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Abstract: The coronavirus disease 2019 (COVID-19) pandemic began at the end of December 2019,
giving rise to a high rate of infections and causing COVID-19-associated deaths worldwide. It was
first reported in Wuhan, China, and since then, not only global leaders, organizations, and phar-
maceutical/biotech companies, but also researchers, have directed their efforts toward overcoming
this threat. The use of artificial intelligence (AI) has recently surged internationally and has been
applied to diverse aspects of many problems. The benefits of using AI are now widely accepted,
and many studies have shown great success in medical research on tasks, such as the classification,
detection, and prediction of disease, or even patient outcome. In fact, AI technology has been actively
employed in various ways in COVID-19 research, and several clinical applications of AI-equipped
medical devices for the diagnosis of COVID-19 have already been reported. Hence, in this review, we
summarize the latest studies that focus on medical imaging analysis, drug discovery, and therapeutics
such as vaccine development and public health decision-making using AI. This survey clarifies the
advantages of using AI in the fight against COVID-19 and provides future directions for tackling the
COVID-19 pandemic using AI techniques.

Keywords: COVID-19; artificial intelligence; diagnosis; therapeutics; public health

1. Introduction

The coronavirus disease 2019 (COVID-19), which was confirmed in Wuhan, Hubei
Province, People’s Republic of China, in December 2019, declared a Public Health Emer-
gency of International Concern on 30 January 2020, and declared a pandemic on 11 March
2020, by the World Health Organization (WHO), poses a public health threat to people
worldwide [1–3]. Several vaccines against COVID-19 have been rapidly developed, and
vaccination, which is expected to calm the situation, is already underway around the
world [4,5]. However, many variants of SARS-CoV-2 that cause COVID-19 have been
reported, and this situation remains unpredictable [6]. It has been pointed out that among
these SARS-CoV-2 variants, there may be variants that increase infectivity and transmis-
sibility, alter antigenicity, and even reduce immunity and vaccine efficacy [7–10]. The
development of therapeutic agents for COVID-19 is also being actively pursued, and in
fact, drugs such as remdesivir, dexamethasone, and baricitinib have been approved and are
being used in clinical practice [11,12]. However, current treatment for COVID-19 is mainly
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symptomatic, and although several experimental therapies are being actively studied in
clinical trials, in some cases, there is insufficient high-quality evidence to recommend early
treatment [13,14]. In particular, hydroxychloroquine and lopinavir/ritonavir, which were
thought to be promising, have been found to be ineffective and even harmful in subsequent
studies [13,14]; hence, it is necessary to be cautious and patient when considering the
therapeutic effects of drugs. In view of the above, stringent responses and countermeasures
against COVID-19 will continue to be an important public health issue worldwide.

In recent years, with the rapid progress of machine learning (ML) techniques, espe-
cially deep learning (DL), the emergence of inexpensive and high-performance graphics
processing units (GPUs), and the expansion of public databases, the expectations for ar-
tificial intelligence (AI) are increasing worldwide [15]. The medical field is no exception,
and many AI-powered medical devices have been developed and are now being applied
clinically [15]. In medical research, AI has been introduced into various tasks, including
medical image analysis, such as radiological image analysis, endoscopic image analysis,
and pathological image association analysis; omics analysis such as genome analysis,
epigenome analysis, and proteome analysis; and natural language processing for drug
discovery, electronic medical record information, and literature search [16–33]. Importantly,
research on COVID-19 is being conducted worldwide, and AI is now being actively used in
vaccine development, the development of new diagnostic methods, and the development
of new therapeutic agents by extracting important features from vast amounts of data. In
this review, we review the current status of AI applications in the development of vaccines
against COVID-19, new diagnostic methods, and new therapeutic agents, and discuss the
importance of AI in dealing with COVID-19.

2. Medical Imaging Analysis

In this section, we focus on chest and lung imaging analyses using AI. The WHO has
developed a rapid guide on the use of chest imaging for the diagnosis and management of
COVID-19 [34]. The relevant chest imaging modalities include chest radiography (X-ray
imaging), chest computed tomography (CT), and lung ultrasound. Chest X-ray imaging
and lung ultrasound can be performed using portable equipment at the point of care.
Chest CT has the highest sensitivity, but relatively low specificity, and can be useful in
patients with pre-existing pulmonary diseases. The differential diagnoses and potential
complications for each specific case (e.g., CT angiography for pulmonary thromboembolism
and cardiac ultrasound for myocarditis) should be considered when choosing the imaging
modality. During the global COVID-19 pandemic, numerous efforts have been made
regarding AI-based medical imaging analysis of COVID-19 (Figure 1).

A DL framework for COVID-19 detection on chest X-ray images was reported that
fine-tunes four pre-trained convolutional models (ResNet18, ResNet50, SqueezeNet, and
DenseNet121) on a limited training dataset [35]. To address the difficulty of systematic data
collection of chest X-ray images in patients with COVID-19, a patch-based convolutional
neural network (CNN) approach with a relatively small number of trainable parameters
for COVID-19 diagnosis on chest X-ray images was proposed. This method uses gradient-
weighted class activation mapping (Grad-CAM) and provides a clinically interpretable
saliency map tailored to the local patch-based approach [36]. A weakly supervised learning
architecture for predicting a multi-regional score on chest X-ray images was designed to
effectively and reliably assess the severity of lung compromise in patients with COVID-
19 [37]. In terms of clinical management, it has been reported that the DenseNet121 model
can accurately predict the need for mechanical ventilation early in the hospitalization of
patients with COVID-19 using chest X-ray images [38]. A DL-based model for classifying
the severity of and monitoring COVID-19 was proposed. The outputs of the different
layers of the CNN under dominant filters provide valuable insights into the subtle patterns
in chest X-ray images. This approach can be used to study disease progression and its
influencing factors in a single patient [39].
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Figure 1. Segmentation and the gradient-weighted class activation mapping (Grad-CAM) have been used in various AI-
based medical imaging analyses in COVID-19. Grad-CAM provides a clinically interpretable saliency map that indicates 
the discriminative regions of the image that determine the classification of the severity of COVID-19. 

Ultrasound is an option for real-time point-of-care testing without radiation exposure 
in various medical fields [30]. Although lung ultrasound requires closer physical proxim-
ity of the examiner to the patient, the risk of COVID-19 cross-infection can be minimized 
when a plastic disposable cover and individually packaged ultrasound gel on a portable 
probe are used [34,40]. B-lines are vertical comet-tail-shaped artifacts that reflect various 
pathological conditions of the lung [41]. B-lines and irregular pleural lines in lung ultra-
sound are not specific but are related to COVID-19 pneumonia. Despite the clinical signif-
icance of lung ultrasound, only a few studies have focused on AI-based lung ultrasound 
image analysis for COVID-19. The DL-based method, derived from spatial transformer 
networks, was shown to simultaneously predict the disease severity score associated with 
an input frame and localize pathological artifacts [42]. An integrated autoencoder-based 
hybrid classification model combining CNN and long short-term memory (LSTM) 
showed promising improvements in the prediction of COVID-19 severity using lung ul-
trasound frames [43]. A contrastive learning approach for assessing COVID-19 severity 
from lung ultrasound and clinical information was proposed that matches the two spaces 
while retaining the discriminative features. This method provides an interpretation of the 
severity assessment by grading each lung zone and identifying the pathological patterns 
[44]. In addition, myocarditis and cardiomyopathy can occur during COVID-19 [45]. 
Therefore, AI-based cardiac ultrasound image analysis is expected to improve the diag-
nostic accuracy of these cardiac complications at the point of care [30]. 

Several AI-based imaging analyses using cohorts of thousands of patients have been 
reported. Using a large database of chest CT scans from 3777 patients, an AI system that 
can diagnose COVID-19 pneumonia and differentiate it from other common forms of 
pneumonia and normal controls was developed. A good correlation between the COVID-
19 lung lesions as determined by CT parameters and the clinical and biochemical markers 
of multiple organs has been observed [46]. Harmon et al. showed that a series of DL algo-
rithms delivered acceptable performance metrics for the classification of chest CT images 

Figure 1. Segmentation and the gradient-weighted class activation mapping (Grad-CAM) have been used in various
AI-based medical imaging analyses in COVID-19. Grad-CAM provides a clinically interpretable saliency map that indicates
the discriminative regions of the image that determine the classification of the severity of COVID-19.

Ultrasound is an option for real-time point-of-care testing without radiation exposure
in various medical fields [30]. Although lung ultrasound requires closer physical proximity
of the examiner to the patient, the risk of COVID-19 cross-infection can be minimized when
a plastic disposable cover and individually packaged ultrasound gel on a portable probe are
used [34,40]. B-lines are vertical comet-tail-shaped artifacts that reflect various pathological
conditions of the lung [41]. B-lines and irregular pleural lines in lung ultrasound are not
specific but are related to COVID-19 pneumonia. Despite the clinical significance of lung
ultrasound, only a few studies have focused on AI-based lung ultrasound image analysis
for COVID-19. The DL-based method, derived from spatial transformer networks, was
shown to simultaneously predict the disease severity score associated with an input frame
and localize pathological artifacts [42]. An integrated autoencoder-based hybrid classifi-
cation model combining CNN and long short-term memory (LSTM) showed promising
improvements in the prediction of COVID-19 severity using lung ultrasound frames [43].
A contrastive learning approach for assessing COVID-19 severity from lung ultrasound
and clinical information was proposed that matches the two spaces while retaining the
discriminative features. This method provides an interpretation of the severity assessment
by grading each lung zone and identifying the pathological patterns [44]. In addition,
myocarditis and cardiomyopathy can occur during COVID-19 [45]. Therefore, AI-based
cardiac ultrasound image analysis is expected to improve the diagnostic accuracy of these
cardiac complications at the point of care [30].

Several AI-based imaging analyses using cohorts of thousands of patients have been
reported. Using a large database of chest CT scans from 3777 patients, an AI system that
can diagnose COVID-19 pneumonia and differentiate it from other common forms of pneu-
monia and normal controls was developed. A good correlation between the COVID-19
lung lesions as determined by CT parameters and the clinical and biochemical markers of
multiple organs has been observed [46]. Harmon et al. showed that a series of DL algo-
rithms delivered acceptable performance metrics for the classification of chest CT images
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for COVID-19 infection using a diverse multinational cohort of patients with and without
COVID-19 [47]. A model using U-Net and ResNet152 achieved accurate performance
for a challenging multi-class diagnosis task from COVID-19, influenza A/B, non-viral
community-acquired pneumonia, and non-pneumonia subjects [48]. Using holistic patient
information, including chest CT, vital signs, blood tests, and demographic data, an ML-
based model can help assess the disease burden and forecast meaningful patient outcomes
with a high predictive accuracy in patients with COVID-19 pneumonia [49]. A weakly
supervised deep active learning framework called COVID-AL was proposed for COVID-19
diagnosis [50]. A deep attention-based multiple instance learning framework for COVID-19
severity assessment using chest CT images via data augmentation and self-supervised
learning was developed [51]. Compared with 11 existing severity scores, the multimodal
AI-severity score, which includes five clinical and biological variables in addition to the
DL model trained by the chest CT scan data, significantly improved the performance of
prognosis for patients with COVID-19 [52]. Deep multitask learning improves the joint
task of COVID-19 identification and quantification of its severity [53]. Using CT imaging
and clinical data, a DL model successfully predicted the time until progression to critical
illness in individual patients while identifying high-risk patients [54]. Deep supervised
learning with a self-adaptive auxiliary loss (DSN-SAAL) was demonstrated to be effective
for the diagnosis of COVID-19 with varying degrees of data imbalance [55]. The DL-based
radiomics features of pulmonary opacities on chest CT images were superior to subjective
assessments in differentiating patients with favorable and adverse outcomes [56].

3. Drug Discovery and Vaccine Development
3.1. General Background for the Vaccine

In general, there are two main approaches to fighting the worldwide COVID-19
pandemic: a vaccine-based pipeline for prevention and a chemical-based pipeline to cure
infected patients. For the vaccine-based approach, at the time of writing this review article,
the total number of candidate vaccines has reached 292, 108 of which are now undergoing
clinical trials. Currently, 38 are in phase 1, 28 in phase 1/2, 10 in phase 2, 9 in phase 2/3, 19
in phase 3, and 8 in phase 4 as summarized by the WHO [57]. The nonprofit organization
Our World in Data, established by the University of Oxford teams, stated that more than
28.5% of the world population had received at least one COVID-19 vaccine as of 3 August
2021 [58]. Under the current circumstances, the majority of the vaccinated public has been
vaccinated by the two mRNA-based vaccines, BNT162b2 (Pfizer, New York, NY, USA) and
mRNA-1273 (Moderna, Cambridge, MA, USA), which have been authorized for emergency
use by the U.S. Food and Drug Administration (FDA). A study conducted between 4 May
2020 and 22 June 2020, showed that the response of BNT162b2, which encodes a full-length
membrane-anchored spike (S) protein of SARS-CoV-2, and the response of BNT162b1,
which encodes a secreted trimerized SARS-CoV-2 receptor-binding domain, are similar
with respect to factors such as S1-binding IgG concentration and 50% neutralization titer.
However, BNT162b2 yields a lower incidence and severity than BNT162b1, particularly in
older adults [59]. In addition, BNT162b2 can neutralize several SARS-CoV-2 variants [60].
COVID-19-convalescent individuals with or without mRNA vaccines were investigated
for the follow-up cohort study, which indicated that the neutralization activity against
SARS-CoV-2 one year after infection was stable in the non-vaccinated group, but enhanced
in vaccinated groups in terms of the components of the immune system, such as the
plasma IgG antibody that can bind to the SARS-CoV-2 receptor-binding domain (RBD), N
protein, and plasma neutralizing activity [61]. It was noted that the data from the seven
vaccines and convalescent cohorts show that the neutralizing activity can predict immune
protection from SARS-CoV-2 infection. The model indicates that protection from severe
disease can be retained, but protection from SARS-CoV-2 infection would decrease [62].
Regarding mRNA-1273, efficacy and safety have been investigated, and a 94.1% efficacy
in preventing COVID-19 has demonstrated [63]. The use of mRNA-1273 and BTN162b2
in pregnant and lactating women has also been examined, indicating that women can
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acquire immunogenicity under these conditions [64]. Similar to BNT162b2, the neutralizing
activity persists for at least six months after mRNA-1273 vaccination [65], and miRNA-1273-
elicited antibodies were more targeted towards SARS-CoV-2 RBD than naturally elicited
antibodies [66].

3.2. AI-Driven Drug Discovery

Although encouraging evidence about the ability of the abovementioned mRNA-
based vaccines to prevent COVID-19 has accumulated, there is still a demand for new
vaccines or drugs for the following reasons: (1) Vaccines that can be stored at room
temperature or even in a freezer are needed. BNT162b2 needs to be stored at −90 to
−60 ◦C and mRNA-1273 needs to be stored at −25 to −20 ◦C. It is a difficult technological
challenge, especially in low-income countries, to gather a sufficient amount of the necessary
equipment such as deep freezers with power supplies. Hence, the development of such
vaccines would accelerate an effective and strategic COVID-19 vaccination program for
global mass immunization. (2) Vaccination for COVID-19 causes certain unavoidable side
effects [67]. Therefore, vaccines that lead to fewer side effects are desirable. (3) There
are four variants of concern (Alpha, Beta, Gamma, and Delta), which are recognized as
SARS-CoV-2 virulent variants and four variants of interest (Eta, Iota, Kappa, and Lambda),
which have been detected in multiple countries or cause clusters. These variants have
been categorized by the WHO [68], and thus far, limited studies have investigated whether
currently available vaccines are useful against them [69–71]. Furthermore, some patients
have become infected after vaccination [72], and reduced vaccine efficacy has been reported
against some variants [73].

Exploratory studies for vaccines and drug discovery to tackle COVID-19 are actively
ongoing. A DL approach can identify therapeutic candidate antibodies by predicting anti-
gen specificity [74]. Major histocompatibility complex analysis with recurrent integrated
architecture (MARIA) was trained on HLA-DR ligands identified by mass spectrometry-
based profiling, public HLA-II peptide binding data (IEDB), and gene expression levels to
predict potential epitopes [75]. Fast et al. further expanded this method to identify T-cell
epitopes for SARS-CoV-2 RBD [76]. Antibody-epitope classification using deep neural
networks (DNNs) was reported using input two-dimensional images generated from a
three-dimensional image projection created by the Rosetta antibody software [77]. The ML
platform REDIAL-2020 estimates small compound activities in a broad range of SARS-CoV-
2-related assays [78]. ML can predict activity from chemical structures, and an ML-based
drug discovery pipeline was developed to identify effective therapeutic drugs for COVID-
19 from FDA-registered and approved drugs and purchasable chemicals [79]. Note that to
target SARS-CoV-2 with AI, freely available datasets are deposited at the nCov-Group Data
Repository [80]. In silico drug discovery with tensor decomposition-based unsupervised
feature extraction was performed on lung cancer cell lines infected with SARS-CoV-2 and
successfully screened for chemical compounds such as ivermectin, which is undergoing
a clinical trial for SARS-CoV-2 [81]. The fragment-based drug discovery approach facili-
tates the identification of lead compounds, and their crystallographic screening approach
identified 71 hits [82] (Figure 2).
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Figure 2. AI and COVID-19 therapeutics. Computational analysis is used for both vaccine development and chemical
drug development. Prediction of vaccine efficacy, half-life, and safety can be analyzed in vaccine development. For
drug development, publicly available or crowdsourced datasets are used to accelerate target screening and candidate
compound design.

For drug repurposing or repositioning, protein–protein interaction networks have
been identified by expressing 26 out of 29 SARS-CoV-2 proteins in human cells [83] and
two high-throughput repurposing screenings using HeLa cells expressing ACE2 and lung
epithelial Calu-3 cell lines [84]. To screen anti-viral drugs for COVID-19, matrix completion
techniques have been used to predict the drug–virus association for drug repositioning
using a manually curated comprehensive dataset [85]. Another study showed that an AI
platform with two different training datasets identified existing drugs with potential [86],
indicating that the AI approach for drug screening is now feasible. COVID-19 mortality
prediction using ML and DL in USA, China, and Korean cohorts has surged recently [87–91].
The COVID-19 Moonshot project, which united academic institutions such as Oxford,
Imperial College London, and Memorial Sloan Kettering with industry partners, was
launched to specifically focus on developing the SARS-CoV-2 main viral protease (Mpro),
which is known to be a good candidate for antivirals owing to its distinctiveness from
host proteases [92]. The Moonshot project combines crowdsourcing medicinal chemistry
insights with high-throughput crystallography, a computational chemistry environment,
and ML for drug development to actively determine drug candidates [93,94].

4. Public Health
4.1. AI Used in Public Health Decision-Making

Public health is defined as a population-based approach to dealing with various health-
related problems in human society. It serves as a framework for considering people as a
group and aids in the development of measures from the town to city level and, possibly,
at national level [95]. When new epidemics occur in the era of information technology,
a new approach to public health that consists of “collective, coordinated, and organized
activities to continuously improve the health imbalance of the local population” has been
proposed [96].

COVID-19 has morphed into a global pandemic with over 182 million confirmed
cases worldwide in more than 200 countries as of 2 July 2021 [97]. This may be due to
people intentionally or inadvertently violating policies or infecting others without being
detected as infected themselves, resulting in the rapid spread of mild cases worldwide and



J. Pers. Med. 2021, 11, 886 7 of 17

an increasing number of deaths [98,99]. The progress of the infection has also varied from
country to country. In some cases, it has appeared to be under control, whereas in others,
it reached a catastrophic scale [100]. To effectively manage this pandemic, policymakers,
clinicians, and other stakeholders need access to near real-time data and recommendations,
including models to assess the relative risks and benefits of various interventions. While
predicting epidemics and pandemics is exceptionally complex and challenging, obtaining
reliable estimates of morbidity and mortality is essential for decision-making at individual
and organizational levels [101]. However, many existing prediction models may be inaccu-
rate for this novel pathogen. In addition, given globalization, similar infections may occur
in the future [102]. To address this situation, there has been much interest in developing
new systems that integrate AI techniques, which have been advancing rapidly in recent
years. Here, we present how AI is being used to (1) predict the dynamics of infectious
diseases and the effects of interventions, (2) perform outbreak detection and surveillance,
and (3) detect infectious diseases in real time, as described in reports including the latest
preprints (Table 1).

Table 1. AI approaches used to predict the dynamics of infectious diseases and the effectiveness of interventions, to detect
and monitor outbreaks, and to detect infectious diseases in real time.

Tasks of ML Models Models Used in the Study References

Determine a new daily cases peak with a
forecasted curve Modified autoencoder and SEIR compartment model Distante et al. [103]

Forecast the spread of infection First-principles epidemiological equations and neural
network model Dandekar et al. [104]

Detect early warning indicators (EWIs) Neural network model Uhlig et al. [105]
Long-term prediction and estimation of the number of

asymptomatic infections ML-based fine-grained simulator (ML-Sim) Yu et al. [106]

(1) Predict new confirmed cases, (2) predict how many
cases end in death, and (3) provide joint predictions of

cases, deaths, and recoveries

Bayesian time series model and a random forest
algorithm within an epidemiological

compartmental model
Watson et al. [107]

Predict the strength and timing of the peak of the
COVID-19 epidemic in Iran and the total number of

cases expected during the epidemic

(1) Random forest, (2) multi-layer perceptron,
and (3) LSTM Kafieh et al. [108]

Generate forecasts of disease outbreak PNN + cf Fong et al. [109]
Predict the COVID-19 infection status in various

regions and countries of the world Variational LSTM autoencoder model Ibrahim et al. [110]

Predict the number of confirmed cases in the short term
Adaptive neuro-fuzzy inference system using an
enhanced flower pollination algorithm and salp

swarm algorithm
Al-Qaness et al. [111]

Regression of the daily infection cases over the coming
24 days

XGBoost and
MultiOutputRegressor Suzuki et al. [112]

Combine health, demographic, and geographic
characteristics to predict the near-future infection risk

at county level
Three-stage XGBoost modeling process Mehta et al. [113]

Early identification of the spread of COVID-19 DNN classifier using pre-trained bidirectional encoder
representations from transformers (BERT)

Klein et al. and Golder et al.
[114,115]

Identify abnormalities in the incidence of the disease Determine the parameters that minimize mean
absolute error Chamberlain et al. [116]

Predict of influenza-like illnesses Importance contribution index for various feature
selection and pattern classification approaches Pei et al. [117]

Ultra-fast COVID-19 virus genome signature analysis
with the alignment-free approach Supervised ML with digital signal processing Randhawa et al. [118]

Detect fever and cyanosis; estimate heart rate and
respiratory effort Person detection using algorithms based on DL Hegde et al. [119]

Distinguish COVID-19 coughs from
non-COVID-19 coughs Domain recognition AI engine Imran et al. [120]

Estimate the probability that an individual will test
positive for COVID-19 based on the responses to nine

simple questions related to SARS-CoV-2 infection

Logistic regression models and gradient boosting
decision trees models Shoer et al. [121]

4.2. Models for Predicting the Dynamics of Infectious Diseases and the Effects of Interventions

Existing models of COVID-19 can be broadly classified into mathematical models
that simulate diseases in a population (such as epidemiological compartment models) and
statistical curve-fitting models that estimate the future by fitting functions to observed
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data. Most models of COVID-19 are compartmental models that have been used by epi-
demiologists for more than a century to simulate infectious disease epidemics, such as the
susceptible-infectious-recovered model and the susceptible-exposed-infectious-recovered
(SEIR) model [122] (Figure 3).
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Although compartmental models are necessary for understanding the mechanisms
that occur during an epidemic, it is unknown whether they are suitable for predicting
prognosis [124].

Existing models that have analyzed the role of travel restrictions in COVID-19 spread
include parameters based on prior knowledge of SARS/MERS coronavirus epidemiol-
ogy [125]. Several COVID-19 models have also been developed and adapted from influenza
pandemic models to simulate individuals in a population and their interactions [126].
However, this can cause the model to fail because model performance depends on the
assumptions and data used to “train” the model, leading to the risk of false predictions
and large, unreliable uncertainty intervals. Therefore, to overcome these challenges, ideas
have been devised to augment traditional models when data are limited.

COVID-19 infection prevention in various regions of China served as a valuable
training model because it provided complete data, showing that the epidemic could be
controlled by social distancing [127]. Distante et al. applied a modified autoencoder for
time-series forecasting using data from different regions of China as training data [103].
Dandekar et al. augmented a first-principles epidemiological model with a data-driven
module implemented as a neural network to analyze the control of the effective repro-
duction number of viruses and quarantine control policies of different countries [104].
Similarly, Uhlig et al. examined the effectiveness of measures taken by governments in
different regions while updating region-specific early warning indicators (EWIs) using neu-
ral networks [105]. Yu et al. proposed a fine-grained simulator (MLSim) approach based
on ML that predicts viral infections more accurately and helps estimate the number of
asymptomatic patients [106]. Watson et al. also used a data analysis method that combines
Bayesian and ML methods to predict the number of COVID-19 infections and deaths and
learn the transition function of the compartmental model [107]. The case and death models
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are merged by incorporating them into a compartmentalized model that can also predict
active cases and confirmed recovered cases.

By contrast, attempts to augment sparse data have also been reported. Kafieh et al.
augmented data on the number of infected people in Iran over a short period of time, which
only included a few weeks, with publicly available data from around the world [108]. Fong
et al. argued that prediction models built with a polynomial neural network with corrective
feedback (PNN + cf) are capable of low-error prediction during critical periods of disease
development when samples are not abundant [109].

Large-scale data processing, real-time data sources, and various qualities are impor-
tant aspects to consider when dealing with large amounts of data related to COVID-19.
For example, comparisons of analysis methods based on health statistics, demograph-
ics, multiple public sources including geographic characteristics, government measures
applied to each country, urban factors, and dependencies among different countries are
planned [110–113]. These analyses will be useful in promoting behavioral changes among
residents of at-risk areas, assisting in decisions to resume economic activity in each region,
supporting decisions about infectious disease control in each region, and searching for
factors that are highly correlated with future increases in the number of COVID-19 cases.

4.3. Surveillance and Outbreak Detection

Examples of social networking data collection and analysis include attempts to use
Twitter and other social media mining methods to detect the spread of COVID-19 in the
USA and UK [114,115]. Both use natural language processing and ML frameworks, which
may be useful for analyzing the temporal and geographic extent and types of symptoms in
different populations and regions.

If hotspots of infection can be quickly identified by collecting and analyzing health
application data, the spread of infection can be controlled with limited public health
resources. Chamberlain et al. used data collected from a network of personal thermometers
connected to smartphones to classify and track users with elevated body temperatures
over multiple days as having influenza-like illnesses [116]. The results showed that the
detection of abnormal influenza-like illness outbreaks correlated with COVID-19 positive
cases and was helpful in the rapid detection of COVID-related disease outliers.

With regard to the use of electronic medical record data for syndromic (influenza-
like) surveillance, the emergency department information system (EDIS) can monitor the
spread of influenza viruses, and electronic medical record data may be useful for the early
detection of COVID-19 [117].

Genome sequencing can facilitate the classification and contact tracing of the COVID-
19 viral genome. These genomic data need to be elucidated as early as possible for strategic
public health planning, containment, and treatment. Recent reports have shown that ML
using unique genomic signatures can be used to rapidly classify novel pathogens without
alignment and may facilitate contact tracing in the future [118,128].

4.4. Scalable Real-Time Screening Tools

The significant increase in emergency department visits associated with the COVID-19
pandemic has placed a heavy burden on healthcare providers, and the decreased efficiency
of emergency departments increases the risk of infectious diseases. Hegde et al. used a
Raspberry Pi-based low-cost computer vision system to evaluate its accuracy as a triage
tool [119]. Although many challenges remain, this system provides a starting point for
future automated triage systems and has clear advantages in infection prevention through
rapid, non-contact screening.

The idea of using cough sounds as a preliminary diagnosis of respiratory syndromes
has been proposed [129–136]. Imran et al. have shown that cough can be used as a test
medium for diagnosing various respiratory diseases using AI and developed a domain-
aware AI engine to distinguish between coughs caused by COVID-19 and non-COVID-
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19 [120]. This has the potential to provide remote screening to reduce the burden on
healthcare systems worldwide.

In addition, an attempt is being made to build a model to estimate the probability of
being COVID-19 positive based on a simple online question, which can be used without
touching a suspected infected patient, suggesting that it could be useful as a COVID-19
control measure [121,137].

5. Discussion

In this review, we presented recent global trends in the use of AI for the diagnosis
and treatment of COVID-19. AI techniques have been actively introduced into medical
image analysis, partly because of their superior performance. Moreover, AI is being used
in various ways to diagnose COVID-19, mainly in chest X-ray imaging, chest CT, and
lung ultrasound examinations. In fact, there are several AI-equipped medical devices that
are being used for diagnostic imaging of COVID-19 patients in clinical practice, and it
is expected that additional research results will continue to be applied clinically. AI has
also been introduced into COVID-19 vaccine development and drug discovery; examples
include the prediction of antigen specificity using DL and the prediction of the activity of
small molecule compounds in a wide range of SARS-CoV-2 related assays using ML. In
terms of public health, AI is also used to (1) predict the dynamics of infectious diseases
and the effects of interventions, (2) detect and monitor outbreaks, and (3) detect infectious
diseases in real time. From the above, it can be seen that AI is effectively used in various
aspects of COVID-19 countermeasures. Due to space limitations, we were unable to
describe them in this review, but notable contributions have also been made through the
use of distributed artificial intelligence and agent-based models [138–140]. We note that,
from the perspective of preventing infectious diseases, it is necessary to reduce human
contact and unnecessary human flow, which is why information and communication
technology in social life is advancing worldwide [141–143]. AI is expected to become
increasingly important in the future, as the digitalization of data will increase along with
the shift to information and communication technology in the medical field.

The spread of COVID-19 is having a major impact on the world, and the role of science
and technology in overcoming infectious diseases is becoming increasingly important.
Many countries have fallen into a lockdown situation due to the spread of COVID-19
infection. We believe that to free the people of the world from the threat of COVID-19, it
will be necessary to continue to fight COVID-19 with the best of the world’s science and
technology, and the AI approaches described in this review are expected to be utilized as
fundamental techniques.

Although the potential of AI is very high, there are some problems that need to be
considered and addressed appropriately. The first main problem is overfitting, which refers
to the state where the system is trained to fit the training data but does not fit the test data,
resulting in poor generalization performance [15]. COVID-19 is a new disease, and less
than two years have passed since the first case was reported. Because the amount of data
accumulated so far may not be sufficient in some cases, generalization performance needs
to be assessed carefully. The second main problem is interpretability and explainability,
that is, the development of explainable AI. From the perspective of building a relationship
of trust between clinicians and AI, it is necessary to make efforts to present the reasons
and rationale for decisions made by AI in an easy-to-understand manner. In a study by
Oh et al., research results using Grad-CAM were presented [36]. The third main problem
is related to domain shift, and it has been reported that the accuracy of predictions made
using AI models is good in single-center studies, but in multi-center studies, high accuracy
is not always obtained in all facilities [15,144,145]. This may be due to differences in the
manufacturer, model number, and protocols of the medical devices used at each facility.
We believe that it is essential to build a platform where the capabilities of the AI itself
do not differ between facilities by utilizing techniques such as fine-tuning and domain
adaptation [22,146–148]. Besides the main problems mentioned above, one must also be
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aware of the fact that COVID-19 is a new disease and therefore information is continuously
being updated. For example, it should be noted that (a) information on viral mutations,
(b) information on treatments, and (c) information on the composition of the affected
community will continue to be updated, so it should be noted that AI trained on old
information may not perform well.

Although some problems with the use of AI have been observed, as described above,
it is undeniable that its potential is high. Therefore, we hope that AI will continue to make
a significant contribution to the diagnosis and treatment of COVID-19 while innovations to
compensate for its shortcomings are made.

6. Conclusions

There have been several epidemics in the past. Based on human history, we will not
be able to completely eradicate harmful viruses owing to mutations and drug resistance.
Needless to say, it is important to continually advance and keep up with the latest develop-
ments in viral infection. As we have reviewed in this article, there are several advantages
to using AI to fight against COVID-19, including acceleration of the discovery of valuable
vaccines or drugs to prevent pandemics and facilitation of the diagnosis of diseases and
infections. Moreover, explainable AI should accelerate the implementation of AI in society,
which can help improve the quality of decision-making in hospitals.
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