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Abstract: Critical care staff are presented with a large amount of data, which made it difficult to
systematically evaluate. Early detection of patients whose condition is deteriorating could reduce
mortality, improve treatment outcomes, and allow a better use of healthcare resources. In this study,
we propose a data-driven framework for predicting the risk of mortality that combines high-accuracy
recurrent neural networks with interpretable explanations. Our model processes time-series of vital
signs and laboratory observations to predict the probability of a patient’s mortality in the intensive
care unit (ICU). We investigated our approach on three public critical care databases: Multiparameter
Intelligent Monitoring in Intensive Care III (MIMIC-III), MIMIC-IV, and eICU. Our models achieved
an area under the receiver operating characteristic curve (AUC) of 0.87–0.91. Our approach was
not only able to provide the predicted mortality risk but also to recognize and explain the historical
contributions of the associated factors to the prediction. The explanations provided by our model
were consistent with the literature. Patients may benefit from early intervention if their clinical
observations in the ICU are continuously monitored in real time.

Keywords: critical care; early warning scores; explainable artificial intelligence; machine learning;
mortality; time-series prediction; recurrent neural networks

1. Introduction

Critically ill patients are cared for in the intensive care unit (ICU) with advanced diag-
nostic and therapeutic technologies. ICU staff are presented with large amounts of clinical
data, from which it may be difficult to distinguish the most important features. Delayed
identification of patients with deteriorating health and delayed medical interventions could
lead to increased morbidity and mortality [1]. Early identification of deteriorating patients
could both improve patient outcomes and provide better utilization of healthcare resources.

Predicting clinical outcomes of patients is an important but difficult topic in critical care
research. Studies have shown that abnormalities in physiological observations typically
occur in patients before major clinical events, such as infection, cardiac arrest, and death.
Eighty-four percent of patients exhibited signs of physiological abnormalities within eight
hours before the onset of physiological derangement events [2]. Although abnormalities
in laboratory results were shown to be inconsistent, abnormalities in vital signs were
consistently observed. Many early warning scores (EWSs) have been introduced to provide
a bedside assessment system for a patient, such as the Acute Physiology and Chronic
Health Evaluation (APACHE) [3,4], the Simplified Acute Physiology Score (SAPS) [5,6], the
Modified Early Warning Score (MEWS) [7], the National Early Warning Score 2 (NEWS2) [8],
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and Between the Flags (BtF) criteria [9]. These clinical scoring systems are mostly based on
demographic data as well as vital signs and laboratory values. These scores were based
on the studies of aggregated data from large cohorts of patients. They relied on a panel of
clinical and statistical experts to develop such scoring systems. Each scoring system was
developed for a specific purpose and is considered complementary. The APACHE [3,4]
and SAPS [5] scores were developed to assess the severity of the illness affecting patient
mortality at 24 h after ICU admission. The MEWS [7] and NEWS2 [8] scores were developed
to quickly determine a patient’s level of illness at the bedside. Currently, various EWSs are
routinely used in hospitals to identify patients who are likely to deteriorate and to initiate
pre-planned escalation of care when needed [10].

The availability of clinical data stored in a modern hospital information system (HIS)
enables the development of advanced predictive tools that use statistical techniques and
machine learning (ML). These tools could leverage the use of data to identify patterns or
relationships between clinical data and patient outcomes. Recently, the Massachusetts
Institute of Technology (MIT) Laboratory for Computational Physiology published several
public critical care databases [11–13] to promote the development of machine learning
algorithms on large datasets. This has led to the development of various data-driven
approaches for EWSs. Previous studies have used descriptive statistics on clinical ob-
servations and tree-based algorithms for mortality prediction [14–16]. Several studies
employed time-series techniques to process real-valued clinical observations for mortality
prediction [17–21]. Some studies have developed algorithms that can predict multiple
important clinical events [22–24]. Most studies demonstrated their algorithms performed
better than the traditional scoring systems used in the ICU.

Although ML models have demonstrated their robustness in various domains, their
decisions are still not transparent. Many questions have been raised about the trust in
the model and the adequacy of its predictive performance. Methods used for model
interpretation often focus on explaining the model by examining the contribution of each
feature to the output of a model. Recently, Lundberg et al. [25] introduced SHapley
Additive exPlanation (SHAP), which uses Shapley values to provide local explanation
ability to the model. A Shapley value represents the average contribution of a feature over
all possible combinations with other features. SHAP uses these Shapley values to measure
the effect of each individual feature on a single prediction. This involves permuting all
combinations of the removal of a feature to determine its effect on the prediction. The
visualization of contribution scores could be thought of as a tool for clinicians to facilitate
their decision-making process [26].

This study aims to apply recurrent neural networks (RNN) with explainability to
predict the mortality risk in intensive care patients. The explainability method enables
causal explanation behind the deep learning model so that a prediction made by the black
box model becomes visible. Our proposed approach processes time-series of vital signs and
laboratory observations for predicting a risk of mortality, so the score indicating the severity
of illness could be given. We employ SHAP to explain a model’s decision on time-series data
such that contributions of each variable for each time window could be determined and
clinical variables of high importance could be highlighted. We investigate our approaches
on three recent RNN architectures, namely fully-connected RNN (FRNN), long short-term
memory (LSTM), and gated recurrent unit (GRU). We evaluate our techniques on three
public critical care databases, namely Multiparameter Intelligent Monitoring in Intensive
Care III (MIMIC-III) [11], MIMIC-IV [12], and eICU [13] databases.

Our contributions are three-fold. First, we present detailed results of different RNN
algorithms. Our results are consistent with the associated clinical events (ICU mortality and
surviving to ICU discharge). Second, we calculate feature importance for both variable and
time dimensions through SHAP. The important features we identified are consistent with
the factors associated with the clinical deterioration and mortality described in the literature.
Finally, we employ the same standardized methods and evaluate our approaches on three
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critical care databases to obtain detailed benchmarking results. We emphasize that our
methodology is robust, and our results are similar across different critical care databases.

This paper is organized as follows. Section 2 reviews related literature that serves
as a frame of reference for this study. Section 3 describes the critical care databases used
in our study, explains the data preparation steps, and details the methodology used to
develop and evaluate our prediction algorithms. Section 4 details the comparative results
for each critical care database. Section 5 discusses our results, compares them to other
related studies, and provides an analysis of feature importance. Section 6 summarizes the
main findings of this study.

2. Related Work

Patients admitted to the ICU usually suffer from multiple diseases and require close
and continuous monitoring with extensive equipment to prevent the possible rapid dete-
rioration of their health. This results in extensive clinical data that require efficient and
accurate systems to support data analysis. The use of critical care data to predict future
events, i.e., patient mortality, is considered one of the most important topics in critical care
research. This section reviews the relevant literature on this topic, focusing on conventional
scoring systems and ML approaches for mortality prediction.

2.1. Conventional Scoring Systems for Mortality Prediction

Manual surveillance of possible abnormalities in patients may not be effective enough
to help patients in a timely manner. Therefore, standards for surveillance and follow-
up with the patients have been proposed. Several EWSs were developed as general
physiological bedside assessment systems to assist in monitoring patient changes during
hospitalization [7]. APACHE scores [3,4] are one of the tools mostly used to predict patient
mortality following ICU admission. The scores are based on various clinical variables,
including vital signs and laboratory values, obtained during the first 24 h of ICU admission.
There are several versions of APACHE scores: APACHE-II [3] (12 variables), APACHE-
III [4] (20 variables), and APACHE-IV [27] (27 variables). APACHE-II and APACHE-III
were primarily developed to predict mortality in septic patients. APACHE-IV [27] was
developed specifically for predicting short-term hospital mortality in general critically
ill adults. APACHE-IV reported an AUC of 0.88 but with a larger number of clinical
variables compared to the older releases. SAPS scores [5,6] are also scoring systems used
for specifying the severity of illnesses in intensive care patients, which, in turn, could be
used to estimate mortality similar to APACHE scores.

The conventional point-based scoring systems are based on a certain set of vital
signs, laboratory values, and clinical details. Although they have been reported to have
weaknesses in discrimination, there is currently no up-to-date scoring system that can be
readily and efficiently used for mortality prediction in the clinic. With so much clinical
data available in HIS, the need for other techniques that can assist in the early prediction of
mortality has increased.

2.2. ML Approaches for Mortality Prediction

ML algorithms can be applied to clinical data stored in an HIS to predict important
clinical events, disease progression, and treatment outcomes. ML examines the relation-
ships between clinical variables and patient outcomes, and then creates a data-driven
approach to predict future outcomes. A number of studies have investigated the prediction
of mortality in critical care patients. Most studies used large critical care databases provided
by the PhysioNet repository to develop such algorithms.

Several studies employed descriptive statistics to calculate simple summaries (e.g.,
minimum, mean, maximum) for the clinical measurements made within the time window
(e.g., 24/48 h) and classical ML techniques (e.g., logistic regression and decision trees) to
develop a model [14–16]. Awad et al. [14] used descriptive statistics of the measurements
taken during the first 6 h after admission and developed a tree-based method for mor-
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tality prediction in ICU patients with an AUC of 0.82. A similar approach was taken by
Johnson et al. [15], who calculated the descriptive statistics from the measurements in a
24-h window and developed the model using a tree-based gradient boosting algorithm
with an AUC of 0.92. The authors included the components of the Glasgow Coma Scale
(GCS), which are the nurse assessments (motor, verbal, and eyes) of impairment of con-
sciousness in response to stimuli, in the model. Recently, El-Rashidy et al. [16] developed
an ensemble method based on five tree-based techniques using the data statistics of over
80 of the most important clinical variables calculated based on a 24-h time window. The
authors achieved an AUC of 0.93. Most of the models that performed best were based on
tree-based classifiers. The more clinical variables included, the better the results.

Currently, many studies explored ML techniques without feature engineering, i.e.,
with real-valued time-series measurements. Desautels et al. [17] developed an ensemble
of tree-based classifiers for mortality prediction with hourly time-series measurements of
14 clinical variables over a 5-h period. The authors achieved an AUC of 0.78 on MIMIC-
III. Caicedo-Torres et al. [20] proposed a one-dimensional convolutional neural network
(CNN) that takes 48-h time-series measurements of over 22 clinical variables for mortality
prediction. Their CNN attained an AUC of 0.87. Ge et al. [18] developed an LSTM model for
mortality prediction on their institutional critical care databases. Their model takes hourly
measurements over a 48-h period and achieved an AUC of 0.76. Jun et al. [21] proposed a
bidirectional GRU model for mortality prediction that takes bi-hourly measurements of
99 clinical variables over a 48-h period. Their model achieved an AUC of 0.87. Due to the
high percentage of missing values, it may be difficult for the models to learn the temporal
dynamics contained in real-valued time-series measurements.

Recently, the advantages of modeling with time-series measurements were highlighted
by Lundberg et al. [25], who proposed SHAP to explain the model by calculating the
contribution of each clinical variable at each time step to an expected outcome. The
resulting contributions could provide general insights into the precise changes in risks
caused by specific patient characteristics. Lauritsen et al. [23] used SHAP to explain the
risk of acute critical illness (e.g., sepsis, acute kidney injury, and acute lung injury) by
pinpointing important variables and temporal features that are essential to a particular
outcome, ensuring clinicians can understand the reasoning underlying the prediction.

3. Materials and Methods

This section describes the research methodology used to develop our algorithms.
We followed the five-step SEMMA (Sample, Explore, Modify, Model, and Assess) ap-
proach [28]. Section 3.1 describes the selection of study cohorts from each critical care
database. Section 3.2 examines patient demographics and clinical variables in relation to
mortality in critical care patients. Section 3.3 explains the pre-processing of clinical vari-
ables and the preparation process for data modeling. Section 3.4 describes the formulation
of the study problems and the process by which the models were developed. Section 3.5
concerns the evaluation of the models in order to demonstrate their reliability and accuracy
in predicting mortality in critical care patients.

3.1. Datasets

This study was based on three public critical care databases provided by the MIT
Laboratory for Computed Physiology:

• MIMIC-III [11] (v1.4, released in 2016) is a critical care database of over 46,000
de-identified patients with over 60,000 admissions obtained from the Beth Israel
Deaconess Medical Center (BIDMC) between 2001 and 2012. The database contains
demographics, diagnoses, vital signs, laboratory tests, doctor notes, etc.

• MIMIC-IV [12] (v0.4, released in 2020) is a critical care database of more than
200,000 emergency department stays and 60,000 intensive care stays obtained from
the BIDMC between 2008 and 2019. The database also contains the relevant clinical
data prior to ICU admission.
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• eICU [13] (v2.0, released in 2018) is a critical care database of more than 200,000 inten-
sive care stays collected between 2014 and 2015 from hospitals in the United States
that participate in the Philips eICU Program. The database contains demographics,
diagnoses, treatment information, care plan documents, vital signs, laboratory tests,
doctor notes, etc.

Similar cohort selection criteria were applied for all databases (see Figure 1). We
included only the first admission of each patient in the ICU whose length of stay in the
ICU was longer than 48 h. This resulted in each patient having only one ICU admission.
For MIMIC-III, patients admitted to the neonatal intensive care unit (NICU) and pediatric
intensive care unit (PICU) were excluded. For MIMIC-IV, patients admitted to intermediate
or step-down care units were excluded. We further excluded patients for whom the
duration between the first and last observations of vital signs and laboratory tests was
less than 48 h (e.g., a patient with a record of 53 h in MICU but whose first measurements
were not made until after hour 6 was excluded). The duration was calculated as the last
timestamp minus the first timestamp in the chartevents/labevents table.

Figure 1. Flow chart for study cohort formation.

Patients who died during their ICU stay were identified by the deathtime variable in
the admission table of MIMIC-III, the hospital_expire_flag variable in the admission
table of MIMIC-IV, and the unitdischargestatus variable in the patients table of eICU.
Otherwise, patients were assumed to have survived until the ICU discharge. Table 1
summarizes the patient demographics of our study cohorts for each database.

Table 1. Demographics for our study cohorts derived from the MIMIC-III, MIMIC-IV, and eICU databases.

Demographics
MIMIC-III MIMIC-IV eICU

Total Survival 1 Death 2 Total Survival 1 Death 2 Total Survival 1 Death 2

Number of patients 18,353 15,761 2592 21,049 18,134 2915 36,283 33,387 2896

Age (years) 3 65.4 (17.9) 64.5 (17.9) 71.0 (17.0) 65.0 (16.6) 64.8 (16.7) 69.7 (15.4) 65.0 (17.1) 64.8 (17.2) 67.3 (16.3)

ICU stay (days) 3,4 6.1 (7.4) 5.9 (7.1) 8.1 (8.3) 5.9 (6.7) 5.6 (6.4) 8.0 (8.0) 5.1 (5.0) 5.0 (4.7) 7.2 (7.6)

Gender
Male 10,221 8838 1383 11,854 10,267 1587 19,945 18,334 1611
Female 8132 6923 1209 9195 7867 1328 16,333 15,049 1284
Unknown − − − − − − 5 4 1

Ethnicity
Caucasian 12,976 11,232 1744 14,028 12,291 1737 28,542 26,228 2314
African American 1376 1232 144 1784 1574 210 4075 3774 301
Hispanic/Latino 559 511 48 699 628 71 1420 1332 88
Asian 424 373 51 567 486 81 444 399 45
Others/Unknown 3018 2413 605 3971 3155 816 1802 1654 148

1 Survival to ICU discharge; 2 Death in ICU; 3 Values shown in mean (standard deviation); 4 Length of the first ICU stay.
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3.2. Data Exploration

The MIMIC-III/IV and eICU databases contain a large number of clinical variables. In
consultation with critical care experts, only vital signs and laboratory variables available in
conventional clinical scoring systems and in all databases were included in our study. Each
measurement in the critical care databases was associated with a timestamp and variable
name as defined in the original electronic health record (EHR). Thus, the same clinical
variable could be associated with different names and units. The database scripts provided
in the official repository of each critical care database were utilized to handle outliers and
semantically group similar clinical variables. Table 2 summarizes the clinical variables used
to develop our prediction algorithms. Of these, 7 were vital sign variables, and 16 were
laboratory variables.

Table 2. The distribution of the values of each variable employed in our models. All variables are present in every dataset.

Clinical Variables
Valid Range MIMIC-III MIMIC-IV eICU

Lower Upper Survival 1 Death 2 Survival 1 Death 2 Survival 1 Death 2

Vital sign variables (7 variables)
Heart rate (beats/min) 0 350 84.3 (16.1) 90.4 (19.8) 84.4 (16.7) 91.3 (19.8) 84.2 (17.1) 93.1 (20.8)
Diastolic blood pressure (mmHg) 0 375 61.4 (14.2) 56.8 (14.4) 63.3 (14.6) 57.5 (14.3) 67.9 (14.4) 60.9 (15.1)
Systolic blood pressure (mmHg) 0 375 124.5 (21.4) 116.4 (25.6) 122.6 (21.0) 113.5 (24.5) 126.1 (22.1) 115.4 (24.7)
Mean arterial pressure (mmHg) 14 330 80.5 (15.3) 75.4 (17.1) 79.3 (15.3) 73.8 (16.7) 83.9 (16.1) 76.0 (16.9)
Temperature (◦C) 26 45 36.9 (0.6) 36.9 (1.0) 36.9 (0.5) 36.9 (0.8) 36.8 (0.5) 36.8 (1.1)
Peripheral oxygen saturation (%) 0 100 96.8 (2.6) 95.6 (6.4) 96.3 (2.6) 95.3 (6.1) 96.3 (3.2) 95.2 (7.2)
Respiratory rate (breaths/min) 0 300 19.9 (5.4) 21.4 (6.7) 19.7 (5.4) 21.4 (6.4) 19.5 (5.2) 21.9 (7.2)

Laboratory variables (16 variables)
Albumin (g/dL) 0.6 6 2.6 (0.5) 2.5 (0.6) 2.8 (0.5) 2.7 (0.6) 2.6 (0.6) 2.4 (0.6)
Blood urea nitrogen (mg/dL) 0 250 36.9 (26.5) 50.4 (31.8) 38.0 (26.8) 44.6 (32.4) 26.3 (21.2) 39.8 (28.2)
Bilirubin (mg/dL) 0.1 60 3.6 (5.3) 10.5 (13.1) 3.9 (6.4) 7.9 (10.1) 1.4 (3.2) 3.2 (6.1)
Lactate (mmol/L) 0.4 30 1.9 (1.5) 3.8 (4.2) 1.9 (1.4) 3.5 (3.4) 2.1 (2.0) 5.5 (5.0)
Bicarbonate (mEq/L) 0 60 25.8 (4.7) 23.9 (5.7) 25.8 (5.3) 23.0 (5.7) 25.6 (4.9) 22.3 (6.0)
Band neutrophil (%) 0 100 5.2 (6.3) 6.4 (7.2) 4.6 (5.7) 5.2 (5.6) 8.6 (12.6) 12.2 (13.1)
Chloride (mEq/L) 50 175 105.3 (6.1) 103.9 (7.3) 103.6 (7.2) 103.3 (7.9) 104.3 (6.7) 106.8 (9.2)
Creatinine (mg/dL) 0.1 60 1.4 (1.4) 1.8 (1.3) 1.6 (1.5) 1.8 (1.3) 1.3 (1.4) 2.0 (1.6)
Glucose (mg/dL) 33 2000 131.6 (52.2) 136.9 (64.3) 140.6 (62.3) 147.8 (67.4) 144.2 (57.2) 149.9 (62.9)
Hemoglobin (g/dL) 0 25 9.6 (1.4) 9.6 (1.4) 9.1 (1.6) 8.9 (1.4) 10.2 (2.0) 9.8 (2.1)
Hematocrit (g/dL) 0 75 28.6 (3.9) 28.6 (3.9) 27.8 (4.6) 27.2 (4.3) 31.1 (6.1) 29.8 (6.5)
Platelet count (1000/mm3) 0 2000 278.9 (192.2) 162.5 (138.9) 237.0 (174.2) 154.3 (134.8) 208.3 (115.7) 153.4 (105.5)
Potassium (mEq/L) 0 12 4.0 (0.5) 4.1 (0.6) 4.0 (0.5) 4.1 (0.6) 3.9 (0.5) 4.2 (0.8)
Partial thromboplastin time (s) 18.8 150 44.7 (23.7) 52.9 (28.0) 47.7 (24.4) 52.9 (26.7) 50.7 (27.7) 52.2 (27.9)
Sodium (mEq/L) 50 225 140.3 (5.2) 139.1 (6.0) 140.4 (5.9) 139.5 (6.7) 138.9 (5.7) 141.7 (8.1)
White blood cells (1000/mm3) 0 1000 12.9 (8.5) 14.7 (9.8) 12.9 (8.9) 15.7 (13.7) 11.2 (6.0) 15.8 (9.7)

1 Survival to ICU discharge; 2 Death in ICU; Values shown in mean (standard deviation).

3.3. Data Preparation

Vital sign measurements were typically taken 0.5–1.5 times per hour for the MIMIC-III
and MIMIC-IV databases and 2.5–20 times per hour for the eICU database, while labora-
tory measurements were typically taken 1–2 times per eight hours for all databases [29].
Therefore, each vital sign variable was aggregated into a one-hour interval, whereas each
laboratory variable was aggregated into an eight-hour interval. Repeated measurements in
a single interval were aggregated by the median. For example, if five measurements were
taken in the fifth hour after admission, these measurements were aggregated horizontally
into one value by using the median to represent the value for that hour interval. We
observed no differences in results when we used the mean or median for data aggregation.
Missing measurements were imputed by carry-forward imputation (i.e., the last measure-
ment is carried forward if the current measurement was not available). The values of the
variables that were never observed were set to −1.

The common approach for developing ML algorithms is to divide the data into two
parts: one for hyperparameter tuning and one for testing the developed model. For each
critical care database, 15% of the dataset was kept as a test set, while the other 85% was
used to develop algorithms through a cross-validation scheme with five independent folds
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(k = 5), similar to El-Rashidy et al. [16]. The resulting models trained on k− 1 folds and
validated on the kth fold were then evaluated on the hold-out test set.

3.4. Recurrent Neural Networks

RNN is a feed-forward neural network in which the output of the previous step is fed
as input to the current step as prior information. With its sequential mechanism, RNN is
capable of processing sequences of variable length inputs. RNNs are usually implemented
with additional stored states with controlled time delays or feedback loops, allowing the
learning of both short-term and long-term temporal dynamics. In this work, we applied
RNN to the task of time-series classification in which a patient’s time-series data were fed
into the network and the output indicating whether the patient survived or passed away
was then produced. We further incorporated the explainability module to provide the
causal explanation behind the decision made by the network.

3.4.1. Problem Formulation

ICU mortality is defined as death while the patient is in the ICU. The problem of
predicting ICU mortality was formulated as a multivariate binary time-series classification
problem in which patients who died during their stay in the ICU were included in the
positive group (output = 1), and patients who survived to discharge were included in the
negative group (output = 0). The time points indicating the mortality event was defined
as the last time point at which vital signs or laboratory measurements were taken or the
deathtime variable for the positive group in the eICU database. TO hours of vital signs
(7 variables) and laboratory observations (16 variables) before this time point were taken as
the observation window. The data from this window were extracted and used for training
and evaluation of the predictive models. The resulting algorithm was then able to indicate
the likelihood or probability that a patient would have mortality at the end of the time
window (see Figure 2). For the negative group, the observation window was defined as TO
hours of vital signs and laboratory observations before patient discharge.

Figure 2. Diagram of our RNN model with two input branches for vital signs and laboratory variables, respectively. Each
branch consists of three recurrent layers, and the resulting feature maps were fused with two fully connected layers. The
network ends with a sigmoid layer for estimating a risk of mortality from 0 to 1.
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3.4.2. Network Architecture

Since we have two sets of clinical variables with different temporal characteristics, we
implemented our RNN model with two input branches: one for the vital sign variables
and the other for the laboratory variables. Each branch was implemented with three
recurrent layers with 16 units each, followed by batch normalization. The outputs of the
two recurrent branches were then concatenated along the channel dimension. The resulting
feature maps were processed through two fully-connected layers with eight outputs and
one output, respectively. The network ended with a sigmoid layer to produce a predicted
risk between 0 and 1. We evaluated three different recurrent layers:

• The fully-connected RNN (FRNN) [30] (see Figure 3a) connects the output of the pre-
vious time step with the additional input of the next time step, preserving important
information about different time steps in the network.

• The long short-term memory (LSTM) [31] (see Figure 3b) has one cell state and three
gates: an input gate, an output gate, and a forget gate. The cell state acts as a memory,
while each gate functions like a conventional neuron, providing a weighted sum of
its inputs. The forget gate decides what information to retain from previous steps.
The input gate decides what information to add from the current step. The output
gate decides what the next hidden state should be. Hence, only relevant information
can pass through the hierarchy of the network. Thus, the LSTM has mechanisms to
process both short-term and long-term memory components.

• The gated recurrent unit (GRU) [32] (see Figure 3c) is similar to LSTM but has only
two gates: an update gate and a reset gate. The update gate works similarly to the
forget gate and the input gate of LSTM. It decides what information to throw away
and what to add. The reset gate decides how much past information to forget. GRU
has fewer parameters, uses less memory, and is faster to train than LSTM.

Figure 3. Schematic diagram of each recurrent unit with different stored states: (a) FRNN with a hidden state, whose
activation at each time depends on that of the previous time; (b) LSTM has a cell state and multiple control gates to modulate
the flow of information so that each recurrent unit can adaptively perceive dependencies on different time scales; (c) GRU
simplifies the input gate and forget gate of LSTM into an update gate.

The name of a recurrent layer was taken as the name of the model. Our baseline
model was implemented using a feed-forward multilayer perceptron (MLP) [30] with three
fully-connected layers each with 64 neurons. MLP took all values in the time window as
the input.

The number of layers and the number of neurons given above were obtained through
a heuristic search over different combinations of hyperparameters (i.e., the number of
layers l = {1, 2, 3, 4} and the number of neurons n = {8, 16, 32, 64, 128}). We selected a set
of hyperparameters in which the evaluation metric (AUC) seems saturated across different
cross-validation folds with a standard deviation of less than 0.05.

3.4.3. Network Optimization

Our models were optimized using Adam [33] with a binary cross-entropy loss, a batch
size of 64, and an initial learning rate of 0.01 (0.001 for the eICU database) and reduced
by half every five epochs until convergence. For the positive group, oversampling was
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performed at random to match the number of samples with those of the negative group.
Each training batch, therefore, generally has an equal number of samples for each class.
Each branch was first trained separately and later combined into a single model, followed
by retraining the entire model.

3.4.4. Explainability Module

A fundamental question we might be asked is: which features have the greatest
influence on predictions? SHAP (SHapley Additive exPlanations) [25] is an additive
feature attribution method that explains model prediction through the allocation of the
values among a set of input features. In SHAP, the impact on each feature is represented
by Shapley values and is defined as the change in the expected value of the model output
when a feature is present versus unknown. Some features may have a large impact, while
others may have a small impact on the prediction.

Given a prediction f (x) made with all N input features, Shapley values can be cal-
culated as a weighted average of the contribution of each feature i over all possible fea-
ture combinations:

φi( f , x) = ∑
S⊆Sall\{i}

|S|!(N − |S| − 1)!
N!

[ fx(S ∪ {i})− fx(S)] (1)

where S denotes a subset of the features used in the model, excluding the i-th feature.
To calculate the exact Shapley value for the i-th feature, we have to evaluate all possible
feature combinations with and without the i-th feature. In practice, it is not possible to
evaluate all features, but we can approximate these values by a sampling procedure (e.g.,
Monte-Carlo sampling). For deep learning, SHAP assumes that the input features are
independent and that the deep learning model is linear. SHAP values can be approximated
through a simpler explanation model learned from the original model.

In our work, SHAP values were computed for the models constructed from each cross-
validation fold using data from the test set. Average SHAP values were then calculated for
each feature and for each time step, indicating the impact of that feature or time step on
the model’s output.

3.4.5. Tools

Cohort selection and data preparation were performed using SQL operations on
the PostgreSQL database server (version 10). Our models were developed using Python
version 3.8.5, TensorFlow version 2.2.0, and SHAP version 0.38.0 with custom modifications
to allow interpreting RNN models with multiple time-series inputs. All experiments were
performed on a workstation with 8 processing cores and 32GB RAM.

3.5. Evaluation

Evaluation was performed using the data from the hold-out test set on the model that
was trained and validated from each cross-validation fold. Given that a true positive (TP)
is a result of the model correctly predicting mortality (the positive group), a true negative
(TN) is a result of the model correctly predicting survival to discharge (the negative group),
a false positive (FP) is a result of the model incorrectly predicting the positive group,
and a false negative (FN) is a result of the model incorrectly predicting the negative
group. Our models were evaluated through the following metrics commonly used for
binary classification:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)
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Positive Predictive Value (PPV) =
TP

TP + FP
(5)

Negative Predictive Value (NPV) =
TN

TN + FN
(6)

F1 Score =
2TP

2TP + FP + FN
(7)

A receiver operating characteristic curve (ROC) is generated by plotting sensitivity and
1-specificity values at different classification thresholds. The area under the ROC (AUC)
was used as a single performance metric describing the overall classification performance
of the model. Youden’s J statistic was used to compute the optimal classification threshold
from the ROC curve for each model trained from each cross-validation fold. The AUC is
a standard metric for reporting binary classification algorithms derived from PhysioNet
studies so that different studies can be compared across the research landscape. The mean
and standard deviation of each evaluation metric was then computed from the results
obtained from the different cross-validation folds.

4. Results

In this section, we detail the results obtained from (1) different RNN models with a 48-
h observation window (TO = 48), (2) the best-performing RNN models with 8/16/24/48-h
observation windows (TO = 8/16/24/48), and (3) the feature importance derived form the
best-performing RNN model.

4.1. Prediction of Mortality

We evaluated the classification performances of each model (baseline MLP, FRNN,
LSTM, and GRU) on three critical care databases. The evaluation was performed on the
hold-out test set of each database. Table 3 shows the comparative performance of the differ-
ent RNN models for predicting mortality with a 48-h observation window (TO = 48) based
on their AUCs. The GRU model trained with all clinical variables had the highest AUCs of
0.87, 0.88, and 0.91 for the MIMIC-III, MIMIC-IV, and eICU databases, respectively. For
the models trained with laboratory variables only, we observed much lower classification
performance for all databases. Similar trends were observed for all databases. Figure 4
shows the mean ROC curves of the different RNN models trained with all variables. Table 4
shows the detailed classification performance measures of the best-performing GRU model.
Youden’s J statistic was applied to find an optimal threshold from the ROC curves in order
to compute classification metrics. Sensitivity and specificity can be varied by changing the
threshold level.

Table 3. Performance of different RNN models with a 48-h observation window (TO = 48).

Variables Dataset
AUC (Mean ± Standard Deviation)

MLP FRNN LSTM GRU

Vital signs

MIMIC-III 0.81 ± 0.02 0.68 ± 0.05 0.83 ± 0.01 0.85 ± 0.01

MIMIC-IV 0.83 ± 0.02 0.70 ± 0.02 0.86 ± 0.01 0.87 ± 0.01

eICU 0.86 ± 0.01 0.74 ± 0.03 0.89 ± 0.01 0.89 ± 0.01

Laboratory variables

MIMIC-III 0.67 ± 0.02 0.66 ± 0.03 0.68 ± 0.01 0.69 ± 0.01

MIMIC-IV 0.65 ± 0.03 0.63 ± 0.03 0.66 ± 0.01 0.66 ± 0.02

eICU 0.59 ± 0.02 0.55 ± 0.02 0.61 ± 0.02 0.61 ± 0.03

All variables

MIMIC-III 0.85 ± 0.01 0.74 ± 0.01 0.85 ± 0.01 0.87 ± 0.01

MIMIC-IV 0.87 ± 0.01 0.75 ± 0.04 0.87 ± 0.01 0.88 ± 0.01

eICU 0.88 ± 0.01 0.77 ± 0.03 0.89 ± 0.02 0.91 ± 0.01
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Figure 4. ROC curves comparing different RNN models trained on all variables for each database with the 48-h observation
window. The GRU models had the highest AUCs. Similar trends were observed across different databases.

Table 4. Classification performance measures of the GRU model with a 48-h observation window (TO = 48).

Variables Dataset
Classification Metrics (Mean ± Standard Deviation)

AUC Accuracy Sensitivity Specificity PPV NPV F1 Score

Vital signs

MIMIC-III 0.85 ± 0.01 0.78 ± 0.01 0.63 ± 0.03 0.91 ± 0.01 0.88 ± 0.02 0.71 ± 0.01 0.74 ± 0.01

MIMIC-IV 0.87 ± 0.01 0.81 ± 0.01 0.71 ± 0.04 0.90 ± 0.03 0.88 ± 0.03 0.76 ± 0.02 0.79 ± 0.02

eICU 0.89 ± 0.02 0.82 ± 0.01 0.78 ± 0.03 0.86 ± 0.03 0.84 ± 0.02 0.81 ± 0.01 0.82 ± 0.01

Laboratory variables

MIMIC-III 0.69 ± 0.02 0.64 ± 0.01 0.56 ± 0.06 0.71 ± 0.07 0.66 ± 0.04 0.62 ± 0.01 0.60 ± 0.02

MIMIC-IV 0.66 ± 0.01 0.63 ± 0.01 0.52 ± 0.04 0.74 ± 0.02 0.66 ± 0.01 0.61 ± 0.01 0.58 ± 0.02

eICU 0.61 ± 0.03 0.56 ± 0.01 0.42 ± 0.11 0.70 ± 0.12 0.60 ± 0.03 0.57 ± 0.01 0.52 ± 0.04

All variables

MIMIC-III 0.87 ± 0.01 0.80 ± 0.01 0.70 ± 0.04 0.90 ± 0.05 0.88 ± 0.05 0.75 ± 0.02 0.78 ± 0.01

MIMIC-IV 0.88 ± 0.01 0.82 ± 0.01 0.72 ± 0.02 0.92 ± 0.01 0.90 ± 0.01 0.76 ± 0.01 0.80 ± 0.01

eICU 0.91 ± 0.01 0.83 ± 0.01 0.81 ± 0.03 0.86 ± 0.03 0.85 ± 0.03 0.82 ± 0.02 0.83 ± 0.01

Table 5 compares the performance of the GRU models with different observation
window lengths. The model trained with an 8-h observation window (TO = 8) showed
slightly lower discrimination performance compared to the models trained with larger
observation windows.

Table 5. Performance of the GRU model with different observation windows (TO = 8/16/24/48).

Variables Dataset
AUC (Mean ± Standard Deviation)

48 h 24 h 16 h 8 h

Vital signs
MIMIC-III 0.85 ± 0.01 0.81 ± 0.02 0.80 ± 0.02 0.80 ± 0.00

MIMIC-IV 0.87 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.85 ± 0.01

eICU 0.89 ± 0.02 0.87 ± 0.01 0.86 ± 0.02 0.86 ± 0.01

Laboratory variables
MIMIC-III 0.69 ± 0.02 0.68 ± 0.01 0.66 ± 0.02 0.66 ± 0.03

MIMIC-IV 0.66 ± 0.01 0.65 ± 0.02 0.64 ± 0.02 0.63 ± 0.02

eICU 0.61 ± 0.03 0.56 ± 0.02 0.56 ± 0.01 0.57 ± 0.01

All variables
MIMIC-III 0.87 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.84 ± 0.01

MIMIC-IV 0.88 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.00

eICU 0.91 ± 0.01 0.88 ± 0.01 0.88 ± 0.01 0.88 ± 0.01
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4.2. Feature Importance

SHAP was used to interpret feature importance by calculating the contribution of each
feature to model output. We averaged the values of SHAP separately over all variables
and time steps to obtain a general understanding of each feature’s impact on prediction.
Figure 5 shows the ranking of feature importance for both vital sign and laboratory vari-
ables. In general, reasonable agreement of feature importance was observed across different
databases.

Figure 5. Feature importance indicating each feature’s average impact on the model prediction, ranked by the degree of
importance for both vital sign and laboratory variables. Reasonable agreement was observed across databases.

For the vital sign variables, three of the top four important features (systolic BP,
SpO2, and heart rate) were shared for the MIMIC-III and MIMIC-IV databases. We found
that respiratory rate was the strongest feature in the eICU database, in contrast to the
MIMIC-III and MIMIC-IV databases, where respiratory rate was ranked second to last.
Note that the MIMIC-III and MIMIC-IV databases were derived from the same hospital,
whereas the eICU database was derived from multiple hospitals. In addition, for the
eICU database, vital signs were available more frequently, whereas in the MIMIC-III and
MIMIC-IV databases, measurements were available hourly.

For the laboratory variables, the three most important features (platelet count, BUN,
and glucose) were the same in all databases. Conversely, the three least important features
(creatinine, albumin, and potassium) were also similar. We found that the models gave
more importance to the vital sign variables than to the laboratory variables. This trend was
supported by the previous section that the models trained with only vital sign variables
had higher discriminatory power than the models trained with only laboratory variables.
This trend was more prominent for the eICU database.

Figure 6 shows the feature importance calculated for each time step in the 48-h time
window by horizontally stacking all feature importance values for each time step. Similar
trends were observed for all databases. Values from the time steps preceding the mortality
event had a large impact on the prediction. In addition, values of vital signs from the
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earliest time steps also have an impact on prediction. This could explain why only a slight
decrease in performance was observed in Table 5 for an 8-h window compared to a 48-h
window.

Figure 6. Feature importance for each time step, calculated based on the 48-h window prior to mortality. Values from the
time steps preceding the mortality event have a large impact on the prediction. The values of vital signs from the earliest
time steps were also observed to impact the prediction.

5. Discussion

This section discusses our results, compares our work with other literature, gives a
more complete picture of our proposed methods, and provides the limitations of our study.

5.1. Prediction of ICU Mortality

Traditional early warning score scoring systems, such as APACHE II and MEWS,
evaluate only the most recently collected vital signs and assume that each variable is
independent of the other variables. We show that historical observations can provide
potentially useful additional information for the development of automatic scoring algo-
rithms. We found that FRNN achieved low prediction scores, which may be caused by
gradient vanishing, which is a common problem of FRNN that makes it unsuitable for
processing long sequences. LSTM and GRU, on the other hand, have dedicated processing
gates that learn what data are most important for the prediction. This allows the network
to learn important and relevant features and maintain them regardless of the state. For the
GRU models, we observed a 1%–5% increase in AUC over the baseline models.

For the eICU database, we also found that the model tends to favor vital signs over
laboratory observations. This could be due to the fact that multiple vital sign measurements
are aggregated into hourly values, resulting in less variation in values.

5.2. Comparison across Different ICU Types

ICUs are usually divided into different types, each designed to meet the specific needs
of patients. Trauma ICUs, for example, are staffed with a dedicated team that specializes in
treating patients with severe trauma. Algorithms trained with clinical data obtained only
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from patients treated in a single ICU may show different performance when evaluated with
clinical data from patients treated in other ICUs due to differences in disease characteristics.

Table 6 shows the performances of the GRU model trained with data from patients
treated in all ICUs in the 48-h window for each database and for each ICU type. We
observed similar performances for the AUCs of the different ICU types. A slight decrease
in performance is expected for the surgical ICU, where a portion of the patients is in the
postoperative recovery phase.

Table 6. Performance of our 48 h GRU model for each intensive care type on the test set for each critical care database.

ICU Type *
MIMIC-III MIMIC-IV eICU

AUC † N AUC † N AUC † N

CCU: Coronary Care Unit 0.86 ± 0.01 426 0.88 ± 0.01 434 0.91 ± 0.01 425

CSRU: Cardiac Surgery Recovery Unit 0.90 ± 0.01 537 – – – –

MICU: Medical ICU 0.88 ± 0.01 911 0.87 ± 0.01 640 0.91 ± 0.01 483

SICU: Surgical ICU 0.88 ± 0.01 496 0.84 ± 0.01 536 0.91 ± 0.01 393

TSICU: Trauma Surgical ICU 0.87 ± 0.01 383 0.92 ± 0.01 445 – –

Med-Surg ICU: Medical Surgical ICU – – 0.86 ± 0.01 489 0.91 ± 0.01 2681

CTICU: Cardiothoracic ICU – – – – 0.91 ± 0.01 243

CCU-CTICU: Coronary Care
Unit/Cardiothoracic ICU – – – – 0.92 ± 0.01 449

Neuro ICU: Neurological ICU – – 0.91 ± 0.01 52 0.91 ± 0.01 600

Cardiac ICU: Cardiological ICU – – – – – –

CVICU: Cardiac Vascular ICU – – 0.87 ± 0.01 562 – –

CSICU: Cardiac Surgery ICU – – – – 0.92 ± 0.01 169

Total 0.87 ± 0.01 2753 0.88 ± 0.01 3158 0.91 ± 0.01 5443

* ICU types as appeared in the original critical care databases, † AUC: AUC (mean ± standard deviation).

5.3. Feature Importance

SHAP was employed to gain insight into general factors that impact the prediction.
Figure 5 shows each group of features sorted by the magnitude of their importance. The
prediction was mainly influenced by a few features. Among the vital sign features, the
MIMIC-III/IV and eICU databases reported different sets of feature importance, with the
respiratory rate ranked as the most impact feature in the eICU database. In the MIMIC-
III/IV databases, the respiratory rate was checked hourly at the bedside with verification by
nursing staff. In contrast, in the eICU database, vital signs were automatically derived from
bedside vital sign monitors, without further verification for up to 20 measurements per
hour; therefore, measurements may be noisy [13]. We preprocessed the data by taking the
median across multiple measurements at an hourly interval. Cretikos et al. [34] suggested
that an accurate respiratory rate could be an important predictor of serious clinical events.
We hypothesized that although the respiratory rate is considered noisy and difficult to
measure by contact sensors, the periodically recorded values, if properly processed and
aggregated over multiple measurements, might better reflect the true condition of patients.

For the laboratory features, Moreno et al. [6] examined several clinical variables for
the development of a prognostic model for ICU mortality using logistic regression in
16,000 patients. The authors reported that the platelet count had the highest laboratory
coefficient in relation to the outcome. This was supported by Moreau et al. [35], whose
study reported that decreasing platelet counts were associated with higher mortality rates;
therefore, it was suggested that the platelet count should be included in a scoring system.
In addition, it has been reported that BUN, the second most important feature, is strongly
associated with mortality, with a high BUN on admission to the ICU being considered an
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independent risk factor for patient mortality [36]. In terms of blood glucose, hyperglycemia,
even if it is only a mild elevation in blood glucose, has been reported to be common in
critically ill patients, regardless of diabetes [37].

For the features with the least impact, Gall et al. [5] observed that albumin and
creatinine had no significant effect on ICU mortality in their univariate and bivariate
analyses and did not improve goodness of fit. This is consistent with our findings on
feature importance.

5.4. Explainability

SHAP provides the explainability of the prediction by calculating the contribution of
each feature to the model output. These explanations can be coded in a form that allows
clinical staff to easily interpret, in both variable and time dimensions, why particular
decisions were made.

Figure 7a shows a prediction made 48 h before mortality with the corresponding
explanation. The color red indicates positive SHAP values (increased risk of mortality),
while the color blue indicates negative SHAP values (decreased risk of mortality). Vital
sign alterations were observed four hours before mortality with an increased heart rate
and decreased SpO2 and blood pressure. At forty hours before mortality, an increase in
bilirubin, BUN, PTT, and WBC was observed. At sixteen hours before mortality, an increase
in glucose was observed. Our model explains that a mortality probability of 0.86 was
constituted from these observations; each with different weighting factors. Our approach
provides not only the predicted mortality risk but also information about the factors that
influence the risk and their relative contributions. This explanatory diagram helps clinical
staff to quickly identify apparent relationships between patient physiology and trends in
their contribution to the risk over time.

(a)
Figure 7. Cont.
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(b)
Figure 7. Visualization of SHAP values calculated by our GRU model for 48 h of time-series data preceding mortality. The
values of each clinical variable at each time step are presented in each rectangular box, with missing observations filled
using carry-forward imputation. The color red indicates positive SHAP values (increased mortality risk), while the color
blue indicates negative SHAP values (decreased mortality risk). (a) Our approach was able to recognize changes in both
vital signs (four hours before mortality for heart rate, SpO2, and blood pressure) and laboratory tests (forty hours before
mortality for bilirubin, BUN, PTT, and WBC). (b) The prediction based on data with a longer period of vital sign alterations.
Our model gives more weight to more recent measurements. Our model was able to adapt to specific patients.

Figure 7b shows another example of a prediction where mortality is preceded by a
longer period of physiological alterations. Our model weights more recent measurements
more heavily. Our model also identified a large increase in creatinine, although this was
ranked as one of the least important features. These explanatory features illustrate not
only the ability of our complex models to dynamically explain predictions but also provide
general insights into changes in specific patients. This augmented-intelligence approach
provides clinical staff with a more clinically useful interpretation. On the contrary, our
model outputs all available observations with their associated impacts, and clinical staff
must evaluate their relevance based on context and other clinical evidence.

5.5. Risk of Mortality

Our model provides a probability value for mortality at the end of the observation
period, as derived from the last sigmoid layer of the model whose output ranges from 0 to
1. The value could be used to indicate the deterioration of the patient’s condition in order
to track and trigger an escalated care plan if necessary. Figure 8 shows the calculation of
such value for a sliding window of 8 h for a patient who died during his stay in the ICU.
The risk of mortality increased continuously as the patient’s clinical condition worsened
until the patient passed away at the end of their ICU stay.

Figure 9 shows the average of risk of mortality for all patients in the hold-out test set
evaluated on all the different cross-validation folds for patients who survived their ICU
stay and patients who subsequently died during their ICU stay. We used our GRU model
with an 8-h observation window (the same model as in Figure 8). For surviving patients,
we observed a slight decrease in the risk of mortality until the patient was discharged from
the ICU. In contrast, the risk of mortality was high in patients who died during their stay
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and increased until the patient’s death. The value of more than 50% was noted 8 h and 4 h
before death in the eICU and MIMIC-III/IV databases, respectively.

These types of automated scoring systems, which process both vital signs and lab-
oratory observations routinely collected in the HIS, could be integrated into bedside
monitoring or into a dashboard for monitoring the entire ICU. The explainability of the
model could highlight important insights for further interpretation by clinical staff. With
continuous monitoring in real time, patients can benefit from early interventions.

Figure 8. The risk of mortality calculated for a patient who later died during their ICU stay in the hold-out test set computed
using the GRU model with an 8-h observation window. The values increased continuously as the patient’s clinical condition
worsened until the patient passed away at the end of their stay.
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Figure 9. The risk of mortality calculated for all patients in the hold-out test set for (a) those patients who survived their
ICU stay and (b) those patients who subsequently died during their ICU stay. The line plots show the median, and the
shaded areas show the 25th and 75th quartiles of risk of mortality bootstrapped from all cross-validation folds. Among the
surviving patients, the risk of mortality was low and tended to decrease until discharge. In contrast, among patients who
died during their stay, the risk of mortality was high and increased until the patient’s death. A sharp increase in the risk of
mortality was observed eight hours before death.

5.6. Comparison with Other Studies

Our results are consistent with other relevant studies. Here, we compared our results
with studies based on the MIMIC-III database. Our best-performing model has slightly
lower performance in comparison to similar studies by Johnson et al. [15] (0.87 vs. 0.92),
El-Rashidy et al. [16] (0.87 vs. 0.93), and Purushotham et al. [19] (0.87 vs. 0.94). In contrast
to our study, Johnson et al. [15] included other clinical variables, such as the Glasgow
coma components, and clinical details (e.g., gender, age, type of ICU, etc.) in their model.
El-Rashidy et al. [16] used over 80 clinical parameters and the ensemble technique over
multiple classifiers. Purushotham et al. [19] used over 135 clinical features with multiple
deep learning models. Nevertheless, our study used only 23 clinical variables that are
clinically relevant to mortality. We found that the more clinical variables included in the
model, the better the results.

In RNN-based studies, our model achieved on par performance compared to other
mortality prediction studies by Harutyunyan et al. [22] (0.87 vs. 0.87) and Jun et al. [21]
(0.87 vs. 0.87). Harutyunyan et al. [22] used a multi-task LSTM to predict multiple clinical
events, including mortality, with 17 clinical variables. Jun et al. [21] used a variational RNN
with 99 clinical variables. All of the aforementioned studies were conducted using the
MIMIC-III database. Similar to our study, Shamout et al. [24] developed an interpretable
bidirectional LSTM to predict clinical adverse events, including mortality, in the next
24 h based on their institutional dataset. They reported an AUC of 0.88 for predicting
adverse events. We did not perform a direct comparison with conventional EWSs. Such
comparisons were made in the studies of Purushotham et al. [19], Harutyunyan et al. [22],
and Shamout et al. [24]. All the studies yielded higher AUCs than those of the conven-
tional EWSs.

5.7. Limitations

Our study was subject to several limitations. First, we compared the performance of
only the conventional approaches. Improvements could be achieved by integrating more
complex mechanisms, such as bidirectional LSTM or attention-based LSTM. Second, we
observed a class imbalance where about 8%–16% of the patients in each database belonged
to the positive group. We treated this with simple over-sampling before training. A more
complicated balancing method could lead to improving the model. Finally, we observed
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slight differences in the feature importance values for the models trained on the eICU
database compared to the models trained on the MIMIC databases. This could be due
to the fact that the data have different intrinsic characteristics. This could indicate that
the model trained on one database may not generalize well to other databases or other
environments. From a deployment perspective, the generalizability of the proposed model
needs to be further tested on a locally acquired dataset or transfer learning to a local dataset
may be required.

6. Conclusions

The ICU generally cares for critically ill patients who require life-sustaining measures
and specialized treatment. Early prediction of mortality in the ICU is crucial to identify
patients who are at high risk of death and take appropriate interventions to save their
lives. Although various severity scores and ML models have been developed recently
for the early prediction of mortality, this prediction remains a challenge. This study
proposes a data-driven framework for predicting mortality risk of mortality in intensive
care patients using the multiple-input RNN architecture coupled with the explainability
module. Our algorithm processes time-series of vital signs and laboratory results and
produces a predicted mortality risk score along with the contribution of each input feature
to the prediction. We evaluated our approach using the same pipeline on three recent
critical care databases: MIMIC-III, MIMIC-IV, and eICU. Consistent results were obtained
on the different critical care databases, demonstrating the robustness of our approach. Our
proposed method yielded an AUC of 0.87, 0.88, and 0.91 for MIMIC-III, MIMIC-IV, and
eICU, respectively. The prediction made by our model was consistent with clinical events
(survival to ICU discharge and ICU mortality). Through SHAP, our approach was able to
explain the factors associated with mortality for each individual patient in both variable
and time dimensions, avoiding the obscurity associated with complex black-box models.
The explanation and feature importance derived from our model were consistent with
the literature. We coded these explanations in a visual form that clinical staff can easily
interpret. Patients may benefit from early interventions with continuous monitoring of
their clinical measurements in real time. Future work includes the transfer learning of the
proposed algorithm to our institutional critical care data and the investigation of different
architectures, such as bidirectional transformers for multi-step ahead prediction.
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Abbreviations
The following abbreviations are used in this manuscript:

APACHE Acute physiology and chronic health evaluation
AUC Area under the receiver operating characteristic curve
BUN Blood urea nitrogen
Diastolic BP Diastolic blood pressure
MLP Multilayer perceptron
GRU Gated recurrent unit
HCO3 Bicarbonate
FRNN Fully-connected recurrent neural network
ICU Intensive care unit
LSTM Long short-term memory
Mean AP Mean arterial pressure
MEWS Modified early warning score
MIMIC Multiparameter intelligence monitoring in intensive care
NEWS National early warning score
PTT Partial thromboplastin time
ROC Receiver operating characteristic curve
RNN Recurrent neural network
SAPS Simplified acute physiology score
SD Standard deviation
SHAP SHapley Additive exPlanation
Systolic BP Systolic blood pressure
SpO2 Peripheral oxygen saturation
WBC White blood cells
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