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Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disorder charac-

terized by the loss of dopaminergic neurons. The vast majority of PD patients develop the disease 

sporadically and it is assumed that the cause lies in polygenic and environmental components. The 

overall polygenic risk is the result of a large number of common low-risk variants discovered by 

large genome-wide association studies (GWAS). Polygenic risk scores (PRS), generated by compil-

ing genome-wide significant variants, are a useful prognostic tool that quantifies the cumulative 

effect of genetic risk in a patient and in this way helps to identify high-risk patients. Although there 

are limitations to the construction and application of PRS, such as considerations of limited genetic 

underpinning of diseases explained by SNPs and generalizability of PRS to other populations, this 

personalized risk prediction could make a promising contribution to stratified medicine and tai-

lored therapeutic interventions in the future. 
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1. Introduction 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder 

characterized by the abnormal aggregation of the protein a-synuclein in the form of Lewy 

bodies and Lewy neurites and the degeneration predominantly of dopaminergic neurons 

of the midbrain. PD presents with cardinal motor symptoms including resting tremor, 

muscular rigidity, and bradykinesia as well as various non-motor symptoms like cogni-

tive impairment [1]. A positive family history of PD is found in approximately 15% of 

patients and in 5%–10% of cases inheritance follows a classic Mendelian pattern [2]. How-

ever, the vast majority of PD patients are sporadic and in those, causation is thought to be 

polygenic with environmental components. Consistent with the common disease-com-

mon variant (CDCV) hypothesis, PD overall genetic risk can be considered to be a conse-

quence of the synergistic effect of a large number of common low-risk variants [3]. Tre-

mendous progress has been made over the past decade, particularly with the advent of 

large genome-wide association studies (GWAS) that have been improving our ability to 

understand and define disease risk in sporadic PD by increasingly identifying these low-

risk variants [4]. 

PD is incurable and imposes an enormous medical and societal burden and its prev-

alence is expected to rise [5]. To date, extensive research has been conducted to explore 

the etiology, progression, and ultimately the treatment and prevention of the disease. The 

apparent PD heterogeneity necessitates the personalized medicine concept, which postu-

lates that various genetic and pathophysiological contributions may underlie distinct sub-

groups. This, in turn, has encouraged the search for targeted treatments, for example for 
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subgroups of patients who have particular genetic mutations [6]. Beyond Mendelian mu-

tations, i.e., rare variants with strong effects, efforts to quantify the joint effect of dozens 

of common genetic variants, and to develop predictive tools measuring this cumulative 

genetic load within each individual, are hoped to facilitate population stratification and 

identification of high-risk individuals. This personalized risk prediction may hold prom-

ise for the future by the means of stratified medicine and tailored therapeutic interven-

tions. However, each such claim will require extensive investigation to justify its practical 

application (GBD 2016 Neurology Collaborators, 2019) [5,7]. 

So-called Polygenic scores (PRS) have been constructed through the compilation of 

genome-wide significant variants emerging from successive and ever-larger GWAS with 

the intention to capture the cumulative effect of many low to intermediate risk variants in 

a patient population. The first disease studied with the PRS method was schizophrenia. 

The researchers who performed the first schizophrenia GWAS constructed scores of risk 

propensity and then called them polygenic scores [8]. PRS are hoped to be a prediction 

and risk stratification tool that holds promise for identifying individuals with a higher 

predisposition to complex diseases such as schizophrenia or PD as well as providing in-

sights into the biological basis and predicting age-dependent clinical outcomes [9,10]. 

Here, we used search terms including “Parkinson’s disease,” “polygenic risk scores,” 

“PRS,” and “polygenic scores” in the PubMed advanced search engine to access all papers 

to review the current PRS approaches and their applications in PD. 

2. PRS Calculation and Data Interpretation 

Single nucleotide polymorphisms (SNPs) are the most common type of genetic vari-

ation in humans. Their frequencies in a population are identified through genome-wide 

association studies. A genome-wide association study (GWAS) is an approach used in 

genetic research to associate specific genetic variations with a particular trait, for example, 

a disease. This method involves scanning the genomes numerous unrelated individuals 

with and without the disease and looking for statistically significant differences in the 

frequency of SNPs, given a strictly adjusted P-value threshold, which can be used to pre-

dict the presence of a disease (www.genome.gov). The vast majority of SNPs are located 

in non-coding regions of the genome and are therefore not changing the amino acid com-

position of gene products. Rather, they are thought to be involved in the regulation of 

gene expression. These SNPs represent so-called Expressed Quantitative Trait Loci (eQTL) 

contributing to disease risk [11]. Most human traits are influenced by a large number of 

SNPs, each with small effects, along with the environment, and this genetic profile and its 

subsequent interplay with the environment renders each individual unique [12]. 

PRS are usually calculated as the sum of common variants (SNPs) weighted by cor-

responding effect size estimates and certain P-values derived from GWAS summary sta-

tistics data. 

To obtain a reliable PRS capable of predicting both disease risk and continuous clin-

ical outcomes, variables such as linkage disequilibrium (LD) and P-value thresholds must 

be considered when using SNP weights, i.e., GWAS betas. The logic behind this is to take 

into account the overlap of SNP weights, as each individual GWAS beta has some degree 

of overlap with neighboring SNPs and not taking this into account would lead to an over-

estimation of the predictive utility of PRS. How these variables are accounted for deter-

mines our method for PRS construction. There are several tools including those using 

standard clumping plus thresholding (C+T) such as PRSice and PLINK, and fancier dedi-

cated tools including LDPred, PRS-CS, JAMPred, and Lassosum that model the LD by 

taking advantage of computational shrinkage strategies based on LD reference data [8,13–

17]. In C+T, which is the basic method used by most publications to date, SNPs are 

clumped and prioritized at the locus with the smallest GWAS P-value so that the retained 

SNPs are largely independent of each other and thus their effects can be aggregated under 

the assumption of additivity. In turn, more advanced methods take all SNPs while ac-

counting for the LD between them by applying shrinkage techniques to their weights. 
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These shrinkage strategies help mitigate the inherently noisy nature of the weights due to 

the LD redundancy of SNPs. Put differently, each beta corresponding to a SNP may share 

some information in terms of LD with nearby SNPs, leading to double counting of the 

weights and ultimately overestimating the results. Nevertheless, for a whole range of dis-

eases there is a relatively subtle difference between the conventional C+T and the shrink-

age methods in terms of predictive power and accuracy of PRS models [18]. 

Regardless of the computational method, PRS analyses can be characterized by the 

two main input datasets they require: (i) base data consisting of GWAS summary statistics 

and (ii) target data, consisting of genotypes (often imputed) and phenotypes of individu-

als which should be independent of the GWAS samples as any overlap between base and 

target data can give rise to overestimation in final results. A practical solution to this end 

is often used in consortial meta-analyses, for example, the generation of “leave-one-out“ 

meta-analysis GWAS results [19], whereby each contributing study is excluded from the 

meta-analysis in turn [20]. 

To ensure generalizability of the results, the PRS analyses were performed in an in-

dependent target sample, referred to as out-of-sample prediction. The computational out-

puts include different plots which need to be interpreted correctly and carefully. A typical 

PRS study tests for an association between a PRS and the phenotype (disease status or 

clinical outcome) in the target data. This association can be measured with goodness-of-

fit metrics and the effect size estimate between specific strata. Goodness-of-fit or explained 

variance is represented by incremental R2. Additionally, this is usually reported for 

case/control outcomes as Nagelkerke’s R2 which is a statistically adjusted R2, and since 

the case/control ratio is not equal to the disease prevalence, it should be adjusted in this 

respect on the liability scale [20,21]. Other PRS results from the typical C+T method in-

clude strata plots showing how trait values vary with increasing PRS or measuring in-

creased risk folding for disease in individuals with the highest PRS. Density and violin 

plots are also commonly used to visualize the discriminatory power of PRS between cases 

and controls. The predictive accuracy of the PRS models as a binary target predictor can 

be assessed using Area Under the Receiver Operating Characteristic curve (AUC) analy-

sis. The AUC can be interpreted as the probability that a case ranks higher than the control, 

and by analogy, the higher the AUC, the better a PRS model can discriminate between 

cases and controls [22]. Finally, the predictive value of PRS models should be also vali-

dated in a validation cohort (must be independent and is usually a subset of prediction 

cohort) in a process known as out-of-sample validation [20,23]. A typical PRS study work-

flow is depicted in Figure 1.  

 

Figure 1. PRS calculation, results, and validation workflow. Summary risk statistics data should be 

filtered of rare variants (MAF > 0.01) and insignificant variants (p-value < 0.05). Additionally, target 

data-imputed genotypes should be filtered with a filter score (R2) of 0.8. In the PRS calculation box, 
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C+T stands for clumping plus thresholding implemented in tools, e.g., PRSice software and LD 

modeling includes methods using shrinkage strategies implemented in tools, e.g., LDpred. 

2.1. PRS in PD Status Prediction 

The primary goal of a polygenic score as a prognostication tool is to classify individ-

uals according to their disease risk and predict disease status by distinguishing cases from 

controls. Several studies conducted in recent years using different GWASs have estab-

lished various general polygenic score models and reported their ability to adequately 

discriminate patients with PD from neurologically normal individuals. The accuracy 

range of these predictions, i.e., Area Under the Curve (AUC) analysis varies across studies 

(Table 1). 

Table 1. Summary of general PRS studies that have performed PD risk prediction. 

Study Base Data 
Number of 

SNPs 
Target Population Size 

PRS Calculation 

Tool 

Predictive 

Accuracy 

(AUC) 

Nalls (Nalls, 

Blauwendraat 

et al. 2019) [4] 

2019 Nalls metaGWAS 90 

37,688 cases, 18,618 UK Biobank proxy-cases 

(i.e., individuals who do not have Parkinson’s 

disease but have a first-degree relative that 

does), and 1.4 million controls 

PRSice2 65% 

Nalls (Nalls, 

Blauwendraat 

et al. 2019) [4] 

2019 Nalls metaGWAS 1805 

37,688 cases, 18,618 UK Biobank proxy-cases 

(i.e., individuals who do not have Parkinson’s 

disease but have a first-degree relative that 

does), and 1.4 million controls 

PRSice2 69% 

Ibanez (Ibanez, 

Dube et al. 

2017) [24] 

2014 Nalls metaGWAS 26 829 cases and 432 controls Plink 
Not  

published 

Han (Han, 

Teeple et al. 

2021) [10] 

2019 Nalls metaGWAS 90 1654 PD Cases: 79,123 controls LDpred 76% 

Li (Li, Fan et al. 

2019) [25] 

2014 Nalls metaGWAS 

2009 Satake GWAS 

2017 Redensek 

metaGWAS 

46 418 PD patients and 426 controls Plink 61% 

Foo (Foo, Chew 

et al. 2020) [26] 
Asian GWAS 11 2536 PD cases and 21,840 controls Plink 60.20% 

Foo (Foo, Chew 

et al. 2020) [26] 

Asian GWAS 

Nalls GWAS 
11 + 90 2536 PD cases and 21,840 controls Plink 63.10% 

Abbreviations. SNP: single nucleotide polymorphism, PRS : polygenic risk scores, AUC: area under the receiver operating 

characteristic curve, GWAS: genome wide association studies, PD: Parkinson’s disease, LD: linkage disequilibrium. 

2.2. PRS and PD Clinical Outcomes 

Some studies have examined the associations between PD PRS and clinical outcomes, 

such as age at onset (AAO) and motor and non-motor function. It was hypothesized that 

sporadic PD cases with earlier AAO might carry a higher cumulative burden of genetic 

risk factors with relatively low effect sizes. In fact, several studies have confirmed that 

higher PRS is significantly associated with earlier AAO tendency [24–29]. Genes that can 

be assigned to the mitochondrial function and maintenance pathways have been shown 

to contribute to PD risk [30]. A study conducted by Billingsley et al. [31] established a 

mitochondria-specific PRS calculating effects of all PD risk variants within genes 

implicated in mitochondrial function. This study found, to the contrary, that higher 

mitochondria-specific PRS was associated with later AAO. Additionally, the largest PD 

AAO GWAS [32] showed that not all PD risk loci influence AAO with significant 

differences between risk alleles for AAO. These all indicate that overall PD risk and PD 

AAO may be caused by partially overlapped biological processes. 
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Motor dysfunction is the cardinal symptom of PD. The PRS was also found to be 

associated with faster motor decline, measured by the time from diagnosis to Hoehn and 

Yahr Scale stage 3 and change in Unified Parkinson’s Disease Rating Scale part III (UPDRS 

III) score, after adjusting sex and AAO [9,33]. Levodopa is the most effective treatment for 

PD motor symptoms, but long-time dopamine replacement treatment may cause 

levodopa-induced dyskinesias (LID) [34]. Eusebi et al. [35] reported that LID development 

was significantly correlated with higher PRS (HR = 1.39, 95% CI = 1.08–1.78), indicating 

the association between the aggregate burden of known genetic risk variants of PD and 

LID development. However, a recent study conducted by Liu et al. [36] did not find the 

association between PRS and motor progression and explained that disease initiation and 

progression might be driven by different genetics. 

Cognitive impairment is also common in PD and an important non-motor symptom 

associated with quality of life and caregiver burden [37]. Though it is established that PD 

patients with GBA mutations usually present more severe cognitive decline compared 

with non-carriers, Paul et al. [9] found that cognitive impairment in PD is also linked to 

the polygenic load of common risk variants, i.e., higher PRS. A prospective and general 

population-based study by Adams et al. [38] investigated the association between mild 

cognitive impairment (MCI) and subsequent conversion to dementia and PRS of genetic 

variants for PD. It was found that PD PRS was associated with non-amnestic MCI as well. 

Liu et al. performed a longitudinal genome-wide survival study in 3,821 PD patients to 

identify genetic variants associated with progression from PD to PD dementia (PDD). It 

was found that a novel RIMS2 locus (HR = 4.77, P = 2.78 × 10-11) was associated with the 

prediction of PDD, while PRS was not associated with cognitive progression. 

Interestingly, a longitudinal study by Kusters et al. [39] reported that hallucinations 

among PD patients are associated with AD PRS, especially driven by APOE, but not 

formally significant in the statistical analysis with PD PRS after adjusting for confounders. 

PRS was also not associated with impulse control disorders (ICDs) in PD patients [40,41]. 

These results may support that PD-associated symptoms like hallucinations and ICDs, 

and PD itself have different genetic backgrounds. 

2.3. PRS and Penetrance of LRRK2 and GBA 

Mutations in the LRRK2 gene are the most common cause of monogenic PD and also 

strong risk factors for sporadic PD [42]. G2019S is the most frequent mutation and has 

incomplete penetrance. The risk of LRRK2 G2019S mutation carriers developing PD was 

28% at age 59 years, 51% at 69 years, and 74% at 79 years [43]. Iwaki et al. [44] analyzed 

833 heterozygous G2019S carriers (including 439 PD) to investigate if a cumulative genetic 

risk affects the penetrance of PD among G2019S carriers. They found PRS (OR 1.34, p = 

0.005) was significantly associated with a higher penetrance of the G2019S mutation, 

especially among younger carriers. This result is in line with the latest study by Lai et al. 

[45], which included 1,879 LRRK2 mutation carriers (1,810 G2019S carriers and 776 cases). 

It conducted the GWAS of penetrance of PD in LRRK2 mutation carriers and also its 

correlation with PD PRS. They found a significant CORO1C locus signal and PRS was also 

found to be a significant predictor of penetrance of LRRK2 variants. 

Heterozygous GBA mutations are another common genetic risk factor for PD. The 

penetrance of GBA variants is 10%–30% and age-related [46,47]. A study by Blauwendraat 

et al. [48] reported that common variants in SNCA and CTSB, known PD risk loci, are 

associated with the penetrance of GBA and PRS and could also modify the penetrance. 

Given ongoing clinical trials focusing on GBA and LRRK2 PD patients, identification of 

factors influencing penetrance of them could be used to stratify carriers and for 

personalized prevention. 
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2.4. PRS and Biomarkers 

The pathological hallmark of PD is the accumulation of Lewy bodies composed 

mostly of aggregated α-synuclein (α-Syn) [49]. A meta-analysis shows that cerebrospinal 

fluid (CSF) levels of total α-syn is slightly decreased in PD cases compared with healthy 

controls, but it is not sufficient as a diagnostic biomarker [50]. Moreover, Alzheimer’s 

disease CSF biomarkers including total tau (t-tau), phosphorylated tau (p-tau), and 

amyloid-beta 42 (Aβ42) are also significantly lower in PD individuals [51]. Several studies 

have examined the associations between PD PRS and these CSF biomarkers. Two studies 

conducted by Ibanez et al., [24] and [52], and one study by Li et al. [25] did not find an 

association between PRS and CSF α-syn, while Lee et al. [53] found that higher PD PRS 

was associated with lower CSF α-syn. Notably, Ibanez et al. [52] found that PD PRS was 

correlated with CSF Aβ42 and PD cases with higher PRS present lower CSF Aβ42 levels, 

indicating that PD development and accumulation of Aβ42 in the brain may share similar 

pathways. 

Interestingly, a recent study [54] investigated the associations between PD PRS and 

blood levels of 370 lipid species and lipid-related molecules. It revealed eight specific lipid 

species (e.g., arachidonic acid) were associated with PD PRS, which implies the involvement 

these lipids in PD etiology. In addition, Tirozzi et al. [55] reported that platelet distribution 

width (PDW), a measurement of the variability in platelet size distribution in the blood, was 

also related to PD PRS (rg [SE] = 0.080 [0.034]; p = 0.019). However, the functional meaning 

of PDW and its potential utility as a biomarker for PD remains to be clarified. 

PD progression is known to be associated with nigrostriatal dopaminergic 

degeneration and dopamine transporter (DAT) scans can quantify striatal dopaminergic 

activity [56]. Lee et al. [53] investigated the longitudinal association between PD PRS and 

striatal dopaminergic activity measured by 123I-N-3-fluoropropyl-2-β-carboxymethoxy-

3β-(4-iodophenyl) nortropane (123I-FP-CIT) SPECT on 335 PD cases. The authors 

established two PRS: (1) PRS-1: PRS including 27 risk SNPs and (2) PRS-2: PRS using 23 

risk SNPs with minor allele frequency > 0.05. PRS-1 was not associated with striatal 

dopaminergic activity and PRS-2 was associated with a slower decline of activity, but the 

other 4/27 rare variants were associated with faster deterioration of activity. This 

suggested PD risk SNPs with different allele frequencies have heterogeneous effects on 

striatal dopaminergic degeneration and more studies are needed to further investigate the 

association between PRS and dopaminergic activity. 

2.5. PRS in the Identification of Biological Pathways 

In spite of the great success of continuing GWAS at identifying risk variants, many 

of the underlying molecular pathways and cellular processes involved in PD remain 

elusive. Several studies have attempted to construct pathway-specific PRS (cumulative 

effect of pathway-specific genetic variation on PD risk) to shed light on the PD-related 

biological pathways. Previous findings suggest that dysfunction in the endosomal 

membrane-trafficking pathway (EMTP) could contribute to PD pathogenesis [55], and 

Bandres-Ciga et al. [57] assessed the role of the EMTP comprehensively in the risk for PD. 

The authors constructed an EMTP-specific PRS using risk variants within 252 EMTP-

related genes in a cohort involving 18,869 cases and 22,452 controls. The EMTP-specific 

PRS showed a 1.25 time increase of PD risk per standard deviation of genetic risk, 

providing powerful genetic evidence that the EMTP plays a role in PD etiology. 

Studies have shown the autosomal recessive PD genes (e.g., PINK1, PRKN, and DJ-1) 

are associated with mitochondrial quality control system and mitophagy, implicating 

mitochondria in the etiology of monogenic PD. Billingsley et al. [31] comprehensively 

studied the role of genes regulating mitochondrial function in sporadic PD using 

mitochondrial-specific PRS in the same cohort. The authors constructed two gene lists 

based on the evidence of indicating relevant protein products relating to mitochondrial 

function. The “primary” gene list including 196 genes has the strictest evidence implicated 
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in mitochondrial disorders. The “secondary” gene list including 1487 genes is implicated 

in mitochondrial function and morphology. The “primary” mitochondrial-specific PRS 

showed a 1.12-times increase of PD risk per standard deviation of genetic risk, while 

“secondary” PRS showed a 1.28-times increase. This study further provided evidence of 

the involvement of mitochondrial dysfunction in PD etiology. 

Notably, a recent study by Bandres-Ciga et al. [21] applied PRS to a total of 2199 

publicly available gene sets representative of canonical pathways to define the cumulative 

effect of pathway-specific genetic variation on PD risk. The training dataset comprising 

7218 PD cases and 9424 controls was used to construct the PRS, while the testing dataset 

comprising 5429 PD cases and 5814 controls was used for validation. Besides identifying 

previously reported EMTP and mitochondrial pathways, this study also nominated some 

novel molecular pathways (e.g., chromatin remodeling and epigenetic mechanisms) 

contributing to PD etiology. 

Bandres-Ciga et al. [58] also integrated the PRS approach and single-cell RNA 

sequencing data from 24 brain cell types to investigate in which cell types risk variants 

are active. They observed PD risk is associated with increased cell expression specificity 

in dopaminergic neurons, serotonergic neurons, hypothalamic GABAergic neurons, and 

neural progenitors, indicating that these cell types are essential for understanding PD-

relevant biological pathways. Andersen et al. [59] applied the PRS approach in the same 

training and testing dataset to investigate heritability enrichment partitioned by cell type, 

focusing on immune and brain cells. The cell-type-PRS was constructed based on risk 

variants within open chromatin regions of the specific brain and immune cell types, as 

defined by ATAC-seq peaks [59]. Compared with other brain cell types, the author found 

microglial-PRS showed the strongest association with PD risk in both training and testing 

datasets. This study highlighted the role of microglial in PD etiology. 

2.6. PRS for the Establishment of Stratified PD Trials 

Using PRS to stratify patients by identifying high- and low-risk subgroups may help 

to conduct stratified trials that use medications that are effective in some forms of PD 

proportionate to genetic risk. It turns out that such stratified designs can potentially increase 

the efficiency of a trial. The use of genetic, clinical, imaging, or other molecular biomarkers 

to recruit patients who are more likely to respond efficiently to intervention is key to trial 

success and a central concept in stratified trials. This was exemplified in the relevant success 

attributable to the recruitment strategy of the aducanumab trial in 2015 for Alzheimer’s 

disease by the means of shift away from this strategy, potentially linked to fewer positive 

results in drug development (https://www.alzforum.org/therapeutics/aduhelm, accessed 

on 1st August 2015) [60]. Additionally, regarding pathway PRS, as the predictive potential 

of pathway PRS can extend the evidence of the pathways involved in PD pathogenesis, they 

can be used to identify patients at risk because of the disturbance of a particular pathway, 

i.e., a particular endophenotype, e.g., PD patients with severe impairment in the 

mitochondrial pathway, and then try to boost mitochondrial function in these patients by 

medications e.g., coenzyme Q10 known as “mitochondrial enhancer” [61].  

2.7. Translating PRS onto the Absolute Scale 

There is mounting interest in the clinical application of PRS in terms of interpreting 

the results to the people seeking to know about their genetic risk, though there have been 

few efforts in this specific respect. Developing handy tools that convert PRS onto the 

absolute scale, i.e., the probability an individual will develop the outcome [62], is a 

milestone in terms of confident interpretation of their results in the clinic. The absolute 

risk conferred by a given relative risk is determined by the predictive utility of the PRS 

that is standardized to a Z-score and the population prevalence of the phenotype. For 

example, an individual’s polygenic Z-score for disease may be 1.96, indicating their 

polygenic score is higher than 97.5% of an ancestry matched population. 
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However, at the moment, PRS can only be converted to the absolute scale if a 

validation sample is available, which imposes a major limitation on its use. Pain and 

colleagues recently developed a method to convert polygenic scores to the absolute scale 

for binary and normally distributed phenotypes. This method requires only the predictive 

accuracy (AUC) or the adjusted variance explained by the PRS (R2) and provides a 

practical choice for educational and clinical purposes [63]. 

3. Future Directions and Limitations 

Although advancements in PD polygenic scoring have improved our ability to 

identify high-risk individuals, there are still caveats about using PRS in the clinic to select 

people for potential clinical follow-up and therapeutic intervention. These concerns 

surrounding the clinical implementation of PRS can be due to technical drawbacks in its 

construction and also subsequent psycho-social implications of its use. 

In terms of PRS calculation, in addition to the noisy nature of SNP weights and their 

LD redundancy, there is a concern that we incorporate genetic variants that may not 

correlate perfectly with the causal factor, leading to uncertainty in the interpretation of 

results. In addition, as PRS is preferably a surrogate for SNP-driven heritability, it does 

not fully represent the entire picture of genetic architecture in PD and overlooks other 

contributors such as rare and structural variants, gene-gene, and gene-environment 

interactions; therefore, it must be interpreted carefully. Additionally, the fact that the 

scores so far have largely been calculated from eurocentric data, i.e., European ancestry 

GWAS, gives rise to the biased behavior of PRS and reduces its applicability in 

populations other than the European population. As a hint shedding light on the future 

direction of PRS application in stratified medicine, conducting large genome-wide studies 

in African populations could rapidly improve the accuracy of PRS for all populations [64]. 

When it comes to the use of PRS in the clinical setting, another caveat that requires 

scrupulous attention is that a PRS, like any other diagnostic uncertainty, must be 

interpreted contextually for the patients. Although feedback of genetic risk of complex 

disease in at-risk patients does not always result in significant self-reported negative 

behaviors, and some potentially positive behavioral changes have been noted [65], 

knowing genetic risk for a disease may convey a sense of insecurity in some people. 

Hence, the way PRS results are explained to the patients is of importance as well. On the 

other hand, future efforts to reduce this uncertainty by focusing on transparency in 

informing people about their PRS seem necessary. Looking at the example of other 

diseases such as coronary heart disease, Torkamani and his team developed 

MyGeneRank, an app that can calculate a person’s PRS for coronary heart disease from 

their genetic data from 23andMe, health data collected on mobile devices, and a series of 

questionnaires. Their aim was to understand how people respond to receiving the score 

and monitor any changes in health-related behavior thereafter [66]. In summary, however, 

PRS significantly improves genetic risk assessment at the individual level for PD patients, 

as the growing evidence suggests, it should be evaluated in the context of realistic 

expectations of what PRS can and cannot deliver [67]. Further research is also needed to 

ascertain how PRS can be effectively mainstreamed into clinical practice and more data, 

e.g., biomarker data, are needed to allow implementation of PRS in this context. 
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