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Abstract: Mass spectrometric profiling provides information on the protein and metabolic composi-
tion of biological samples. However, the weak efficiency of computational algorithms in correlating
tandem spectra to molecular components (proteins and metabolites) dramatically limits the use of
“omics” profiling for the classification of nosologies. The development of machine learning meth-
ods for the intelligent analysis of raw mass spectrometric (HPLC-MS/MS) measurements without
involving the stages of preprocessing and data identification seems promising. In our study, we
tested the application of neural networks of two types, a 1D residual convolutional neural network
(CNN) and a 3D CNN, for the classification of three cancers by analyzing metabolomic-proteomic
HPLC-MS/MS data. In this work, we showed that both neural networks could classify the pheno-
types of gender-mixed oncology, kidney cancer, gender-specific oncology, ovarian cancer, and the
phenotype of a healthy person by analyzing ‘omics’ data in ‘mgf’ data format. The created models
effectively recognized oncopathologies with a model accuracy of 0.95. Information was obtained on
the remoteness of the studied phenotypes. The closest in the experiment were ovarian cancer, kidney
cancer, and prostate cancer/kidney cancer. In contrast, the healthy phenotype was the most distant
from cancer phenotypes and ovarian and prostate cancers. The neural network makes it possible
to not only classify the studied phenotypes, but also to determine their similarity (distance matrix),
thus overcoming algorithmic barriers in identifying HPLC-MS/MS spectra. Neural networks are
versatile and can be applied to standard experimental data formats obtained using different analytical
platforms.

Keywords: cancer; neural network; system biology; bioinformatics; proteomics; metabolomics;
multiomics data

1. Introduction

According to the central dogma of molecular biology proposed by Francis Crick (1958),
the information genetically encoded in DNA is transformed to proteins, and subsequently
through enzyme-mediated transformation into to metabolites, via RNA. The result of this
genetically determined transition is the synthesis of biological molecules, proteins, and
metabolites that implement a genetically programmed trait or phenotype [1]. Therefore, by
observing the expression of a certain set of genes in an experiment, a researcher expects
to confirm the information encoded by these genes at the subsequent molecular levels—
transcriptomic, proteomic, and metabolomic.

At the end of the 20th century, studies began to appear in the literature indicating a
weak correlation between the components of different molecular layers, primarily between
the expression levels of mRNA and protein in biological samples [2]. Today, it is well known
that the general genome correlation between the level of expression of mRNA and proteins

J. Pers. Med. 2021, 11, 1288. https://doi.org/10.3390/jpm11121288 https://www.mdpi.com/journal/jpm

https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-7199-372X
https://orcid.org/0000-0002-9113-9440
https://orcid.org/0000-0001-9404-1660
https://orcid.org/0000-0003-4472-2016
https://doi.org/10.3390/jpm11121288
https://doi.org/10.3390/jpm11121288
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jpm11121288
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm11121288?type=check_update&version=1


J. Pers. Med. 2021, 11, 1288 2 of 15

is only 40% [3–5]. Similar results were observed in a more complex correlation analysis be-
tween gene expression and metabolite formation [6]. The impressive discrepancy between
the composition and the amounts of molecular components inhabiting different “omics
layers” (mRNA, proteins, metabolites) is usually explained by the complex regulation of
the processes of transcription and translation [7,8], as well as technological and algorithmic
limitations of post-genomic analysis tools [9]. Researchers agree that a comprehensive
understanding of the state of the human body in both the healthy state and disease requires
the integration of knowledge about the qualitative and quantitative content of molecular
components in a biological sample from several molecular levels, such as the genome,
epigenome, transcript, proteome, and metabolome [10–12]. The rapid development of
high-throughput technology for sequencing and mass spectrometric analysis of molecular
profiling has led to a high rate of generation of “multiomics” data and has defined the era
of “big data” in the study of biological processes. Today, the global problem of the practical
application of the results of molecular profiling is multivariate data mining.

Oncological diseases are perhaps the biggest challenge to modern biomedicine, as
these are pathologies with a high mortality and disability rate [13]. Cancer is a multigenic
and, at the same time, multifactorial pathology and is accompanied by the dysregulation
of a large number of genes [14]. The main result of this dysregulation is the reprogram-
ming of a healthy phenotype cell into an oncological one [15]. The pathological processes
accompanying the development of any oncological disease are similar in many respects [9].
Common signs of oncopathology include the maintenance of proliferative signaling, avoid-
ance of growth suppressors, disruption of the mechanisms of cell apoptosis, provision of
replicative immortality, induction of angiogenesis, activation of invasion and metastasis,
and reprogramming of energy metabolism and evasion of immune destruction [14]. Due
to the similarity of developmental mechanisms, the identification of serological markers
(proteins and metabolites) of a separate oncopathology is difficult [9,16].

In this regard, the goal of this study was to create a neural network for the classification
of patients with prostate cancer, ovarian cancer, and kidney cancer. We analyzed the mass
spectrometric proteo-metabolomic study of patients with various types of cancer [9], of
which two were classified as sex-specific. The data obtained were divided into three sets:
training, validation, and testing, without prior identification.

Several popular machine learning (ML) tools utilize mass spectrometric (MS) data
for the classification of phenotypes. The most widely employed for initial data processing
are support-vector networks (SVN) [17], random forest (RF) [18], and linear discriminant
analysis (LDA) [19]. Due to the lack of standardized recommendations, comparative
analysis is challenging if operating with MS-based data. The mass spectrometry-based data
pre-processing is essential for stabilization improvement of multidimensional data [20].
Depending on the quality of the pre-processed data and the model chosen, the adequacy
of biological assumptions may vary widely. Therefore, the selection of descriptors and
accounting for their variation are essential for consolidation of the outcome. Generally, this
task encompasses extraction of descriptors through their local extremums. However, we
applied an end-to-end approach that learns representations directly from the mass spectra
data. A typical convolutional neural network (CNN) includes layers that fit invariant
features of an input signal. Therefore, a high predictability measure is the main advantage
of the CNN classification regarding the raw MS-based data with the contribution of a noise
signal and baseline variation.

The application of the neural network (NN) approach in biomedical settings is becom-
ing of growing interest, although NN still cannot be utilized as a diagnostic tool due to
many limitations related to data availability and cost-expensive experimental validation.

There are many reports of successful NN application on small and on large datasets.
For instance, a research group from School of Engineering (University of Warwick, Coven-
try, UK) has been designed a successful NN model for the evaluation of osteoarthritis
severity depending on the bone size and gender (male and female). The designed model
has been obtained using the very small initial dataset (only 35 samples) avalible for train-
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ing [21]. The small dimensionality issue can be resolved by a special NN tool, such as
augmentation, by way of stochastic variation of the input data, which is critical for the
mass spectrometry-based data [22–25]. A deep convolutional neural network has been
successfully applied to poorly stratified thyroid cancer. The authors used ultrasound
images as an input information of more than 180,000 totally collected different images
from more than 17,000 patients [26]. The final output on the validation test demonstrated
a sensitivity up to 94% and showed improved performance compared to the skilled ra-
diologist. A convolutional neural network has been applied to data-independent (DIA)
mass spectrometry data for peptides sequencing [27]. The authors collected DIA spectra
(a specially developed approach in mass spectrometry with no information loss unlike
data-dependent scanning) and extracted the same features as we used in our study: m/z,
intensity, and retention time. Typically, the DIA approach requires preliminary generation
of a customized spectra library to be able to read and manage DIA data. However, this is
a time-consuming and cost-expensive task. In this study, the authors used convolutional
NN to couple DIA spectra with identifying novel peptides. However, the application is
limited to antibodies and antigens due to sequence patterns predictability. NNs are becom-
ing utilized to predict post-translational modification primarily due their flexibility and
performance. Kinase-specific phosphorylation and general phosphorylation sites can be
predicted by the MusiteDeep tool, which uses UniProt KB annotated phosphorylation sites
as an input positive control and transfer general phosphorylation sited to train the model
for the kinase-specific prediction [28]. The DeepPhispho tool employs intra- and inter-
block concatenation layers architecture to generate phosphorylation predictions through
capturing a multiple representation of sequences [29]. However, both neural networks are
characterized by a limited predictability, which is caused by a limited number of sufficient
substrates for known kinases (over 95% of known substrates do not have known upstream
kinases [30]). Deep machine learning has been proposed to classify clinically relevant sam-
ples that were analyzed by the LC-SRM method, and the best classification AUC achieved
0.94 [31]. General disclination of normal (control) samples from the tumor ones can be
achieved using a NN that operates with data-dependent (DDA) mass spectrometric data,
and such an approach skips proteins and peptides identification typical for the traditional
proteomic workflow [32].

In the present study for the analysis and classification of pathologies, two neural
networks with the architecture of “residual convolutions” (1D residual CNN and 3D CNN)
were developed, the input data for which were data of the mass spectrometric signal for
proteins and metabolites. A distinctive feature of deep CNNs is their ability to receive
data in its original form and transform it into feature maps. The trained neural network
distinguishes three types of oncopathology with a high reliability, using metabolomic and
proteomic spectra of patients’ blood plasma as an input.

The goal of this study is the building of a neural network algorithm capable of the
efficient recognition of unrelated pathologies using both metabolomic and proteomic mass
spectrometry-based data as complementary layers.

2. Materials and Methods
2.1. Subjects and Ethical Consideration

The study cohort comprised five groups of patients, each with any one of the following
confirmed diagnoses and clinical records; ovarian cancer (OVC; n = 56; age 56.7 ± 9.1 years;
stages Ic–IIIc), kidney cancer (RNC; n = 48, of them 34 males aged 56.7 ± 9.8 years, stages
I–IV; and 14 females aged 57.8 ± 9.2 years, stages I–IV), and prostate cancer (PRC; n = 52;
age 59.4 ± 5.3 years; stages II–III). All of the patients with cancer were enrolled from the
Research Clinical Center for Oncology (Moscow, Russia). Patients with a previous history of
chronic diseases were strictly excluded since the impact may significantly overlap with the
cancer phenotype, making the differentiation almost impossible. The gender-specific cancer
phenotype was considered against the corresponding gender-specific control subjects. The
control group of healthy individuals comprised 40 subjects (20 males aged 61 ± 6.1 years
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and 20 females aged 50 ± 2.4 years). The study was approved by the independent local
research ethics committee of the M.F. Vladimirsky Research Clinics (protocol no. 18 of 24
December 2020), Sechenov University (protocol no. 10-19 of 17 July 2019), and performed
in accordance with the WMA Declaration of Helsinki on Ethical Principles for Medical
Research Involving Human Subjects. All of the patients and healthy donors provided
written informed consent to participate in the study.

2.2. Mass Spectrometry Data

Mass spectrometric data were obtained from the framework of the work [9]. The
procedures for the preliminary preparation of samples and carrying out mass spectrometric
measurements are described in detail in our previous study [9].

2.3. Data Analysis Using the Neural Network

After mass spectrometry detection, a total of 337 initial raw data files were converted
into 300 standardized ‘mgf’ files (average size of a single datafile is 250 MB, the total size of
the dataset is 240 GB). The mass spectrometric intensity and mass-to-charge ratios encoded
in ‘mgf’ files were chosen as key descriptors aligned by the retention time (RT) with a
0.1-second step. The training dataset size comprised 60%, or 180 ‘mgf’ files, of the complete
dataset, whereas the test dataset comprised 40%, or 120 ‘mgf’ files. Both the training and
test datasets were composed of all of the collected pathologies and the control group in
equal proportions. Discrimination of different stages within a specific cancer type was not
carried out due to the small size of the study population.

Noise reduction of the extracted data was performed in the initial data handling and
included the following steps: (a) extraction of retention time, intensity, and mass-to-charge
features; (b) elimination of rare m/z features and intensities such that the frequency of each
feature exceeded 2 in each dataset; (c) rounding each m/z feature to 10 ppm for proteomic
data and 100 ppm for metabolomic data; (d) normalization of intensity and m/z features
using the min-max scalar, and noise reduction using the elliptic envelope approach with
an outlier fraction cut-off not exceeding 0.2, assuming that the weighted average error of
mass spectrometric measurements is below 20%.

To control the performance and robustness of the designed model on small datasets,
a data augmentation approach was applied to overcome data dimensionality. The initial
dataset (337 ‘mgf’ files) was split into training (60%) fractions and testing and validation
fractions (the remaining 40% of the total dataset). To prevent fraction fusion and mixing,
the transformation was performed independently for each dataset. Up to 10% of the
spectral data elements (5% from the starting section and 5% from the final section of the
data files) were extracted from each ‘mgf’ file and recorded in the augmentation database
to collect 10% of the total massive data into the augmentation database. Elements from the
augmentation database were randomly picked up and incorporated into MS positions over
the meaningful part of the data repeatedly for replicates to enlarge the initial dataset and
split the resulting augmented dataset into training, testing, and validation (Table 1).

Table 1. Sizes of datasets.

Dataset Training Size Testing Size Validating Size

Original 217 120 –

Augmented 1302 420 300

Original 203 120 –

Augmented 1302 420 300

The converted data of the mass spectrometric signal were saved in the database (the
document-oriented MongoDB was used as the database). As part of the work on data
analysis using neural networks, two models were developed and tested with different
options for presenting the initial data and different architectures.
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The first model (1D-residual CNN) works with raw mass spectrometric signal data
for proteins and metabolites. The input data for this model are presented in the form of
four arrays: m/z and intensity for proteomic analysis, m/z and intensity for metabolic
analysis. For the second model (3D-CNN), the MS signal is represented as a sequence of
spectrum images, in which each image represents a portion of the signal spectrum with
a duration of 96.7 s. The coordinates of each point are the values (retention time, m/z),
and the signal intensity is color-coded. Thus, for each ‘mgf’ file from the original set, a
sequence of 98 images with dimensions of 512 × 512 pixels was obtained. The total volume
of images for proteins was 63,069 files, with a further 54,752 files for metabolites (Figure 1).
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2.4. 1D-Residual CNN Model

The first model is based on the dual CNN architecture and consists of 29 convolution
layers with an output dense layer. The input data for the model are 4 channels: m/z and
intensity of proteins and m/z and intensity of metabolites (Figure 2 and Table 2).

The proposed architecture had large receptive fields in the first convolutional layer
because it was assumed that the first layers should have a more global view of the spectral
signal. Moreover, the spectral signal is non-stationary, that is, the frequency or spectral
content of the signal changes with respect to time. Therefore, shorter filters do not provide
a general view of the spectral content of the signal. Residual blocks were implemented
with double convolution layers that contained non-linear GELU activation Equation (1)
and batch normalization in between to avoid the problem of vanishing/exploding gradient
skip-connections between convolution layers. To reduce overfitting, dropout (p = 0.3) was
applied.

GELU(x) = xP(X ≤ x) = xΘ(x) ∼= 0.5x

(
1 + tanh

(√
2
π

(
x + 0.044715x3

)))
(1)
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Table 2. 1D-residual CNN model parameters.

Layer Name Kernel Size, Filters Number of Blocks Stride

Conv1 (32, 64) 1 2

Conv2_x
(7, 64)

4 2
(7, 64)

Conv3_x
(7, 128)

3 2
(7, 128)

Conv4_x
(7, 256)

3 2
(7, 256)

Conv5_x
(7, 512)

4 2
(7, 512)

Avgpool, kernel size = 3

Dense (512 × 4)
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All of the convolutional layers in the residual blocks applied the same convolutional
window of size 7 × 7, and the number of filters increased from 64 to 512 following the
depth of the networks. To reduce the resolution of the input signal, a stride of two was
applied after the first layer in the block.

The average pooling layer was applied at the end of all of the residual blocks. The
output of the last average pooling was flattened and used as the input to the fully connected
layer. As this is a classification task, the SoftMax function activation was applied to
map neurons in the output layer in a range (0, 1) and sum them up to 1 to calculate the
probability distribution for different pathologies (four classes: OVC, RNC, PRC, and the
control). Multiclass cross-entropy was selected as a loss function. The Adaptive Moment
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Estimation (Adam) optimizer with a reduced learning rate was used when the accuracy
metric stopped improving (start with 1 × 10−3 reduce factor = 0.5).

The code source designed for the pathology classification was deposited in the open-
access GitHub resource and is currently available at the following link: https://github.
com/Denis21800/Cancer-Patholology-classification-4-channels-1D-Resnet- (accessed on 5
October 2021)

2.5. 1D-Residual CNN Model

The next model tested in the framework of this study was built according to the 3D
convolution architecture, which is often used to classify a sequence of images, such as
video signals (where multiple image frames are concatenated across a temporal dimension
to provide a 3D spatial input), medical image slices (magnetic resonance imaging; MRI), etc.
The kernel shape for a 3D convolution is specified along three dimensions: depth, height,
and width. When considering the convolution operation in terms of a kernel sliding across
a multidimensional input array, in a 3D convolution, the kernel slides in three directions.
At every step, the dot product is calculated, which provides a 3D output as well.

The input data for this model were a sequence of spectrum images. A distinctive
feature of this network is that the model was trained simultaneously based on the data of
the spectrum of proteins and metabolites, that is, the input parameters of this model can be
both the spectrum of proteins and the spectrum of metabolites, and at the output layer of
the model, the probability of the spectrum belonging to one or another class of pathology
is determined.

Before being fed to the network input, the sequence of images was subjected to addi-
tional augmentation: for 30% of the images, one of the randomly selected transformations
was applied (random shift of image elements vertically and horizontally, random zeroing
of image elements, random crop), and each image in the sequence was reduced to a size of
256 × 256 pixels after augmentation; a 3D object of 256 × 256 × 98 pixels was formed from
the sequence of images, which was fed to the input of the neural network (Figure 3).
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The 3D convolution model consists of a sequence of eight 3D convolution layers with
sub-sampling layers (maxpool3D). The convolution layers are connected in series with two
output dense layers. After each convolution layer, a batch normalization layer was applied.
The parametric rectified linear units (PReLU) function was used as an activation function
(Figure 3 and Table 3).

https://github.com/Denis21800/Cancer-Patholology-classification-4-channels-1D-Resnet
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Table 3. 3D-CNN model parameters.

Layer Name Kernel Size, Filters Stride

Conv1 ((7, 9, 9), 16) (1, 1, 1)

Maxpool1 (3, 3, 3) (1, 1, 1)

Conv ((5, 7, 7), 16) (1, 1, 1)

Maxpool2 (2, 2, 2) (1, 1, 1)

Conv3 ((5, 7, 7), 32) (1, 1, 1)

Maxpool3 (2, 2, 2) (1, 1, 1)

Conv4 ((2, 5, 5), 32) (1, 1, 1)

Conv5 ((2, 5, 5), 64) (1, 1, 1)

Conv6 ((1, 3, 3), 128) (1, 1, 1)

Conv7 ((1, 3, 3), 256) (1, 1, 1)

Conv8 ((1, 3, 3), 512) (1, 1, 1)

Dense (4096, 64)

Dense (64 × 4)

An Adam optimizer with a reduced learning rate was used when the accuracy metric
stopped improving (start with 1× 10−3 reduce factor equal to 0.5). Multiclass cross-entropy
was selected as the loss function.

The code source designed for the pathology classification was deposited in the open-
access GitHub resource and is currently available at the following link: https://github.
com/Denis21800/Pathology-classification_V2.git. (accessed on 5 October 2021).

3. Results
3.1. Training and Validation of the Model

The model training process lasted for 25 epochs. The models were checked using
test and validation datasets. During the learning process, the learning rate parameter was
changed for each model. The parameter value decreased when the accuracy of the test set
stopped improving. Below are the main indicators of the model training process and the
comparative plots of the loss function for the validation dataset (Table 4).

Table 4. Indicators of the model learning process.

CNN Epochs Total Training Time
(GPU NVidia GTX-1650) Learning Rate

1D residual CNN 25 23 min 1 × 10−3 → (reduced to)→ > 1.25 × 10−4

3D residual CNN 25 145 min 1 × 10−3 → (reduced to)→5 × 10−5

The average loss curves for the two CNN models used to classify the phenotypes
studied and the value of the loss function varies with the learning epoch, which constitutes
the loss curve (Figure 4). The loss function curves approach 0 in the region of epochs
12-13 and subsequently stabilize, demonstrating that the model is not overfitted, but the
1D-CNN model shows more stable and smoother convergence during training (Figure 4).

https://github.com/Denis21800/Pathology-classification_V2.git
https://github.com/Denis21800/Pathology-classification_V2.git
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The cross-entropy loss function can be estimated according to the following equation:

−
M

∑
c=1

yo, c log(po, c)

where “M” is the number of classes under consideration (four classes in our case: CNT,
OVC, PRC, and RNC); log is the natural logarithm; “y” is a binary indicator (0 or 1) if class
label ‘c’ is the correct classification for the observation; and ‘p’ is the predicted probability
observation of class ‘c’.

We provided a comparative analysis of the performance of the models based on the
learning outcomes and evaluated the score metrics for the two deep learning classifiers
and the four traditional machine learning classifiers (Table 5).

Table 5. Training and evaluation metrics of the CNN models.

CNN Input Dataset Accuracy Recall F1-Score

1D-residual CNN

4 channels of raw data:
m/z (proteomics)

Intensity (proteomics)
m/z (metabolomics)

Intensity (metabolomics)

Train 0.953 0.941 0.956

Test 0.812 0.796 0.801

Validation 0.784 0.781 0.781

Class

Control 0.69 0.86 0.76

Ovarian cancer 0.79 0.95 0.85

Prostate cancer 0.89 0.77 0.82

Kidney cancer 0.92 0.7 0.79

3D CNN

Sequence of spectrum images
Proteomics spectrum or metabolomics

spectrum

Train 0.974 0.968 0.972

Test 0.893 0.889 0.893

Validation 0.861 0.850 0.854

Class

Control 0.79 0.95 0.86

Ovarian cancer 0.83 0.95 0.88

Prostate cancer 0.94 0.78 0.85

Kidney cancer 0.91 0.83 0.86
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As can be seen in Table 5, the 3D-CNN model is characterized by the highest rates of
accuracy and response. The model requires much more time for training and preparation
of input data, which is approximately 10 times more processing power. Significant time
costs are primarily associated with the need to process a large number of image files to
allow the graphical presentation of mass spectrometric data. In the future, this problem
could be solved by using additional storage optimization tools, using caching packages
(e.g., in-memory cache). However, such an optimization was not implemented within the
framework of this study.

3.2. Distance Matrices

The distance matrix reflects the extent to which the studied phenotypes are based on
the analysis of proteomic and metabolomic analysis data using machine learning tools.
As can be seen from the results, the mutual distance between the studied pathological
conditions and the phenotype of a healthy person is perfectly matched to the expectation,
and both models predicted similar results. The control was the most distant from the
oncological conditions, while the female oncopathology of ovarian cancer was significantly
removed from male oncopathology of prostate cancer, with values of 3.58 and 4.29 for
1D residual CNN and 3D CNN, respectively. The closest molecular components were
gender-mixed and gender-specific oncopathologies with kidney/ovarian cancer exhibiting
a value of 1.47 and 1.65 for 1D residual CNN and 3D CNN, respectively. Kidney/prostate
cancer was significantly distant from 1D residual CNN with a value of 4.63; however, for
3D CNN, the distance between these phenotypes was less than 2.79.

4. Discussion

The analysis of large datasets obtained using high performance liquid chromatography–
isotope dilution tandem mass spectrometry (HPLC-MS/MS) for proteins and metabolites
is based on algorithms that search for peptides/proteins or metabolites in databases by
correlating the mass-charge characteristics of tandem spectra theoretically predicted with a
fixed threshold of matching accuracy [33]. At present, researchers have access to several
search engines, the search algorithms for which are different, and as a consequence, the
results of identification of the same sample are not identical [33–36]. This variability in
the results of identification by search engines is due to the high dynamic range of molec-
ular components of blood, as well as the variety of protein isoforms due to alternative
splicing, post-translational modification, and amino acid substitutions, which significantly
limits the use and reliability of identification algorithms [37]. In the case of metabolic
analysis, a significant limitation is the high degeneracy of isobaric compounds as well
as the pronounced influence of the epigenetic factors of components of non-endogenous
origin, supplied with food, cosmetics, drugs, and waste products of microflora. Therefore,
to increase the number and accuracy of identifications in omics studies, there have been
a number of studies proposing the use of several identification algorithms for the same
“omics” data in order to increase the number of technical and biological repetitions [33,34].
Although these approaches increase the number of identifications by 10–15%, they also
significantly increase the cost of research.

Even complex identification of proteins/metabolites does not solve the problem of
identification. Most of the obtained tandem spectra remain unidentified, that is, the “dark”
proteome and metabolome [9]. Despite the fact that the “dark” proteome/metabolome
contains noise signals, the presence of a large volume (up to 70%) of unidentified MS
signals indicates algorithmic identification limitations, which are almost impossible to
overcome by FDR (false discovery rate) alone, as it leads to a significant distortion of the
final results and a decrease in the statistical reliability.

In this regard, we propose a new approach to the analysis of multidimensional “omics”
data, both proteomic and metabolomic, for the classification of oncological phenotypes. In
this study, we proposed two models of neural networks, 1D residual CNN and 3D CNN,
which are based on different convolutional algorithms. The first model presents the MS
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spectrum in a time-based form, in which the time of the release of the molecular component
from the chromatographic column serves as the time component. In the second model, the
tandem MS spectrum was transformed into a set of images within a certain time period.
As expected, the performance of the 3D-CNN model was 10 times lower than that of the
1D residual CNN (Table 4).

The main difference in the architecture of the two models used is their sensitivity to
the data structure. Initially, training of the 1D-CNN model focused on the input of two
datasets of the same type (gas chromatography–mass spectrometric data stream with the
properties of continuity in retention time (not used at the input) and intensity and values of
mass-to-charge ratios), but different from each other in structure (proteomic data flow and
metabolomic data flow). The presence of four input data channels determines the selectivity
of the model to the structure of the input data. On one hand, this can be regarded as a
limitation of the application of the 1D-CNN model in the architectural form as presented in
this work, as it is far from possible to obtain proteomic and metabolomic data from a single
experiment under laboratory conditions. On the other hand, the presence of two types
of structured data can be used to control the correctness of the phenotype classification
process. An additional limitation of this model may also be the possible interference of the
input values on the m/z channel between proteomic and metabolomic data, especially in
the region up to 300–400 m/z. However, the risk of such an outcome can be overcome by
limiting the scan range to the 400 m/z value in the proteomic data structure.

From the above information, it can be considered that the classification model with
the 3D CNN architecture is free from these limitations, as metabolomic and proteomic data
are fed simultaneously at the input. The algorithm to convert these spectra and present
them into a three-dimensional image with specified measurement boundaries allows the
researcher to ignore the data structure itself. The ability to carry out classification not based
on the stream of numerical values, but rather on the analysis of images (converted stream
of numerical values), as a surrogate of the original data, allows for a higher accuracy of
data classification (Table 5). The reason for the higher accuracy and responsiveness is the
generalization and coarsening of the data as it is converted to a graphical form.

However, a few limitations can be specified for the use of the 3D-CNN model as well.
In addition to a lower performance in the order of magnitude due to the need to analyze a
large array of graphical data, an additional stage appears in the classification algorithm
itself, in which data are converted from a stream of numerical values into a graphical form.
Unlike 3D CNN, 1D CNN does not require additional data manipulation, which allows
it to be used without the risk of loss or distortion. In the case of the 3D-CNN model, the
risk of displacement pixilation, replacement, and additional alignment can significantly
affect the final result. However, this does not make the model less useful for the analysis of
phenotypes. The 3D-CNN classification model seems to be more universal in its application
because it does not depend on the data structure and utilizes the converted form of the
original data.

The performance indicators of both models were accuracy and recall (at 0.95), which
were achieved during trials and data testing (Table 5). A direct indicator of the higher
accuracy of the 3D-CNN model was the distance between the classes (Figure 4). In the
3D-CNN model, the distances between the gender-specific OVR and PRC classes and the
control group were equally removed, while the distance between the PRC and the 1D-CNN
model was significantly lower (Figure 4). Simultaneously, the distance between the control
group and the RNC (gender-independent phenotype) was the same in both of the models.
Thus, the 3D-CNN model is more sensitive, owing to its more efficient algorithm for the
classification and analysis of graphic images rather than the mixing of the control group by
gender.

An important difference between machine learning methods is the ability to work with
raw files converted to the standard ‘mgf’ format, which is the same for all HPLC-MS/MS
platforms, ensuring the versatility of the proposed approaches in the future.
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In addition, in our study, we proposed a new approach for the development of network
medicine and the study of human diseases. The phenotype of cancer is not a consequence
of a violation of the expression level or the presence of mutation (s) in one effector gene, but
reflects the spectrum of genetic and epigenetic events [38]. The similarity of pathological
processes accompanying the development of oncological diseases and the interconnected
nature of interactions of molecular components makes it possible to map the distance
between pathophenotypes by analyzing cellular and circulating molecular components.
For the three oncophenotypes and the phenotype of a healthy person, we built a distance
matrix to determine their similarity.

Introducing the obtained results in clinical settings is difficult. Mass spectrometry is
still an advanced instrumentation for the purpose of research. It is necessary to scale-up
such research on significantly larger cohorts. The small dimensionality of the study cohort
allows us to make some intermediate conclusions.

Unlike traditional proteomics characterization approaches, we utilized machine learn-
ing for the complete mass spectrometric dataset, which is a part of identifiable data and
a fraction of unassigned data. Such an approach can classify not merely control from
disease, but can also distinguish closely related phenotypes and separate gender-specific
phenotypes. At least, that could be useful to support decision making when traditional
diagnostics is hard or ambiguous. In addition, if raw mass spectrometry data are not
available, the 3D model can operate with images of mass spectrometry data. Certainly, it
takes a longer time to analyze and collect multiple images instead of the analysis of a data
stream, but expands 3D model properties to multipurpose and more general applications
in medicine.

5. Conclusions

In this study, we carried out a comparative analysis of the efficiency of classification
of the same input data using two neural networks with different architectures. Despite
the presence of phenotypes that are similar in etiology and pathogenesis, and different in
terms of gender, both 1D and 3D neural networks successfully classified the studied onco-
logical phenotypes with a recall level of more than 0.78, taking into account augmentation
(Table 5). The results of the classification of proteomic-metabolomic data showed sig-
nificant differences between the studied phenotypes. As can be seen in the graphs, for
both neural networks (Figure 5), the pathological conditions were significantly removed
from the phenotype of a healthy volunteer. The gender-specific oncopathologies were also
distant from each other.

The classification accuracy of the 3D-CNN model is slightly higher than that of the
1D-CNN model, which is due to the possibility of generalizing structurally different
(metabolomic and proteomic) data at the entrance to the system, owing to their conversion
into a graphical form of data. However, this also determines the need for higher computing
power and data analysis time. In addition, unlike the 1D CNN, the 3D CNN requires a
preliminary conversion of numerical data arrays into a graphic format. The main advantage
of this model architecture is the lack of selectivity to the data structure, which avoids the
simultaneous presence of metabolomic and proteomic data for classification, and is capable
of efficient classification in the presence of one or two streams of input data.

The neural networks proposed in our study were adapted for any HPLC-MS/MS
platform. In this case, the HPLC-MS/MS spectrum can be presented in the form of a time
base, the parameters of which include the time of release of the molecular component from
the chromatographic column (time component), as well as the mass-charge characteristic
and signal intensity, depending on the concentration of the molecular component. In
addition, the mass spectrum in the time base sweep can be represented as a heat map (3D
convolutional model), the axes of which are the retention time (RT) and the mass-to-charge
ratio (m/z), while the color of the pixel reflects the signal intensity.
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