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Abstract: More than a year has passed since the report of the first case of coronavirus disease
2019 (COVID), and increasing deaths continue to occur. Minimizing the time required for resource
allocation and clinical decision making, such as triage, choice of ventilation modes and admission
to the intensive care unit is important. Machine learning techniques are acquiring an increasingly
sought-after role in predicting the outcome of COVID patients. Particularly, the use of baseline
machine learning techniques is rapidly developing in COVID mortality prediction, since a mortality
prediction model could rapidly and effectively help clinical decision-making for COVID patients
at imminent risk of death. Recent studies reviewed predictive models for SARS-CoV-2 diagnosis,
severity, length of hospital stay, intensive care unit admission or mechanical ventilation modes
outcomes; however, systematic reviews focused on prediction of COVID mortality outcome with
machine learning methods are lacking in the literature. The present review looked into the studies that
implemented machine learning, including deep learning, methods in COVID mortality prediction
thus trying to present the existing published literature and to provide possible explanations of the
best results that the studies obtained. The study also discussed challenging aspects of current studies,
providing suggestions for future developments.

Keywords: machine learning; deep learning; COVID; mortality; prediction; imaging; computer
Tomography (CT)

1. Introduction

More than a year has passed since the report of the first case of coronavirus disease
2019 (COVID), and many deaths continue to occur. Despite the discovery of different
vaccine formulas from different pharmaceutical companies, many problems related to
mass production and distribution across the world still persist. This factor is accompanied
by political and economic constraints that may further limit vaccine access [1]. For these
reasons, pandemic containment is a hard task, resulting in increased deaths. At the
time this manuscript is written, SARS-CoV-2 numbers reported by the World Health
Organization (Ginevra, Switzerland) (https://covid19.who.int/, 31 May 2021) worldwide
include: almost 173,005,553 people infected with SARS-CoV-2; more than 3,727,605 death
cases and around 1,900,955,505 vaccine doses administered. Multiple hospitalizations, due
to the rapid spread of the virus have required an improvement of patient management
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throughout the healthcare system. In this context, it is important to minimize the time
required for resource allocation and clinical decision making, such as triage, choice of
ventilation modality, admission to the intensive care unit. Currently, baseline machine
learning (ML) and deep learning (DL) techniques are widely accepted thanks to their
ability to obtain information from the input data without “a priori” definitions [2]. These
approaches can be efficiently tested in healthcare applications such as diagnosis of diseases,
analysis of medical images, collection of big data, research and clinical trials, management
of smart health records, prediction of outbreaks [3]. Consequently, DL models are capable
of solving complex tasks in the intricate clinical field [4]. ML is acquiring an increasingly
sought-after role in predicting the outcome of COVID patients [3,5–7]. For instance, a
mortality prediction model could rapidly and effectively help clinical decision-making for
COVID patients at imminent risk of death. Recent studies reviewed predictive models
for SARS-CoV-2 diagnosis and severity, length of hospital stay, intensive care unit (ICU)
admission, mechanical ventilation modality outcomes [8–12], highlighting pitfalls of the
machine and deep learning methods based on imaging data [13]; however, systematic
reviews focused on prediction of COVID mortality outcome with ML methods, including
DL techniques, are lacking in the literature.

The aim of this review is to discuss the current state of the art of ML methods to
predict COVID mortality by: (1) summarizing the existing published literature on baseline
ML- and DL-based COVID mortality prognosis systems based on medical evaluations,
laboratory exams and Computer Tomography (CT); (2) presenting relevant information
including the type of data employed, the data splitting technique, the proposed ML
methodology and evaluation metrics; (3) providing possible explanations of the best results
obtained; (4) discussing challenging aspects of current studies, providing suggestions for
future developments.

2. Literature Review Methods

This systematic review considers the state of the art in ML and DL as applied to COVID
mortality prediction. We performed a MEDLINE search on PubMed on 26 May 2021
using the terms “machine learning covid survival” (146 results), “machine learning covid
mortality” (131 results), “deep learning covid survival” (49 results), “deep learning covid
mortality” (45 results) and additional similar terms. The search results were filtered
to remove: duplicates, ML approaches for SARS-CoV-2 diagnosis or prognosis besides
mortality, preprint works, abstract works, papers that deviated from our purpose. We try
to shed some light on peculiar characteristics of these studies in terms of: (i) data source,
(ii) data partitioning, (iii) class of features, (iv) implemented features ranking method,
(v) implemented ML technique, (vi) metrics evaluated for performance assessment.

2.1. Data Source

We emphasized the study location and whether the dataset of each study was public
or private, single site or multicenter.

2.2. Data Partitioning

We focused on the type of model validation that each study used to split data into
train and test groups. Particularly, we chose to report the number of subjects used for the
train and test set, and the corresponding number of survived and non-survived subjects.
Additionally, we categorized validations type in: internal, external, merged and prospective
(in particular internal prospective or merged prospective); referring to Internal validation
when the studies subdivided a single-site database into train and test groups; external
validation when studies trained and tested the model using data from independent cohorts,
obtained from different sites. Moreover, we referred to merged validation for studies
that combined data from different sites producing a single database to split into train
and test groups or used multisite publicly available epidemiological datasets. Finally,
we indicated prospective validation when studies implemented a temporal validation,
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assessing temporal generalizability. In the case of internal prospective validation, data
of hospitalized patients from a first timeframe was used for training and data of patients
admitted at a different time from the same hospital was used for testing. Differently,
prospective merged validation relied on multisite data to train the model and multisite
data collected in a subsequent timeframe for testing.

2.3. Class of Features

We expected to collect papers with both clinical and imaging features. In the lat-
ter, we included hand-made extracted features with radiomic analysis and the features
learned with the use of convolutional neural networks (CNN). Clinical features comprise
demographic (e.g., age, sex, race), comorbidities (e.g., diabetes, heart disease), symptoms
(e.g., cough, fever), vital signs (e.g., heart rate, oxygen saturation), laboratory values (e.g.,
glucose, creatinine, haemoglobin), disease treatment and clinical course (e.g., artificial ven-
tilation, length of hospital stay, drugs). Clinical features can be classified in binary (yes/no:
0/1) and continuous features (numerical values). We considered binary features when
studies associated them with 0/1 values or dichotomized continuous feature’s value in a
binary form, defining a numerical range and setting the feature to 1 if the value is within
that range, 0 otherwise. While we have referred to continuous features when studies used
predictors (features used for prediction tasks) as continuous variables or dichotomized
binary features in continuous features.

2.4. Implemented Features Ranking Method

To build a reliable model for solving classification, the feature set should contain
as much useful information as possible, and a number of features as small as possible.
It is necessary to filter out the irrelevant and redundant features by choosing a subset
of relevant features to avoid over-fitting and tackle the problem of dimensionality [14].
Feature ranking (or selection or reduction) techniques are a good approach for features
space dimensionality reduction [15]. Feature ranking improves features understanding
and reduces the computational cost, increasing the efficiency of the classification. Since
Shapley Additive Explanation (SHAP) and least absolute shrinkage and selection operator
(LASSO) logistic regression algorithm are widely used methods for model interpretation
and feature selection in survival studies [16–19], we highlighted whether the studies used
these methods or others. Particularly SHAP is a method to explain individual predictions
by computing the contribution of each feature to the prediction. LASSO is a new method
for estimation in linear models based on regression analysis.

2.5. Implemented ML Techniques

With the aim of identifying the most used and performing methods, we focused on
the prediction technique used in each work, highlighting whether it belonged to baseline
ML or advanced DL algorithms. Since in literature there are many implementable and cus-
tomizable algorithms, we expected to find several and different methods employed in the
works included in this review. However, we expected to find techniques attributable to one
of the following four classes, according to the characterized basic algorithm: (i) regression,
(ii) classifier, (iii) neural network and (iv) ensemble learners. Particularly, we included
in regression the algorithms that estimate the model function from the input features to
numerical or continuous output. In classifiers, we included the algorithms that estimate
the model function from the input features to discrete or categorical output. In neural
networks, we comprehend architectures inspired by the neurons in the brain. Finally,
we consider the ensemble models that combine several base models. In addition to the
algorithm, we aimed to identify the K-fold cross-validation used in each work, a statistical
method used to estimate the skill of a model, with k referring to the time of validations
execution to reinforce the validity of the model.
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2.6. Metrics

We highlighted the measures that each selected study reported to evaluate model
performance, including Accuracy (ACC), Area Under the Curve—Receiving operator
characteristic (AUC-ROC), Area Under the Precision-Recall Curve (AU-PRC); Sensitivity
(SENS), Specificity (SPEC), Positive Predictive Value (PPV), Negative Predictive Value
(NPV), F1-score, Matthew Correlation Coefficient (MCC), Balanced Accuracy (B-ACC).

ACC is the fraction of predictions the model performed right:

ACC =
TP + TN

TP + TN + FP + FN

AUC-ROC provides an aggregate measure of performance across all possible classifi-
cation thresholds;

AU-PRC can be used to test all the possible positive predictive values and sensitivities
obtained through a binary classification;

SENS is the ability of a model to detect a true positive:

SENS =
TP

TP + FP
;

SPEC is the ability of a model to detect a true negative:

SPEC =
TN

TN + FP
;

PPV is the model ability in not categorizing some people as having the condition
when in fact they do not:

PPV =
TP

TP + FP
;

NPV is the ability of a model in not categorizing some people as not having the
condition when in fact they do:

NPV =
TN

TN + FN
;

F1—score is defined as the harmonic mean of precision and recall:

F1 − score =
2 × TP

2 × TP + FP + FN
;

MCC is a measure not influenced by the unbalanced nature of a dataset:

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
;

B-ACC is a metric that evaluates binary classifier performance considering the imbal-
anced dataset:

B − ACC =
SENS + SPEC

2
.

where TP, FP, TN, FN are respectively true positive, false positive, true negative and
false negative.

3. Literature Review Results

Twenty-four papers were included for discussion in this work. Out of these, 3 were
DL papers, 17 traditional ML papers and 4 hybrid papers.
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3.1. Data Source

Public datasets were used by 2/24 papers [20,21] (Supplementary Table S1). Private
data were used in 22/24 papers, with 9/24 using data from a single site and 13/24 using
multicentric data. A total of 22/24 studies used data from a single country: 8/24 from
China, 8/24 from the United States, 2/24 from the United Kingdom, 2/24 from Korea, 2/24
from Italy, 2/24 studies used data from more than one country: including Italy, Spain and
the United States [22], and Iran and the United States [23] (Table 1).

Table 1. Studies Data Sources, Samples and Validation Characteristics.

Reference Centers Location
Survived and
Non-Survived
Sample Size

Type of
Validation

Sample Size
Train Sample Size Test

Online
Available
Dataset

[24] Five centers United
states

2392 survived,
1323 non survived

(deaths up to
3 gg:140; 5 gg: 281;

7 gg: 393;
10 gg: 509)

Internal,
External, Internal

Prospectively,
Prospectively

Merged

1514 (deaths
up to 3 gg: 40;

5 gg: 74;
7 gg: 112;

10 gg: 182)
(center1)

external: 2201 (deaths
up to 3 gg: 135;

5 gg: 276; 7 gg: 382;
10 gg: 494) (center 2, 3, 4,
5; time1) prospectively

merge: 383 (deaths up to
3 gg: 3; 5 gg: 5; 7 gg: 11;
10 gg: 15) (all five center

merged; time2)

NO

[25] Single center United
Kingdom

275 survived,
93 non survived Internal 318 80 NO

[26] Single center United
Kingdom

275 survived,
93 non survived Internal 318 80 NO

[27] Four centers Korea 299 survived,
214 non survived Internal, External

361 (195
survived,
212 non

survived)
(center1)

external: 106
(survived 104,

non survived 2)
(center2,3,4)

NO

[28] Thirty
centers Italy

3182 survived,
712 non survived,
41.5% of whom

resident in
Central/Southern

Italian regions
(15.6% death north

italy; 6.4%
center-south);

Merged
2725 (all thirty

centers
merged)

1169 (all thirty
centers merged) NO

[29] Single center United
states

355 survived,
43 non survived Internal 318 80 NO

[20]
Two

multicentric
dataset open

source
China

Cohort1:
28428 survived,

530 non survived;
Cohort2:

1325 survived,
123 non survived

Two double
merged

Training (1):
8687 (chort1);
training (2):
434 (chort2)

double merge (1):
first 14190, secondly

6081 (cohort1), double
merge (2): first 710,

secondly 304 (chort2)

YES

[30] Single center China 2737 survived,
259 non survived Internal 2339 (center1)

internal: 585 (center1);
external: 72

(70 survived, 2 non
survived) (center2)

NO

[31] Single center China 142 survived;
39 non survived Internal 154 27 NO

[21]
Two

multicentric
dataset open

source
China

662 survived,
57 non survived
(169933 slices)

Merged YES

[32] Single center United
states

2985 survived,
506 non survived Internal 2793 698 NO

[33] Three centers China 1906 survived;
254 non survived

Internal, Two
External

621
(535 survived,

86 non
survived)
(center1)

internal: 622
(533 survived, 89 non
survived) (center1);

external (1): 801
(741 survived, 60 non
survived) (center2);

external (2): 116
(97 survived, 19 non
survived) (center3)

NO
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Table 1. Cont.

Reference Centers Location
Survived and
Non-Survived
Sample Size

Type of
Validation

Sample Size
Train Sample Size Test

Online
Available
Dataset

[22] Thirty three
centers

Italy,
Spain,
United
States

2302 survived;
760 non survived

Merged, Three
External

2755
(25 centers

merged)

merge: 760 (1:25 centers),
external (1):

323 (center26), external
(2): 219 (27:32 centers),

external (3):
323 (center33)

NO

[34] Multicentric
database Korea

7772 survived,
228 non survived
the dataset was

splitted according to
the ratio 7:3

Merged 5600 2400 NO

[35] Two centers China 1198 survived;
72 non survived Internal, External

554
(513 survival,

41non survival)
(center1)

Internal: 233
(217 survival, 16 non

survival) (center1)
External: 286

(279 survival, 7 non
survival) (center2)

NO

[36] Five centers United
states

3519 survived;
510 non survived Five Internal

Training (1):
463 (center1),
training (2):

1151 (center2),
training (3):

524 (center3),
training (4):

378 (center4),
training (5):

340 (center2)

Internal (1): 148
(center1), internal (2):
493 (center2), internal

(3): 225 (center3),
internal (4): 162

(center4), internal (5):
145 (center2)

NO

[37] Two centers China 148 survived,
99 non survived Internal, External

183
(115 survived,

68 non
survived)
(center1)

external: 64
(33 survived, 31 non
survived) (center2)

NO

[38] Single center China
(1) 298 Survivaved,
187 non survived,
(2) 189 survived,
162 non survived

Internal
Prospectively

Internal

Training (1):
375 (time1),
training (2):

246

internal prospectively
(1): 110 (time2), internal

(2): 105
NO

[39] Single center United
states

3226 survived,
1087 non survived Internal 3468 845 NO

[23] Two centers
Iran,

United
States

193 patients External 105 (center1) 88 (center1) NO

[40] Multicentric
database

United
States 5308 patients

Internal
Merged

Prospectively

3597
(2909 survived,

688 non
survived)

1711

Researcher
affiliated

with Mass
General
Brigham

may apply
for access

[41] Multicentric
database

United
States

648 survived,
87 non survived Merged NO

[42] Single center Italy 266 survived,
75 non survived Internal NO

[43] Multicentric
database

United
States

2619 survived,
776 non survived

Merged
Merged

Prospectively

2054
(1602 survived,

452 non
survived)

Internal: 477
(361 survived 116 non

survived)
External: 864

(656 survived 208 non
survived)

NO

3.2. Data Partitioning

In Table 1 we show the type of model validation that each study used to split data
into train and test groups, indicating the number of subjects and the corresponding
number of survived and non-survived subjects. Internal validation was performed in
15/24 studies [24–27,29–33,35–40,42].

A total of 7/24 studies performed external validation [22,28,41,43].
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A total of 7/24 studies performed a merged validation, particularly 4 of these com-
bined data from different sites producing a single database [22,28,41,43] and 3 of these
used multisite publicly available epidemiological datasets [20,21,44].

A total of 2/24 studies implemented internal prospective validation [24,38] and
3/24 studies implemented a prospective merged validation [24,40,43].

3.3. Class of Features

A total of 2/24 studies used CT imaging features (Ning et al., 2020; X. Fang et al., 2021).
Particularly, Ning et al. used CT images in addition to clinical features, while Fang et al.
developed an artificial intelligence (AI) framework using deep neural networks to segment
lung lobes and pulmonary opacities, and baseline ML methods to predict mortality based
on radiological severity scores (accounting for the volume ratio of pulmonary opacities in
each lung lobe).

A total of 19/24 studies adopted binary features [20–22,24–27,30–38,40–43].
1/24 study dichotomized continuous feature’s value in a binary form [28].

A total of 16/24 studies adopted continuous features [21,22,24,27,29–33,35,37,38,40–43].
A total of 2/24 studies dichotomized binary feature in continuous feature associating a
Charlson comorbidity score to the feature’s value [39,40].

In Table 2 we show features type and class, feature ranking techniques, features
dimension reduction included in each study and the most important features derived.
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Table 2. Studies Features and Feature Ranking Techniques. Abbreviations: CRP, C-Reactive Protein; LDH, Lactate Dehydrogenase; OS, Oxygen Saturation; BUN, Blood Urea Nitrogen;
RDW, Red Cell Distribution Width; DBP, Diastolic Blood Pressure; RP, Respiratory pathology; CKD, Chronic kidney disease; IHD, Ischemic heart disease; CE, Cerebrovascular event;
EGFR, Estimated glomerular filtration rate; MPV, Mean platelet volume; PLCR, Platelet large-cell ratio; PT, Prothrombin time; PDW, Platelet distribution width; AA, Aspartate
aminotransferase; ISR, International standard ratio; BMI, Body mass index; LOS, Lenght of stay in hospital; sBP, sistolic blood pressure; dBP, diastolic blood pressure; tAC, anticoagulation
treatment; RR, Respiratory rate; MCV, Mean Corpuscolar Volume; IL-10: Interleukina—10. Yes if Included the study; No if Not Included in the study.

Reference
Features Type Features Class Features Selection

Dimension
Reduction Most Important Features (in Order)

Binaries Continuous Images Demographics Commorbities Syntoms Vital
Signs Laboratory Tratment SHAP LASSO Others

[24] Yes Yes No Yes Yes No Yes Yes No Yes Yes No 73 to 10 Age, Anion Gap, CRP, LDH, OS, BUN, Ferritin,
RDW, DBP, Lactate

[25,26] Yes No No Yes Yes Yes No No Yes Yes No No 22

Altered mental status, Dyspnea, Age, Gender,
Cough, RP, Hyperthension, Fever, CKD, IHD,
CE, Myalgia, Smoking history, Cardiac failure,

Days of symptoms, Obesity, Diarrea or
vomiting, Anosmia e/o ageusia, Liver cirrosis,

Diabetes, Abdominal pain

[27] Yes Yes No Yes Yes Yes Yes Yes Yes No No Yes 73 to 30

Lymphocytes count, Neutrophils, Albumin,
LDH, Neutrophil count, CRP, Prothrombin
activity, Calcium, Urea, EGFR, Monocytes,

Globulin, Eosinophils, Glucose, RDW, HCO3-,
RDW STD, Platelet count, MPV, PLCR, PT,

Total protein, PDW, AA, Thrombocytopenia,
Eosinophil count, Alkaline phosphatase, ISR,

Age, Gender

[28] Yes No No Yes Yes No No Yes No No No Yes 12

EGFR, CRP, Age, Diabetes, Gender,
Hyperthension, Smoking, Lung Disease,
Myocardial infarction, Obesity, Hearth

failure, Cancer

[29] No Yes No No No No No Yes No Yes No Yes 26 to 5 CRP, BUN, serum calcium, serum albumin,
lactic acid

[20] Yes No No Yes Yes Yes No No Yes No No No No No

[30] Yes Yes No Yes Yes Yes Yes Yes Yes No No Yes 1224 to 83 LDH, BUN, Lymphocyte count, age, SPO2,
Platlets, CRP, IL-10, HDL-C, SAO2

[31] Yes Yes No Yes Yes Yes Yes Yes Yes No No Yes 56 to 5 D-dimer, O2 index, Lymphocyte count,
CRP, Doarrhea

[21] Yes Yes Yes No No No No Yes No No No No No No

[32] Yes Yes No Yes Yes No Yes No Yes Yes No No 34 to 20

Vented, Respiration, BMI, LOS, Race, Pulse,
ICU_adm, sBP, dBP, Temp, Pressors, tAC

duration in days, Steroid Treatment duration
in days, Hearth, Diabetes, Cancer, Steroid,

tAC, Hypertension, Gender
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Table 2. Cont.

Reference
Features Type Features Class Features Selection

Dimension
Reduction Most Important Features (in Order)

Binaries Continuous Images Demographics Commorbities Syntoms Vital
Signs Laboratory Tratment SHAP LASSO Others

[33] Yes Yes No Yes Yes No Yes No No No Yes No 34 to 8 Consciousness, male sex, sputum, BUN, RR,
D-dimer, number of comorbidities, age

[22] Yes Yes No Yes Yes No Yes Yes No Yes No No 22
Age, BUN, CRP, OS, Blood creatinine, Blood

glucose, AA, Platelets, MCV,
White Blood Cells

[34] Yes No No Yes Yes Yes No No No No Yes Yes Not
specified

Cox analysis: age > 70, male sex, disability,
symptoms, infection at home; LASSO:

age > 80, taking of acarbose, age > 70, taking of
metformin, underlying cancer; RF: cluster

infection, infection from personal contact or
visit, underlying hypertension, age > 80

[35] Yes Yes No Yes Yes Yes No Yes Yes No Yes No 48 to 6 Severity, CRP, Age, LDH, Serum ferritin, IL-10

[36] Yes No No Yes Yes No No No No No No No No No

[37] Yes Yes No Yes Yes Yes Yes Yes No No No Yes 20 to 4 Age, CRP, Lymphocyte count and d-dimer

[38] Yes Yes No Yes No Yes No Yes No No No Yes 75 to 3 LDH, Lymphocyte count, CRP

[39] No Yes No Yes Yes No No No Yes Yes No No 48 to 10
sBP, dBP, Age, LDH, SPO2, RR, BUN,

Troponin level, D-dimer level, Charlson
comorbidity score

[23] No No Yes No No No No No No No No No No No

[40] Yes Yes No Yes Yes No Yes Yes Yes Yes No No Not
specified

EGFR, use of ventilation, Lymphocyte count,
Neutrophil count, RR, procalcitonin, serum

anion gap, serum potassium

[41] Yes Yes No Yes Yes No No Yes Yes Yes No No 109 to 10 Age, LDH, Ferritin, Neutrophil count, INR,
Procalcitonin, CRP, Hemoglobin, AA, D-dimer

[42] Yes Yes No Yes Yes No Yes Yes Yes No No Yes Not
specified

Age, Creatinine, AA, OS, Lymphocytes,
Platelets, Hemoglobin, Quick SOFA 2

[43] Yes Yes No Yes No No Yes Yes No No No Yes 142 Pulse oximetry, RR, sBP, BUN, white blood
cell, Age, Length of stay, lymphocyte per cent
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3.4. Implemented Features Ranking Method

Most studies used a high number of starting features [24,27,29–33,35,37–39].
We found 8/24 articles in which SHAP method was used to optimize survival predic-

tion in COVID [22,24–26,29,32,39–41,44]. Vaid et al. demonstrated that interactions between
features had a weak contribution to outcome prediction compared to the importance of
each feature individually [24]. On the contrary, Abdullal et al. used SHAP analysis to assess
the contribution of patient variables to the mortality prediction, with no features reduc-
tion [25,26]. A similar approach was employed by other studies [22,29,32]. Subudhi et al.
tested 18 models and performed the SHAP technique on the temporally distinct patients
to compare the important features selected on the different validation cohorts [40]. In the
other works, the most relevant features were selected with LASSO [24,33–35]. Ko et al.
employed the analysis of variance (ANOVA) to select features with the most significant
difference between survivors and deceased. Particularly, in the study by Ko et al., the
purpose was to identify a significant difference between the two classes (survived and
no survived) by selecting the features with p-values less than 10−5 [27]. In the study by
Di et al., the moDel Agnostic Language for Exploration and eXplanation (DALEX) package
is used as a features selection method usually adopted for predictive models. Booth et al.
implemented a different ranking method including a Logistic Regressor (LR) classifier,
obtaining regression coefficients as a measure of feature importance]. An et al. compared
different features ranking models to figure out if there was a coherence in using different
features ranking procedures [34]. Hu et al. used regression algorithms for feature reduction
as well [37]. Li et al. used the univariate analysis to compare distribution differences
between COVID survivors and non-survivors [30]. Moreover, they compared an evaluation
model with 83 features and a model with only the first five features selected. Yan et al.
performed feature ranking with a Multi-tree XGBoost [38]. With DL models, features
selection can be implemented by combining available features, as shown by Zhu et al. [31],
to obtain the optimal number of features necessary for classification. Three articles did not
apply any feature selection before the prediction algorithm [20,21,36].

3.5. Implemented ML Techniques

Based on our classification of ML methods above mentioned, we reported in this
section the particular algorithm implemented in each study and we exploited the most
relevant characteristics:

3.5.1. Regression Methods

A total of 8/24 papers evaluated LR performance and compared them with the
performance of other ML tools tools [20,22–24,30,35,37,43].According to Li et al., and
compared to other methods, LR models are superior in terms of high-speed calculation and
easy-to-interpret results, which might enhance their clinical applications [30]. Furthermore,
Li et al. developed a novel LR modeling method that ensured the training of optimal
predictors only (the adopted method for feature selection will be explored in-depth in the
next paragraph) [30]. LR is one of the traditional regression techniques, widely used to
observe the risk conditions among exposure and disease [45].

Abdulaal et al. implemented a Cox regression model, an algorithm used for mul-
tivariable analysis, starting from predictors chosen in concordance with previous litera-
ture. In the training phase, the variables not significantly associated with mortality were
eliminated [26]. The model assessment was performed with the final Cox model, re-
trained on the entire training set. A total of 2/24 studies [24,34] implemented LASSO [19].
An et al. tested several machine-learning algorithms, including LASSO [34]. Likewise,
Vaid et al. employed LASSO for data training [24]. A total of 1/24 studies proposed
a partial least square (PLS) regression model [37], which is a very versatile, supervised
method purposely used to address the issue of making good predictions in multivariate
problems [34]. PLS is based on a mixture of linear regression models [46], to reduce the
complexity of high-dimension class prediction problems.
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3.5.2. Classifiers

A total of 6/24 papers [20,23,29,34,42,43] used a Support vector machine (SVM) for
mortality prediction, a nonlinear statistical data supervised ML tool that achieved high
performance in survival prediction tasks [3,47]. Subudhi et al. used Support Vector
Classifier (SVC), a linear supervised ML algorithm [40].

The studies by An et al. and Subudhi et al. also included k-nearest neighbors
(KNN) [34,40], considered the oldest and simplest method for pattern classification [48].
Moreover, An et al. reported the features associated with mortality as input data on
multivariate Cox regression [34].

Furthermore, Yun Li et al. employed outliers detection algorithms to isolate samples
that deviate in the dataset [20].

Subudhi et al. evaluated 18 baseline ML algorithms, including linear models such
as: Passive Aggressive Classifier, a Stochastic gradient descent classifier, and a perceptron
classifier. The Authors also included Gaussian Naïve Bayes, a supervised algorithm based
on Bayes theorem and Decision Tree classifier, a non-parametric supervised algorithm.
Moreover, Subudhi et al. used models based on discriminant analysis (DA) such as linear
DA and quadratic DA with linear and quadratic decision boundary, respectively, which
are specific techniques that classify based on similarities between elements [40].

3.5.3. Neural Networks

5/24 papers developed neural network architectures [21,25,31,36]. Abdullal et al. used
a feature set as input for the ANN architecture: the input layer dimension was equal to the
number of patient features (n = 22) [25]. Information was then fed to two densely connected
hidden layers, consisting of one-dimensional vectors placed in cascade. Each layer had the
aim of creating increasingly meaningful representations of the input data before attempting
outcome prediction. Zhu et al. implemented a deep neural network of six fully connected
dense layers, whose input layer had 53 features, for predicting survival [31] In this work,
features ranking was made with the permutation importance methodology, training 6-layer
DNNs with 5-fold cross-validation. Once the top five clinical variables were selected, the
neural network was reduced to a simple 2-layer DNNs, to prevent overfitting.

1/24 paper [21] tested convolutional neural networks for unsupervised features ex-
traction from CT images, to predict patient mortality. Ning et al. developed three different
algorithms: 13-layer CNN for CT slice-based predictions, a 7-layer DNNs for predictions
based on clinical features, and finally, the integration of predictions from CT slices and
clinical features was performed through the PLR algorithm, a regression model that eval-
uates one score for predicting mortality outcome [21]. Neural networks, randomization
and parameter optimization, on the training dataset were performed ten times, and the
model with the highest accuracy was taken into account for the final model. Moreover,
to avoid overfitting, the authors opted for the dropout method, which randomly “drop
out” neurons from the neural network during training. ReLU activation functions were
set for both architectures, to activate the outcome of a neuron. For each method, a 10-fold
cross-validation was executed ten times.

2/24 paper [36,40] used Multilayer perceptron (MLP) technique. In literature, MLP
is considered a powerful machine-learning tool for medical prediction purposes, such as
survival [49]. Although datasets with different origins were employed, in the study of
Vaid et al. each MLP model was built with the same architecture. The MLP architecture
consisted of an input layer, three hidden layers (40,10,2 units, respectively) and an output
layer. In this article, the authors tried to solve the problem of data governance and privacy
by training the algorithms collaboratively without exchanging the data itself, a technique
known as Federated Learning (FL). The federated model was able to read the model
parameters instead of raw data, thus fulfilling privacy requirements.
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3.5.4. Ensemble

5/24 studies implemented the XGBoost algorithm, one of the most popular ensemble
method for binary classification in ML ML [22,24,35,38,39]. This classifier relies on a recur-
sive tree-based decision system, accommodating nonlinearity and interactions between
predictors, with high performance on data [24]. In Bertsimas et al., XGBoost was chosen
thanks to its capability of reducing the system complexity [22]. Vaid et al. decided to use the
same algorithm with a first dataset containing missing subjects’ data values, and a second
dataset, in which features with >30% missing values were dropped and k-nearest neighbors
were used to input missing data in the remaining feature space space [24]. Yan et al. carried
out a different features selection, obtaining the final six significant features and used them
for the training of the model defined as “simple-tree XGBoost” [38]. A total of 3/24 studies
chose the Gradient Boosting Decision Tree (GBDT) algorithm algorithm [30,42,43]. The
biggest difference with XGBoost is that the latter uses a more regularized model objective
function to prevent overfitting. The studies compared this algorithm with other non-
ensemble learners, including LR, SVM and neural networks. Yu et al. implemented a new
gradient-boosting algorithm, CatBoost (https://catboost.ai/, 31 May 2021) that has the
ability to encode categorical features. Rozenbaum et al. tested the LightGBM classifier, a
novel GBDT algorithm able to accelerate the training process [41,50]. A total of 7/24 works
decided to test Random Forest (RF) ensemble algorithm algorithm [20,23,28,34,37,40,42].
RF is another ensemble learning model characterized by multiple decision trees and con-
sidered as one of the best-performing learning algorithms [28]. An et al. and used RF to
select the predictors before the final training [34,37]. Gao et al. developed an ensemble
model based on the best performance obtained from baseline ML models, including LR,
SVM, KNN, GBDT, and NN, on an internal validation cohort with 10-fold cross-validation
to tune model parameters [33]. To improve the model’s ability to recognize minority cate-
gories, they raised the weights of the minority class category in the model, increasing the
punishment for the wrong classification of minority categories during training. Once the
best predictive performance was achieved, an ensemble model derived from four baseline
models (LR, SVM, GBDT, and NN), was proposed for prediction by assigning weights man-
ually on each individual estimator. In order to improve the mortality prediction, Ko et al.
created a new ensemble AI model combining a 5-layer DNN and an RF model, named
EDRnet (ensemble learning model based on DNN and RF models) [27]. The structure
included a DNN architecture with one input layer and 30 features, including 28 biomarkers,
age and gender. The input layer was fed into three consecutive dense layers consisting of
30, 16 and 8 neurons, respectively. To avoid overfitting, the authors applied the dropout
method. Finally, the last fully connected layer was fed into a softmax layer, providing
probabilities for patient mortality as output. Separately, the authors trained an RF model
using a maximum feature number of five. Soft voting was implemented to obtain the final
predicted mortality probability value, starting from DNN and RF results. In particular,
soft voting consists of the average of the two probability values p(DNN) and p(RF), if the
value is greater than or equal to 0.5, then the prediction result represents death; otherwise,
it represents survival. As already mentioned, Subudhi et al. are the only ones to test a very
high number of baseline ML algorithms (18) including the known ensemble learners GBDT,
XGB, RF, and others such as: AdaBoost classifier, Bagging classifier, Extra trees classifier
and Gaussian process classifier.

3.6. Metrics

None of the articles chose to evaluate ACC, AUC-ROC, AU-PRC, SENS, SPEC, PPV,
NPV, MCC, and B-ACC altogether. The 10-fold was the most frequent cross-validation
method [21,24–26,28,33,34,37,39]. In Table 3 we report the high-performing ML techniques
and corresponding metrics’ values for each paper, detailing whether the result is referred
to as a kind of validation. For those works lacking a performance report, we did not show
any values in the table.

https://catboost.ai/
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Table 3. Best performing methods and metrics results. Abbreviations: XGBoost, Extreme Gradient Boosting; ANN, Artificial
Neural Network; DNN, Dense Neural Network; RF, Random Forest; SVM, Support Vector Machine; GBDT, Gradient
Boosting Decision Tree; PLS, partial least square; LR, Logistic Regressor; NN, Neural Network; MLP, Multi-Layer Perceptron;
LightGBM, Light Gradient Boosting Machine. No Not Included in the study.

Ref.
Machine
Learning

Technique

Metrics
k-

FoldAccuracy AUC-
ROC AU-PRC Sensitivity Specificity PPV NPV F1-Score MCC Balanced

Accuracy

[24] Ensemble
(XGBoost)

int val
(3 days):
97.6%;
ext val

(3 days):
93.6%;
int val
prosp

(3 days):
97.1%

merged
val prosp
(3 days):

94.2%

int val
(3 days):
89%, ext

val
(3 days):
87.7%;
int val
prosp

(3 days):
96.2%;

merged
val prosp
(3 days):

87.9%

int val
(3 days):
44.5%,
ext val

(3 days):
44.4% int
val prosp
(3 days):
55.1%;

merged
val prosp
(3 days):

13.1%

int val
(3 days):
44.2%,
ext val

(3 days):
37% int

val prosp
(3 days):

50%
merged

val prosp
(3 days):

33.3%

int val
(3 days):
99.1%,
ext val

(3 days):
93.6%,
int val
prosp

(3 days):
97.1%;

merged
val prosp
(3 days):

94.2%

No No

int val
(3 days):
49.8%;
ext val

(3 days):
41.7% int
val prosp
(3 days):
28.6%;

merged
val prosp
(3 days):

14.3%

No No 10

[25] ANN int val
86.25%

int val:
90.12% No int val:

87.5%
int val:
85.9%

int val:
60.87%

int val:
96.49% No No No 10

[26] Cox
Regressor

int val:
83.75%

int val:
86.9% No int val:

50%
int val:
96.6%

int val:
84.6%

int val:
83.6% No No No 10

[27]
Ensemble
(DNN +

RF)

int val:
93% ext
val: 92%

No No
int val:
92% ext

val: 100%

int val:
93%, ext

val: 100%
No No No No

int val:
93%, ext
val: 96%

100

[28] Ensemble
(RF)

merged
val:

83.4%
No No

merged
val:

95.2%

merged
val:

30.8%
No No

merged
val:

90.4%
No No 10

[29] SVM No int val:
93%

int val:
76%

int val:
91%

int val:
91% No No No No No Unclear

[20] Auto
encoder No No No No No No No No No No Unclear

[30] Ensemble
(GBDT)

int val
(severe):
88.9%,
int val
(non-

severe):
92.4%,

int
val(total):

79.9%

int val
(severe):
94.1%,
int val
(non-

severe):
93.2%,

int
val(total):

91.8%

No

int val
(severe):
89.9%,
int val
(non-

severe):
94% int

val(total):
77.4%

int val
(severe):
78.8%,
int val
(non-

severe):
61.9%;

int
val(total):

90.3%

int val
(se-

vere):
43.2%
int val
(non-

severe):
35.1%

int
val(total):
48.3%

int val
(se-

vere):
97.8%
int val
(non-

severe):
97.9%

int
val(total):
97.2%

No No No 5

[31] DNN No int val:
96.8% No No No No No No No No 5

[21] PLS
merged

val:
78.73%

merged
val:

85.6%
No

merged
val:

88.24%

merged
val:

78.26%

merged
val:

16.67%

merged
val:

99.26%
No

merged
val:

52.36%
No 10

[32] Ensemble
(CatBoost)

int val:
80.3%

int val:
85% No No No int val:

79%
int val:
81.6% No No No Unclear

[33]
Ensemble
(LR, SVM,
GBDT,NN)

int val:
96.21%

ext val 1:
97.6% ext

val 2:
92.46%

int
val:92.4%,
ext val 1:

95.5%,
ext val 2:

87.9%

No No No No No No No No 10

[22] Ensemble
(XGBoost)

merged
val:

85.02%,
ext val 1:
74.92%,
ext val

2:86.76%,
ext val 3:

61.3%

merged
val:

90.19%,
ext val 1:
87.45%,

ext val 2:
91.62%,

ext val 3:
80.66%

No No

merged
val:

86.58%,
ext val 1:
74.23%,

ext val 2:
87.43%,

ext val 3:
58.12%

merged
val:

66.3%,
ext val 1:
25.74%,
ext val 2:
48.94%,
ext val 3:
24.18%

merged
val:

93.02%,
ext val 1:
97,3%

ext val 2:
97,09%,
ext val 3:
94,71%

No No No Unclear

[34] SVM No
merged

val:
96.2%

No
merged

val:
92.0%

merged
val:

91.8%

merged
val:

25.7%

merged
val:

99.7%
No No

merged
val:

91.9%
10

[35] Ensemble
(XGBoost)

int val:
99.1% ext

val:
99.7%

No No
int val:

87.5% ext
val:

85.7%
No

int val:
99.1%

ext val:
99.7%

No No No No 500
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Table 3. Cont.

Ref.
Machine
Learning

Technique

Metrics
k-

FoldAccuracy AUC-
ROC AU-PRC Sensitivity Specificity PPV NPV F1-Score MCC Balanced

Accuracy

[36]
Federate
learning
(MLP)

int val:
78%

int val:
83.6%

int val:
27.6%

int val:
80.5%

int val:
70.2% No No int val:

32.8% No No 490

[37] LR No
int val:
89.5%,
ext val:
88.1%

No
int val:

89.2% ext
val:

83.9%

int val:
68.7% ext
val: 79.%

No No No No No 10

[38] Ensemble
(XGBoost) No No No

int val:
95% ext

val prosp:
98%

No

int val:
95%

ext val
prosp:
91%

No
int val:
95% ext

val prosp:
94%

No No 500

[39] Ensemble
XGBoost No int val:

90.3%
int val:
79.1%

int val:
83.8%

int val:
83.6%

int val:
60.9%

int val:
94.4% No No No 10

[23] LR No ext val:
73.6% No No No No No No No No Unclear

[40] Ensemble
(RF) No No No No No No No Int val:

87% No No Unclear

[41] LightGBM No merged
val: 88% No No No No No No No No 10

[42] Ensemble
(RF) No int val:

84% No int val:
78.8%

int val:
77.4% No No No No No Unclear

[43] Ensemble
GBDT

merged
val prosp:

96%

merged
val prosp:

99%
No

merged
val prosp:

24%

merged
val prosp:

97%

merged
val

prosp:
90%

merged
val

prosp:
98%

No No No Unclear

4. Discussion

Few studies attempted COVID survival analysis with statistical methods [34,51–55].
We decided to focus our review on mortality prediction through ML techniques which are
able to fit nonlinear and complex interaction effects between predictors [56]. Particularly,
ML improved predictability compared to other statistical methods on prediction of survival,
in various practical domains [56,57]. Variability in dataset dimensions, experimental
methods and features choices limit the comparison of the selected studies.

4.1. Datasets

The studies included in this review share several limitations. First, the number of
patients available for testing might be considered small, affecting the significance of the
results. Additionally, deceased cases are often a minority compared to the ones alive.
The few datasets that are publicly available are subject to the possible risk of institutional
bias [13] due to the lack of information about exclusion criteria. An additional bias could be
related to the impossibility of knowing whether patients are truly SARS-CoV-2 positive due
to the unclear definition of patients recruitment [13]. In addition, most studies were blind to
patients who were admitted for clinically suspected SARS-CoV-2 and tested positive for the
virus but died due to unrelated morbidities. Since imbalance issues characterize the SARS-
CoV-2 mortality rate 3.6% (https://coronavirus.jhu.edu/data/mortality, 31 May 2021)
(Table 1), unbalanced data selection may positively or negatively affect the performance
of the training and testing process [24,26,28,43]. It is known from the literature that a
representative sample is required for a stable model [58]. Nevertheless, these good results
may be due to the adopted methods (Neural networks, SVM, Ensemble algorithms) that
are known from previous literature to achieve high performance on unbalanced datasets
adjusted with oversampling or undersampling techniques [59–62]. Subudhi et al. adopted a
random undersampling, comparing the excluded patients of the majority class with patients
included to ensures that none of the features were significantly different (p ≥ 0.05) [40].

https://coronavirus.jhu.edu/data/mortality
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4.2. Demography

Although the implemented models are representative of hospitalized patients with
confirmed SARS-CoV-2 infection and relative outcome within the geographic remit of the
study site, caution should be used when generalizing to other populations. Particularly,
results may not be generalized to populations with different geographical and socioeco-
nomic conditions, differences in national health service or insurance-based health expenses.
A merged database and a prospective validation could be useful in a target population
generalization. Furthermore, caution should be exercised in management practices changes
or evolution of COVID pathogenesis [40].

4.3. Accuracy and AUC-ROC

Looking at the performance measures of the developed models, only a few achieved
ACC > 90% on at least one validation technique [24,27,33,35,43]. The highest accuracy for
internal (99.1%) and external (99.7%) validation was achieved by Guan et al. with XGBoost.
In terms of ML methods, ensemble learning was high performing (ACC > 90%) among
studies(Gao et al. 2020; Ko et al. 2020; Vaid et al. 2020; Guan et al. 2021; Stachel et al. 2021).
Moreover, studies that compared non-ensemble and ensemble learners showed best perfor-
mance with ensemble models [22,24,27,30,33,35,39,40,42,43]. This is in line with ensemble
learning being recognized as superior in terms of prediction performance to individ-
ual models [57]. Moreover, ensemble models are less prone to overfitting issues com-
pared to individual classifiers [63,64]. A total of 3/24 studies reported ACC > 80% and
AUC-ROC > 80%, but no information on K-fold cross-validation was available. K-fold
cross-validation is important to achieve higher accurate results with a limited amount
of data [65]. Moreover, Wong et al. suggested to repeat K-fold cross-validation several
times in order to obtain reliable accuracy [66]. A total of 7/24 studies reported predic-
tion performance with internal and external validation contributing to the model training
generalization on a wide target population [22–24,27,30,33,35,37].

4.4. Other Metrics

In most of the selected studies SENS and SPEC, which provide information about
the ability to detect deceased or cured cases, exceeded 70% on at least one
validation [25,27,29,30,34,36,37,39,42]. Only a limited number of studies (9/24) indicated
predictive values (PPV and NPV) [21,22,25,26,30,32,34,39,43], despite these being consid-
ered important information for performance prediction assessment, on a par with sensitivity
and specificity [67]. Considering previous observations, the use of only the most common
metrics, such as AUCROC and ACC, limits the model validation. Definitely, all the metrics
mentioned above are required in a machine learning study to allow a complete view of
the performance of the final model, so as to assess whether the result truly represents a
performing model given the size of the dataset and its imbalance.

4.5. Mortality Prediction within Different Times

Three studies tested model performance for death prediction within different times
from admission: 3, 5, 7 hospital days in the study by Vaid et al.; 0, 10, 35 days in the study
by Yan et al.; 7 days after admission and 7 days prior to discharge in Stachel et al. [24,38,43].
Vaid et al. achieved a better prediction (in terms of ACC, AUC-ROC) of mortality events
within 3 days from admission, suggesting a role of the ensemble learner in the identification
of patients at immediate mortality risk [24]. Additionally, Yan et al. and Stachel et al.
reported that the ACC value of the prediction increases closer to the patient’s outcome,
suggesting that deteriorations of patient’s conditions could give an early warning to the
clinicians [38,43]. According to Ikemura et al., it would also be interesting to test models
performance for predicting the death of patients within two distant timeframes (e.g., the
first week of admission and the fourth week after admission) [39].
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4.6. Models Validation

Vaid et al. and Subudhi et al. reported that prospectively merged validation per-
formance dropped compared with the internal validation [24,40]. The interest in the
development and validation of prediction models in clinical setting is growing [68,69],
but 14/24 studies of our review reported prediction performance with internal validation
only [20,21,25,26,28–32,34,36,38,39,42]. Furthermore, external validation is a rigorous key
step before disseminating the prediction model in a clinical setting [70,71]. Since the aim of
the reported predictive models is to inform patients and carriers about a mortality outcome,
it is essential that predictions should be well-calibrated on a target population [72,73]. In
this context, an external validation could contribute to extend this target population and to
generalize the model. For this reason, measures about calibration (i.e., Z-statistic) should
be considered [74] in addition to discriminate data into classes via metrics such as the
AUCROC and ACC.

4.7. Clinical Features Predictive Ability

The ability to enhance prognostication through the integration of biomarkers in the
clinical practice moves the medical field towards personalized medicine, as well as improv-
ing treatment strategies [75]. In this review, we identified the most significant biomarkers
through features ranking techniques. Our analysis revealed that all the models were fed
with binary and continuous features and all studies included laboratory parameters with a
single exception [33]. Due to the retrospective nature of the studies, some implemented
models do not include potentially important predictors of mortality outcome, such as co-
morbidities, vital signs, treatment, laboratory and radiological features. In addition, several
studies have missing features for some subjects. Missing values are a challenging problem
in SARS-CoV-2 baseline ML and DL model development [76–78]. Particularly some of the
variables might be deleted during data pre-processing with the consequence of underesti-
mating their role in predicting patients outcomes [37]. To overcome these limitations, it
would be necessary to standardize relevant features in a prospective multicenter analysis.
Among the features with higher ranking, there are Age, CRP, LDH (Table 2). A significant
association between older age and SARS-CoV-2 infection mortality was observed in other
literature without ML [79]. Moreover, the serum LDH level was found to be an independent
risk factor for both severity and mortality in COVID patients [80]. Rastad et al. reported
the CRP level as an additional risk factor [81]. Although the studies showed some variabil-
ity in the feature extraction techniques, most of them have revealed a highly significant
association between the feature’s age, CRP, LDH and mortality [22,27,30,35,36,38,39,41].
Among the experiments that use ensemble methods [22,24,27,28,33,35,38–43], the ones
using the features CRP, LDH and age (after features ranking) obtained the best performing
results [24,27,35]. Moreover, using these features, Vaid et al. compared ensemble model
and non-ensemble models (LR and LASSO), obtaining the best performance with the
former. This finding highlights the predictive power of the combination between high
predictive features (Age, CRP and LDH) and ensemble models. Since the sample size is
often imbalanced with a relative minority of COVID positive mortalities, it might be useful
to create a worldwide database for the generalization of results and the most important
extracted features, with a well-balanced number of survivors and non-survivors. Finally, it
is important to note that the SARS-CoV-2 pandemic is unusual and evolving. Therefore, a
real-time update of model prediction capabilities would be required.

4.8. Images Features Predictive Ability

Only two of the studies had information regarding radiologic images. Imaging may
also be an important prognostic factor. The results obtained from Ning et al. and Fang et al.
in terms of accuracy (78% reported by Ning et al.) and AUC-ROC (85% and 73.6% respec-
tively) [21,23] are worse than others that used clinical features only. This could depend on
a lower number of deceased patients (8% of total subjects in Ning et al. and not specified
in Fang et al.). Moreover, the mortality analysis of Ning et al. included laboratory features
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and imaging features only [21] and Fang et al. included only score features related to CT
images. On the other hand, Ning et al. reported a good MCC value (53%) that could be
related to the integration of the DL technique and images features. According to recent
studies [38], chest CT images play an important role in the diagnosis, monitoring and
severity stratification of COVID [44]. The results reported by Ning et al. and Fang et al.
showed that images related features are not best performing [21,23]. However, further
studies with a dataset of clinical features and images should be created to fully exploit
the benefits of integrating clinical and imaging features. Although different studies used
X-rays for predicting mortality, with both radiologist-assessed [53,54] and AI-assessed [55]
disease severity scores, in our knowledge, there are no studies that applied these predictors
to ML methods in the evaluation of mortality. Further studies could evaluate the usefulness
of this application

5. Conclusions

This systematic review specifically considers the state of the art in ML and DL as
applied to COVID mortality prediction. Both binary and multi-class features are considered
throughout the review. We summarized the developed models considering data source,
data partitioning, class of features, ML technique and evaluation metrics for performance
assessment. Clinical features are used in all studies for data samples, while only one paper
currently has CT images features. Most of the studies presented an imbalanced number
of survived and non-survived cases. We found some best practices that studies could
follow for developing optimal ML models: (1) the use of a high-quality dataset with a
large balanced number of samples, (2) the implementation of an ensemble of different ML
methodologies, (3) clinical features should include different features class type including
Age, CRP, LDH values, (4) as many metrics as possible should be reported to have a
complete view on model performance, including both the most common metrics, such as
AUCROC and ACC, and other important metrics for performance prediction assessment,
such as SENS, SPEC, PPV and NPV.

The considerations in this review may help to develop further studies to predict
mortality in COVID patients, including both adulthood and childhood, although children
and young people remain at low risk of COVID mortality [82]. Moreover, suggestions
collected in this study could also be useful to predict prognoses other than mortality (e.g.,
intubation and length of hospital stay).
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