stage, they used the coarse prediction as input for fine
segmentation. Egger et al. [106] utilized a VGG network to classify the slices where the
mandible appears and then employed an FCN network to delineate the mandible. Table 11
shows the summary of using two-stage strategies for mandible segmentation.

A new automatic segmentation algorithm was presented by Xue et al. [80] that
employs a novel hybrid neural-like P system to alleviate the challenges in tasks of seg-
mentation of H&N scans. The new P system has the common advantages of cell-like
and neural-like P systems so that it can solve more practical problems in parallel. In the
new P system, the effective integrated CNNs are implemented at the same time through
different initializations to perform the pixel-level segmentation of OARs in order to obtain
more effective features and take advantage of the strength of ensemble learning.
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Table 11. Summary of two-stage strategies in deep learning-based methods.

Study Year Datasets No. of
Patients

Performance Image
Modalities

Time/
Equipment Category

Dice (%) HD (mm) 95HD (mm)

Zhang [97] 2021 In-house 170 89.00± 2.00 — 1.66± 0.51 CT 40.1 s/GPU DL

Tappeiner [98] 2019 PDDCA 40 91.00± 2.00 — 2.4± 0.6 CT 38.3 s/GPU DL

Mu [99] 2020 In-house 50 89.80± 2.70 (L);
90.40± 2.00 (R) — — CT 3 s/GPU DL

Wang [100] 2018 PDDCA 48 93.00± 1.90 — 1.26± 0.50 CT 6 s/GPU DL

Tang [32] 2019
In-house

HNC+ HNPETCT
PDDCA

175
35 + 105

48

93.12± 1.41
89.31± 11.59
95.00± 0.80

—
2.48± 0.83
3.05± 2.60

—
CT 2 s/GPU DL

Lei [101] 2020 In-house 15 85.00± 4.00 — — MRI — DL

Lei [102] 2020 In-house 15 88.00± 3.00 — — CT — DL

Liang [103] 2019 In-house 185 91.40± 0.04 (L);
91.20± 3.00 (R) — — CT 30 s/GPU DL

Dijk [104] 2020 In-house 693 94.00± 1.00 — 1.30± 0.50 CT — DL

Men [105] 2019 HNSCC 100 92.00± 2.00 2.40± 0.40 — CT 5.5 min/GPU DL

Egger [106] 2018 In-house 20 89.64± 1.69 — — CT —/CPU DL

4. Discussion

Numerous studies have been published regarding mandible segmentation. Mandible
segmentation methods collected in this paper are classified into seven categories. As shown
in Figure 3a, atlas-based (23.4%), CML-based (19.5%) and DL-based (42.9%) methods are
frequently used and developed in mandible segmentation. More than three-quarters of
the publications (85.8%) utilized these methods. The atlas-based method is the oldest
technique in the field of mandible segmentation and has been frequently implemented in
commercial software [56–58,60,61]. Low accuracy is reported by using this kind of method
due to the image artifacts and low contract. Atlas construction is a time-consuming task
when conducting complex nonrigid registration. An extended approach is to apply level
set methods that help the initial curve move towards the boundary of the object [9,63].
The level set function implicitly represents the boundary of a curve or a shape through its
zero horizontal tangent plane. The main drawback of using the level set-based methods is
the requirement to initialize the contour. Thus, using the contours generated from atlas-
based methods as initialization is helpful in this task [9,63]. The SSM-based method is
another approach used by various researchers for mandible segmentation, in which the
shape information of the object is taken into consideration in ASM. The method performed
well compared to the atlas-based method. In addition to considering the shape information,
AAM considers the texture information of the image and learns it in an integrated statistical
shape model.

The most frequently used image segmentation approach is machine learning, espe-
cially deep learning (DL), which produces better results than the other methods. The classi-
cal machine learning algorithms demand a considerable human effort in feature extraction.
The DL technique has been used frequently since 2018 due to the rapid development
of DL techniques, as illustrated in Figure 3b. Deep learning methods have resolved the
issue of automatically extracting the features. The major issue of using deep learning
methods is the requirement of a substantial quantity of annotated medical data, which
limits the use of supervised learning techniques and avoids overfitting [93]. Furthermore,
to increase the size of training data, the deep learning-based methods are trained using
data augmentation schemes such as scaling, cropping, affine transformation, elastic defor-
mation, rotations, and noise contamination [81,82,93,98]. Moreover, with the evolution of
deep learning, mandible segmentation has achieved remarkable performance compared to
classical segmentation approaches.
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As shown in Figure 3c, most of the publications (86.4%) used the CT imaging modality.
Very few publications worked with CBCT (8.6%) and MRI (4.9%). Moreover, most of the
publications worked with only one single imaging modality. There are 4 publications that
worked with two imaging modalities. As shown in Figure 3c, number of publications using
CT modality is much more than that of using CBCT and MRI techniques, which need more
effort for manual expert annotation. However, the CBCT and MRI imaging techniques
involve very low-dose radiation or no radiation. Mandible segmentation in CBCT and
MRI is worthy of further exploration. The ability to derive the exact shape of the mandible
from MRI’s nonionizing radiation imaging mode provides clinicians with a value-added
visualization option to view hard and soft tissues in a visual environment. Especially when
high-resolution bone information is not needed, the spatial relationship between soft tissue
muscle and the mandibular body can be obtained without additional volume imaging
using CBCT. Patients who receive MR imaging but do not require facial CT imaging can
benefit from this approach without the need for CBCT or X-ray radiation from CT imaging.
This application eliminates the radiation risk to patients [3].
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Figure 3. Analysis of publications pertaining to mandible segmentation. (a) The share of methodology categories used in
the publications. (b) Distribution of the publications by year. (c) The share of image methodologies used in the publications.
(d) Box plot of the distribution of the Dice score of the PDDCA test from the publications. The black lines in the middle of
the box indicate the average Dice score.
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The Head and Neck Auto Segmentation MICCAI Challenge (2015) [29], which used
the PDDCA dataset in the challenge, has obtained much attention during the past years.
There are 25 publications for mandible segmentation in PDDCA [29]. Among all the metrics
summaries, the Dice score is the most popular metric used to evaluate the performance of
the segmentation methods. The distribution regarding the publication with the PDDCA
test is presented in Figure 3d. The Dice score increases with the year. Although it is a
common metric used in image segmentation, it may not be the most relevant metric for
clinical applications [82]. Identifying a new metric in consultation with the physicians
practicing in the field would be an important next step for real clinical applications of the
method [82].

5. Conclusions

Mandible segmentation is a challenging task due to the presence of metal artifacts,
the low contrast of condyles and the large variation in mandibles among patients. CT modal-
ity is the most frequently used imaging technique for OMFS. To date, mandible segmenta-
tion methods proposed in the literature have achieved promising results in CT scans. Before
the machine learning era, the atlas-based segmentation method was the most common
method and performed well. With the advancement of technology, deep learning-based
segmentation methods have increased substantially. Deep learning-based methods perform
better and much faster than traditional methods, although they require more data and
higher computing resources in training. There is still room for improvement since the
datasets are limited and cannot fully represent the general patient population in clinic.
Furthermore, mandible segmentation in CBCT and MRI is valuable for further exploration
due to their low-dose radiation or no radiation. Therefore, mandible segmentation is still
an open research area to be improved.
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