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Abstract: Background: ABCG2 rs2231142 is an important genetic factor that contributes to the
development of gout and hyperuricemia (HUA). Epidemiologic studies have demonstrated that
lifestyle risk factors of HUA (e.g., alcohol consumption) and genetic predisposition (e.g., ABCG2 gene)
together, contribute to enhanced serum uric acid levels. However, the interaction between ABCG2
rs2231142, alcohol consumption, and HUA in the Taiwanese population is still unclear. Therefore, this
study investigated whether the risk of HUA is associated with ABCG2 rs2231142 variants and how
this is affected by alcohol consumption. Method: study subjects were selected from the participants
of the Taiwan Biobank database. Overall, 114,540 participants aged 30 to 70 years were enrolled
in this study. The interaction between ABCG2 rs2231142, alcohol consumption, and serum uric
acid (sUA) levels was analyzed by multiple logistic regression models. Results: the prevalence of
HUA was 32.7% and 4.4 % in the male and female populations, respectively. In the whole study
population, the minor T allele of ABCG2 rs2231142 was significantly associated with HUA risk, and
the occurrence of HUA was high in TT genotype and TG genotype. The risk of HUA was significantly
increased by the combined association of ABCG2 rs2231142 and alcohol consumption for TG/TT
genotype compared to the GG genotype (wild-type genotype), especially among women. Conclusion:
the ABCG2 rs2231142 is a crucial genetic locus for sUA levels in the Taiwanese population and
our findings revealed that alcohol consumption combined with the ABCG2 rs2231142 risk allele
contributes to increased HUA risk.
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1. Introduction

Uric acid is a product of purine metabolism in humans. A high blood concentration
of uric acid is known as hyperuricemia (HUA, uric acid levels > 7.0 mg/dL), which can
be caused by an imbalance in uric acid uptake, synthesis, or excretion [1,2], and is related
to gout, cardiovascular disease, chronic kidney disease, type 2 diabetes mellitus [2–5],
and metabolic related diseases [6,7]. HUA has received increasing attention as a major
public health problem in Taiwan due to its high prevalence and the associated increases in
the risks of various diseases. The cause of HUA is multi-factorial, including age, gender,
obesity, diet, alcohol consumption, insulin resistance, hypertension, and medication [2,8].

Several genome-wide association studies (GWAS) of serum uric acid (sUA) have
identified that sUA is under strong genetic control and more than ten sUA associated
genes have been identified [9,10], such as ATP-binding cassette subfamily G member
2 (ABCG2), glucose transporter type 9(GLUT9, also known as SLC2A9), and urate anion
transporter1 (URAT1, also known as SLC22A12). In a genome-wide study, ABCG2 rs2231142
displayed strong evidence of an association with sUA levels (p < 10−60) [9]. Furthermore,
recent GWAS have also reported a strong association between ABCG2 rs2231142 and
sUA concentrations in a Chinese population (p = 3.341 × 10−42) [11]. In the Taiwanese
population, the ABCG2 rs2231142 gene had a significant association with HUA (OR = 2.15,
p < 0.001) after adjustment for potential confounders [12].

ABCG2 encodes a high-capacity urate efflux transporter, located in a gout-susceptibility
locus (MIM 138900) on chromosome 4q [13], and some genetic variants can increase uric
acid levels [14,15]. The ABCG2 rs2231142 single nucleotide polymorphism (SNP) in exon 5,
and this missense mutation leads to a Glu141Lys amino acid substitution (Q141K) [15,16],
which accounted for 0.57% of the variation in serum urate [17]. To the best of our knowl-
edge, ABCG2 rs2231142 SNPis one of the most significant genetic variants associated with
HUA in the Asian population [10,18]. Recent studies have indicated the Q141K polymor-
phism was associated with a reduced ABCG2 protein surface expression [19,20]. Kaszaet al.
found that nonsense mutations on one allele result in a 50% reduction in ABCG2 protein
expression in the human erythrocytes [19]. Meanwhile, the ABCG2 variant (Q141K) also
reduced ABCG2 adenosine triphosphatase (ATPase) activity and modified the transporter
activity of ABCG2 [20,21]. The functional study of rs2231142 has shown that it causes a 53%
reduction in the rate of ABCG2-mediated urate transport compared with wild-type [15,22].
Therefore, people carrying the ABCG2 rs2231142 T allele are more likely to have HUA.

Previous studies revealed that the T allele of ABCG2 rs2231142 was associated with
increased sUA levels and its frequency is approximately three-fold higher in East Asian
populations compared to European populations [10,18]. SNP rs2231142 is significantly
associated with HUA and gout risk in East Asia compared to other sUA-risk genes [10,18].
In the Taiwanese population, the prevalence of HUA in males and females is 43.71% and
27.4% [23], respectively, which is higher than in other ethnic groups [2]. Recently, epi-
demiologic studies have demonstrated that lifestyle risk factors of HUA (e.g., alcohol
consumption) and genetic predisposition (e.g., ABCG2 gene) together, contribute to en-
hanced sUA levels [22,24,25]. These studies have shown a significant association between
alcohol drinking and HUA, which may partially explain the incidence and prevalence of
gout [24,26]. A recent study showed that the prevalence of HUA in males was 11.9% in
non-drinkers, 12.6% in moderate drinkers, and 16.3% in heavy drinkers (p < 0.001) in a
general population from rural China [27]. In females, the rates were 6.3% in non-drinkers,
8.1% in moderate drinkers, and 6.6% in heavy drinkers (p = 0.818). In a Taiwanese cohort
study, ABCG2 rs2231142 was associated with tophaceous gout across the alcohol consump-
tion, with a stronger association in everdrinkers (OR = 25.05) than in current drinkers
(OR = 12.69) [28]. To date, few studies have investigated the association between alcohol



J. Pers. Med. 2021, 11, 1158 3 of 12

consumption and ABCG2 rs2231142 variants in a general population in Taiwan even though
it is clearly associated with UA. Therefore, in this study, we examined whether the different
joint effects of alcohol consumption and ABCG2 rs2231142 risk allele in males and females
contribute to increased HUA risk.

2. Materials and Methods
2.1. Data Source and Study Sample

This study was conducted using the Taiwan Biobank (TWB), which gathered infor-
mation and specimens from a convenience sample of Taiwanese volunteer participants
in recruitment centers across Taiwan. All of the participants provided informed consent.
Detailed information on the program and data access is available from the website of the
TWB [29,30]. Our study cohort was composed of 114,540 individuals aged 30 to 70 years.
Genotyping information, serum uric acid reports, demographic information, medical his-
tory, lifestyle modality, body fat evaluation (including BMI, waist circumference, and body
fat percentage), and biochemical reports (including serum creatinine, cholesterol, and
fasting glucose level), were all identified from the database. This research project was
approved by the ethics committee of Taichung Veterans General Hospital Institutional
Review Board (IRB no. CE16270B-1). The study was conducted in accordance with the
principles of the Declaration of Helsinki and the Good Clinical Practice Guidelines, and all
the participants provided informed consent. All available data were acquired from TWB,
which collects specimens and information in a complete and standardized procedure to fit
researchers’ needs in different fields [30–32].

2.2. SNP Genotyping and Quality Controls

The blood DNA samples from TWB participants of adults aged 30 to 70 years were
genotyped using the custom Taiwan Biobank 2.0 SNP chip and an Axiom Genome-Wide
Array Plate System (Affymetrix, Santa Clara, CA, USA) at the National Center for Genome
Medicine in Academia Sinica, Taiwan [30,32]. TWB used the Affymetrix Power Tools
(APT) and performed a standard quality control procedure to exclude SNPs with low
call rates (<99%), with a p value for the Hardy-Weinberg equilibrium test of <1.0× 10−4

for the controls and a minor allele frequency of <0.01. The Affymetrix TWB 2.0 SNP
chip contained 653,291 SNPs and was designed specifically for Taiwan’s Han Chinese
population. Details on the TWB can be found on its official website (TaiwanView: http:
//taiwanview.twbiobank.org.tw) [33]. SNPs on the X and Y chromosomes, as well as those
on mitochondrial DNA, were also included for data release [30]. PLINK was used for
analysis and a quality control procedure was performed to exclude markers that failed
Hardy–Weinberg equilibrium tests with a p value < 1 × 10−6, minor allele frequency <0.01,
and a genotyping call rate less than 90% [34].

2.3. Data Collection and Outcome

The primary outcome was serum uric acid level, measured by means of a uricase
method, at the baseline of each study [30]. The sUA level was measured using an Architect
i2000SR Analyzer (Abbott Diagnostics, Abbott Park, Chicago, IL, USA). There are 114,540
individuals with genotyping information in the data source, and 3 were excluded without
serum uric acid values. Finally, we recruited 13,492 and 3254 participants with HUA (sUA
levels > 7.0 mg/dL; without gout disease history) in the male and female populations, re-
spectively, from the TWB database. A total of 27,773 males and 70,018 females were used as
normal controls (sUA levels ≤ 7.0 mg/dL with neither gout nor HUA).Relevant laboratory
examinations and lifestyle data of TWB subjects were provided by the TWB database. Co-
variates were evaluated as follows: participants’ demographic (including gender, age, and
marital status), personal health behaviors (including habits of alcohol drinking, smoking,
and routine physical activity), physical examination (including body mass index, and waist
circumference [WC, cm]), and blood and urine tests (including blood pressure [BP, mmHg],
total cholesterol [TC, mg/dL], triglyceride [TG, mg/dL], high-density lipoprotein [HDL,

http://taiwanview.twbiobank.org.tw
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mg/dL] cholesterol, low-density lipoprotein [LDL, mg/dL] cholesterol, fasting glucose
[FG, mg/dL], and creatinine [mg/dL]).Body mass index (BMI) was calculated as weight
(kilograms, kg) divided by height (meters, m2) squared, and overweight was defined
as BMI ≥ 24 kg/m2. Central obesity was defined as WC ≥ 90 cm in men or ≥ 80 cm in
women. Hypertension was defined as BP ≥ 140/90 mmHg. Regarding blood and urine
test results, suspected hyperlipidemia was defined as TC ≥ 200 mg/dL, TG ≥ 150 mg/dL,
HDL < 40 mg/dL in men or <50 mg/dL in women, and LDL > 100 mg/dL. Suspected
diabetes was defined as FG ≥ 100 mg/dL. Lifestyle factors considered in this study in-
cluded cigarette smoking, alcohol consumption, and physical activity, which were obtained
by a questionnaire. The smoking status was dichotomized as a current- or ever-smoker
versus a non-smoker. The alcohol-consumption status was dichotomized as a current- or
ever-drinker versus a non-drinker. For physical activity, subjects were dichotomized as
non-sedentary versus sedentary [35].

2.4. Statistical Analysis

All the statistical analyses were performed using the SAS version 9.4 software (SAS
Institute Inc., Cary, NC). The characteristics of the continuous variables were expressed
as means ± standard deviations and were analyzed using Student’s t-tests or analysis
of variance (ANOVA). Comparisons of categorical variables were analyzed using the
Chi-square test. The interaction between ABCG2 rs2231142 and alcohol consumption,
and hyperuricemia was analyzed by multiple logistic regression models. Meanwhile, the
association between ABCG2 rs2231142 and alcohol consumption in HUA was analyzed
using a logistic regression model to adjust for potential confounders. Odds ratios (OR) and
95% confidence interval (95% CI) were calculated. A p value less than 0.05 was considered
to be statistically significant.

3. Results
3.1. Baseline Characteristics of Study Population

A total of 114,537 participants, including 41,265 males and 73,272 females, were
enrolled in this study. The prevalence of HUA was 32.7% and 4.4% in the male and female
populations, respectively. The basic characteristics of participants are shown in Table 1.
The ratio of HUA was significantly higher in postmenopausal women aged 55 to 70 years
(72.6%, p < 0.001) in the HUA cases. In contrast, the ratio of HUA was higher in males
aged 30 to 45 years (27.0%, p < 0.001), compared to all male participants with HUA. The
individuals in the HUA group had higher level of BMI, WC, BP, TC, TG, and LDL levels, but
lower levels of HDL, compared to controls (p < 0.001). Moreover, there was no significant
difference in tobacco smoking, chewing betel nut or body fat percentage between the case
and control groups in females.
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Table 1. Basic characteristics of the participants.

Male (n = 41,265) Female (n = 73,272)

Without HUA
(n = 27,773)

HUA
(n = 13,492) p-Value Without HUA

(n = 70,018) HUA (n = 3254) p-Value

Age (years) (%) a

30–45 6023 (21.7) 3647 (27.0) <0.001 15,315 (21.9) 398 (12.2)
45–55 6945 (25.0) 3577 (26.5) 18,477 (26.4) 495 (15.2)
55–70 14,805 (53.3) 6268 (46.5) 36,226 (49.4) 2361 (72.6) <0.001

Current/ever alcohol
consumption (%)

No 24,598 (88.6) 11,267 (83.6) 68,709 (98.2) 3143 (96.6)
Yes 3160 (11.4) 2215 (16.4) <0.001 1277 (1.8) 109 (3.4) <0.001

Current/ever smoker (%)
No 12,041 (43.4) 5474 (40.6) 62,834 (89.8) 2898 (89.1)
Yes 15,728 (56.6) 8017 (59.4) <0.001 7168 (10.2) 356 (10.9) 0.203

Current/ever chewing betel
nut (%)

No 23,450 (84.5) 10,998 (81.6) 69,705 (99.7) 3232 (99.5)
Yes 4286 (15.5) 2475 (18.4) <0.001 210 (0.3) 17 (0.5) 0.034

Physical activity (%)
No 15,815 (57.0) 7936 (33.4) 42,457 (60.7) 1858 (57.1)
Yes 11,947 (43.0) 5551 (41.2) <0.001 27,523 (39.3) 1396 (42.9) <0.001

Body mass index (kg/m2) b 24.77 ± 3.36 26.63 ± 3.62 <0.001 23.42 ± 3.64 27.05 ± 4.57 <0.001
Waist circumference (cm) 86.52 ± 9.06 91.04 ± 9.34 0.019 80.29 ± 9.53 88.98 ± 10.92 <0.001
Body fat percentage (%) 22.02 ± 5.31 24.76 ± 5.10 <0.001 31.65 ± 6.26 37.61 ± 6.52 0.084
Blood pressure (mmHg) 125.30 ± 17.12 128.29 ± 17.58 0.066 116.55 ± 18.34 127.41 ± 19.47 <0.001

Total cholesterol (mg/dL) 189.43 ± 34.34 196.83 ± 36.10 0.001 197.13 ± 35.71 209.89 ± 40.97 <0.001
Triglyceride (mg/dL) 124.51 ± 103.20 166.57 ± 141.91 <0.001 100.41 ± 70.69 161.95 ± 124.95 <0.001

HDL cholesterol (mg/dL) 49.13 ± 11.27 45.44 ± 10.33 <0.001 58.55 ± 13.19 50.39 ± 11.69 <0.001
LDL cholesterol (mg/dL) 120.02 ± 30.93 125.19 ± 32.31 <0.001 119.94 ± 31.59 132.01 ± 35.81 <0.001
Fasting glucose (mg/dL) 99.88 ± 25.67 98.26 ± 17.90 <0.001 93.62 ± 18.39 100.65 ± 21.43 <0.001

a Comparisons of categorical variables were analyzed using the Chi-square test. b Continuous variables are summarized as mean ± standard
deviation (SD) and were analyzed using Student’s t-test for normal data distributions.

3.2. Distribution and Association of ABCG2 rs2231142 Variants in HUA

The distribution of ABCG2 rs2231142 variants are shown in Table 2. In the male
population, the genotype frequencies of ABCG2 rs2231142 among HUA cases were 14.3%
(TT), 48.5% (TG), and 37.2% (GG), while the genotype frequencies were 7.9% (TT), 40.3%
(TG), and 51.7% (GG) in the controls. In female, the genotype frequencies of ABCG2
rs2231142 among HUA case were 16.2% (TT), 50.0% (TG), and 33.9% (GG).The minor
T allele frequency of ABCG2 rs2231142 was present in 38.5% of the HUA population
compared with 28.1% of the control group in males and 41.1% of the HUA population
in females compared to 31.1% in the control group.The distribution of ABCG2 variants
showed statistical significance in different genotypes (p < 0.001) between the HUA cases
and controls in both males and females. Additionally, the risk of HUA was significantly
associated with ABCG2 rs2231142 risk T allele, and both TT and TG genotypes contributed
to an increased risk of HUA in men (TT: OR = 2.49, 95% CI: 2.33–2.67, p < 0.001; TG:
OR = 1.67, 95% CI: 1.59–1.74, p < 0.001) and women (TT: OR = 2.34, 95% CI: 2.10–2.61,
p < 0.001; TG: OR = 1.64, 95% CI: 1.51–1.77, p < 0.001).
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Table 2. Genotypes and allele frequencies of ABCG2 rs2231142 and risk of hyperuricemia in the study population.

Gene/SNP Male (n = 41,265) Female (n = 73,272)

Without
HUA HUA

p-Value a
Risk of HUA Without

HUA HUA
p-Value a

Risk of HUA

(n = 27,773)
(%)

(n = 13,492)
(%)

OR
(95% CI) b p-Value c (n = 70,018)

(%)
(n = 3254)

(%)
OR

(95% CI) b p-Value c

ABCG2 rs2231142 <0.001 <0.001

GG 14,366
(51.7) 5022 (37.2) 1 33,288

(47.5)
1102
(33.9) 1

TG 11,202
(40.3) 6545 (48.5) 1.67

(1.59–1.74) <0.001 29,948
(42.8)

1626
(50.0)

1.64
(1.51–1.77) <0.001

TT 2205 (7.9) 1925 (14.3) 2.49
(2.33–2.67) <0.001 6782 (9.7) 526 (16.2) 2.34

(2.10–2.61) <0.001

Allele (%) <0.001 <0.001

G 39,934
(71.9)

16,589
(61.5)

96,524
(68.9)

3830
(58.9)

T 15,612
(28.1)

10,395
(38.5)

2.49
(2.33–2.67) <0.001 43,512

(31.1)
2678
(41.1)

2.34
(2.11–2.61) <0.001

a Analyzed by using the Chi-square test for association between genotypes of ABCG2 rs2231142 and HUA. b OR = odds ratio; CI = confidence
interval. c Logistic regression adjusted by age, BMI, hypertension, creatinine, TC, TG, HDL, and LDL.

3.3. Association between ABCG2 rs2231142 and Alcohol Consumption in HUA

We assessed the statistical significance of the interaction between alcohol consumption
and ABCG2 rs2231142 variants by using the multiple logistic regression model. As shown in
Table 3, the risk of HUA markedly increased due to the interaction of ABCG2 rs2231142 and
alcohol consumption. Compared to the subjects with GG, the risk for HUA increased by
118% in men (OR = 2.183, 95% CI: 2.059–2.315, p < 0.001) and by 209% in women (OR = 3.096,
95% CI: 2.403–3.988, p < 0.001) with the TG/TT genotype. We further characterized
the association between alcohol consumption and ABCG2 rs2231142 variants along with
their interactions (Figure 1). The results indicated that the risk of HUA was significantly
associated with ABCG2 rs2231142 risk T allele, as the risk for HUA increased by 91.8% in
men (OR = 1.918, 95% CI: 1.834–2.005, p < 0.001) and 87.4% in women (OR = 1.874, 95% CI:
1.735–2.025, p < 0.001) with TG/TT genotype. Of note, the risk of HUA was significantly
increased by the interaction between ABCG2 rs2231142 TG/TT genotypes and alcohol
consumption in females (OR = 3.021, 95% CI: 2.108–4.316, p < 0.001).

Table 3. Interaction between alcohol consumption and ABCG2 rs2231142.

Variables
Male (n = 41,265) Female (n = 73,272)

OR (95% CI) b p-Value a OR (95% CI) p-Value a

Intercept 0.006 (0.003–0.015) <0.001 0.016 (0.010–0.038) <0.001
Age 45–55 0.851 (0.803–0.901) <0.001 1.031 (0.902–1.178) <0.001
Age 55–70 0.699 (0.665–0.736) <0.001 2.508 (2.251–2.794) <0.001

Current alcohol consumption 1.530 (1.443–1.623) 0.007 1.866 (1.530–2.276) <0.001
BMI 1.162 (1.155–1.117) <0.001 1.207 (1.198–1.213) <0.001

Body fat percentage 1.105 (1.101–1.110) <0.001 1.139 (1.133–1.145) <0.001
Blood pressure 1.010 (1.009–1.011) <0.001 1.027 (1.025–1.028) <0.001

Total cholesterol 1.004 (1.002–1.006) 0.001 1.006 (1.002–1.009) 0.001
Triglyceride 1.002 (1.002–1.003) <0.001 1.002 (1.002–1.003) <0.001

HDL cholesterol 0.973 (0.970–0.976) <0.001 0.951 (0.946–0.956) <0.001
LDL cholesterol 1.002 (1.000–1.005) 0.067 1.005 (1.001–1.009) 0.007
Fasting glucose 0.993 (0.992–0.994) <0.001 1.004 (1.003–1.005) <0.001

rs2231142 1.707 (1.634–2.828) <0.001 2.745 (2.219–2.880) <0.001
Alcohol consumption ×rs2231142 2.183 (2.059–2.315) <0.001 3.096 (2.403–3.988) 0.001

a The odds ratios and p-values are assessed by combining with the interaction of current alcohol consumption. b OR = odds ratio; 95% CI =
95% confidence interval.
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Figure 1. Odds ratios for the association between ABCG2 rs2231142 and alcohol consumption with
hyperuricemia. Dotted line represents an OR of 1. Error bars represent the 95% confidence interval of
the odds ratios. The p-values were generated using logistic regression.

4. Discussion

In this cohort study, we confirmed the importance of the ABCG2 rs2231142 T allele
with a high risk of HUA. We showed that alcohol consumption combined with ABCG2
rs2231142 risk allele contributes to increased HUA risk in both genders, especially women.
In our findings, the minor T allele of ABCG2 rs2231142 was a critical risk factor for HUA
and the risk of HUA was significantly increased by the interaction of ABCG2 rs2231142
and alcohol consumption for TG/TT genotype (OR = 1.997, 95% CI: 1.655–2.275, p < 0.001
in males, OR = 3.021, 95% CI: 2.108–4.316, p < 0.001 in females). We demonstrated that
ABCG2 rs2231142 contributed to the risk of HUA, especially for the TG/TT genotype. This
is consistent with other Asia population studies [16,36], suggesting that patients carrying
the T allele had a higher frequency of HUA than those with the ABCG2 rs2231142 GG allele.
The combined genetic effects could explain some proportion of inter-individual variation
in sUA.
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Genetic factors play an important role in HUA risk, but these factors do not change
within an individual. We found significant interaction between ABCG2 rs2231142 and
alcohol consumption in Taiwanese people, though we did not have access to details about
the type of alcohol consumed. Alcohol has been recognized as a potential risk factor for
HUA and is considered a trigger for gouty arthritis and recurrent gout attacks [24,37].
The Third US National Health and Nutritional Examination Survey (NHANES III, 1988–
1994) study showed that sUA increased with alcohol consumption and decreased with
increasing dairy intake. Moreover, alcohol consumption(particularly beer and liquor con-
sumption)increased sUA levels [38]. Similarly, Nakayama et al. indicated that alcohol
consumption (3.5 × 10−4 mg/dL) was a significant factor in increasing sUA, and a regres-
sion analysis revealed that “552.1 g/week alcohol intake as pure ethanol” was equivalent to
a 25% decrease in ABCG2 function in terms of ability to increase sUA levels [39]. Moreover,
one meta-analysis by Tu et al. showed that alcohol consumption and ABCG2 rs2231142, in-
dependently and jointly, were associated with the risk of chronic tophaceous gout [28].The
effect of alcohol is, in part, related to increased urate production by activation of adenine
nucleotide turnover, which is due to enhanced turnover of ATP during the conversion of
acetate to acetyl-CoA as part of the metabolism of ethanol [40]. Furthermore, acute alcohol
consumption causes lactate production. Lactate is an antiuricosuric agent that reduces renal
urate excretion and exacerbates HUA [26]. In addition, part of the association of alcohol
intake with HUA is likely related to the high lead content in certain liquors, especially in
port wines. Lead causes a marked increase in sUA by impairing urate excretion [26].

The prevalence of HUA ranges from 13.3% to 21.6% and varies by sex and among
countries or regions [2,41]. Local differences are apparent within countries, likely influenced
by environmental, climatic, economic, and dietary factors. In this study, the prevalence of
HUA was 32.7% and 4.4 % in the male and female populations, respectively. The prevalence
of HUA increased with age in women but was stably high in men. We uncovered an extra
layer of interaction between sex, age, and alcohol consumption on sUA levels. Our data
showed that ABCG2 rs2231142 was significantly associated with UA levels in senior females,
which may be explained by menopause and other age-related factors influencing female
hormones [42,43]. According to Choi’s findings, postmenopausal hormone use is associated
with lower uric acid levels among postmenopausal women. In postmenopausal women,
the increased levels of sUA are thought to be caused by a change in renal urate elimination
associated with the loss of estrogens [44,45]. Estrogens promote renal uric acid excretion
and decrease the level of sUA by suppressing the protein levels of URAT1 and GLUT9
in the proximal tubule, and that of urate efflux transporter ABCG2 [46]. Furthermore,
administration of estrogen therapy to postmenopausal women was shown to decrease
serum uric acid levels [44,45]. Our data are consistent with previous cross-sectional studies
that found age-related increases in sUA among women but not such variation among
men [47–49]. A study based on 3013 female residents of Tecumseh, MI [48] and a study
based on 254 women in the UK [49] reported a rise in serum urate levels after age 50 to 54
years with a subsequent plateau. In addition, a study based on 18,324 Japanese females
reported increasing uric acid levels up to the age of 70 years by Akizuki et al. In this
study, we found that serum uric acid levels among women increased from age 45 to 55
onwards and the increase extended up to the highest age category of 70 years of age. The
age-associated increase in sUA may be explained by other age-related factors such as renal
function, diuretic use and hypertension. Whether these factors also affect the risk of HUA
more so in women than among men remains to be examined in prospective studies.

The mechanism through which the ABCG2 gene influences serum urate levels is
not fully understood. However, it has been reported that it codes for the ATP-binding
cassette super-family G member 2 regulatory sUA via physiologically important roles in
both renal and intestinal urate excretion [14,15,50–53]. The function of ABCG2 protein as
an important urate transporter was inferred from genome-wide study and subsequent
functional research. ABCG2 rs2231142 demonstrated a strong association with HUA, and
highlighted the role of rs2231142 in the pathogenesis of reduced cellular urate efflux,
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HUA, and early-onset gout. ABCG2 plays a physiological role of urate homeostasis in the
human body through both renal and extrarenal urate excretion via the bile or intestine [14].
However, it is difficult to obtain accurate non-invasive measurements of intestinal/biliary
urate secretion in humans because the secreted urate is largely metabolized by the bacterial
flora in the intestine. Hence, Hosomi and colleagues demonstrated that the role of ABCG2
in extrarenal urate secretion was revealed in animal models using the in situ intestinal
“closed-loop” perfusion method [52,53]. They demonstrated that, besides the substantial
fraction of renal urate elimination, there is direct urate excretion via the intestine, and only
minor urate excretion via the bile [52,53].

ABCG2 rs2231142 is one of the most significant genetic variants associated with HUA
in Asian populations [10,18]. Previous studies have identified that the minor T allele of
ABCG2 rs2231142 reached 27% in controls and 39.3% in HUA cases, much higher than
that reported for Whites (11–12%) and Blacks (3%) [9]. In this Taiwan-based study, our
current data confirmed that both males and females carrying the rs2231142 T allele had
an associated increased HUA risk, which was consistent with other Asian population
studies [8,16,36,54]. Consistent with our result, Lv et al. [55] demonstrated that the T allele
of ABCG2 rs2231142 was associated with increased HUA risk in diverse races, such as
Asian, African, Caucasian, and New Zealand Pacific Islanders.

Our current study does have some limitations. First, we did not include all lifestyle
risk factors that could impact HUA risk. Thus, more variables from lifestyle factors need
to be included in future analyses to better investigate the association between ABCG2
polymorphisms and other risk factors and the risk of developing HUA. Second, there is
a possibility of a response bias considering that information was collected using ques-
tionnaires. Finally, the results of this study need to be validated in prospective studies
with appropriate follow-up to validate our findings. Participants will need to provide
information about their alcohol consumption, such as whether they regularly consumed
alcohol and ethanol weight content.

5. Conclusions

In conclusion, our findings showed that alcohol consumption contributes, along with
the ABCG2 rs2231142 risk T allele, to increase HUA risk in Taiwan, especially in the female
population. The findings suggest that a reduction in alcohol consumption is critical for
high-risk patients with the ABCG2 rs2231142 risk T allele. These results are important
for understanding the joint effects of lifestyle risk factors and ABCG2 rs2231142, and
will contribute to the prediction of an individual’s risk for hyperuricemia depending on
their gender.
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