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Abstract: Sepsis survivors have a higher risk of long-term complications. Acute kidney injury
(AKI) may still be common among sepsis survivors after discharge from sepsis. Therefore, our
study utilized an artificial-intelligence-based machine learning approach to predict future risks of
rehospitalization with AKI between 1 January 2008 and 31 December 2018. We included a total
of 23,761 patients aged ≥ 20 years who were admitted due to sepsis and survived to discharge.
We adopted a machine learning method by using models based on logistic regression, random
forest, extra tree classifier, gradient boosting decision tree (GBDT), extreme gradient boosting, and
light gradient boosting machine (LGBM). The LGBM model exhibited the highest area under the
receiver operating characteristic curves (AUCs) of 0.816 to predict rehospitalization with AKI in
sepsis survivors and followed by the GBDT model with AUCs of 0.813. The top five most important
features in the LGBM model were C-reactive protein, white blood cell counts, use of inotropes, blood
urea nitrogen and use of diuretics. We established machine learning models for the prediction of the
risk of rehospitalization with AKI in sepsis survivors, and the machine learning model may set the
stage for the broader use of clinical features in healthcare.

Keywords: acute kidney injury; artificial intelligence; machine learning; rehospitalization; sepsis;
sepsis survivors

1. Introduction

Sepsis is estimated to affect 19.4 million patients, with an annual sepsis-related mortal-
ity of approximately 5.3 million cases [1]. Therefore, sepsis is a major public health concern
due to the life-threatening organ dysfunction and the dysregulated host response to infec-
tion, and sepsis is a common cause of death in hospitalized patients [2,3]. As there has been
significant medical progress in decreasing mortality and morbidity after sepsis, attention to
the complications after discharge in sepsis survivors has become more important [4–7].

Acute kidney injury (AKI) frequently occurs with sepsis due to pathologic interactions
of multiple organ dysfunction, systemic hypotension, inflammatory cytokine storms and
nephrotoxic drugs, which all indirectly and directly contributing to renal injury [8–10].
Previous studies have found that 40% to 50% of patients with AKI had sepsis [8,11], and
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approximately 11% to 42% of patients with sepsis developed AKI [12–14]. Unplanned
rehospitalization is associated with worsening patient outcomes and increased treatment
costs [15,16]. Although AKI is a common complication in sepsis, the risks of rehospital-
ization with AKI in sepsis survivors remains unknown. Therefore, the development of a
prediction model for rehospitalization with AKI has become an important therapeutic goal
in the management of sepsis survivors.

To appropriately manage rehospitalization with AKI in sepsis survivors, a precise
prediction model for identifying high-risk patients is required to optimize the treatment
strategy. This predictive model is important not only to allow a more comprehensive
prognostication of patients’ well-being but also to reduce the healthcare financial burdens.
Machine learning models have already been applied in many fields, such as outcome
prediction [17–19], and these models may potentially be used to identify high-risk patients.
Machine learning models have been mostly described to predict episodes of the occurrence
of AKI during sepsis [20–22]. However, there is no study to evaluate their effects on
rehospitalization with AKI after patients who survived to discharge from sepsis. To resolve
this important issue, we conducted a large-scale cohort study of sepsis survivors, and
the predictive ability of the machine learning model was compared to select the optimal
machine learning model.

2. Materials and Methods
2.1. Study Design and Data Source

We established a database including the detailed information of sepsis survivors
extracted from the Big Data Center of Taipei Veterans General Hospitals between 1 January
2008 and 31 December 2018, which included the comprehensive medical records from
the inpatient, outpatient, and emergent departmental records [23]. The detailed patient
demographic, clinical, diagnostic/procedural information, drug prescriptions, procedural
codes, and laboratory data were included in our analysis. To identify the sepsis survivors,
we included all patients with discharge codes based on the International Classification
of Diseases, Ninth and Tenth Edition, Clinical Modification (ICD-9-CM and ICD-10-CM)
codes for sepsis (ICD code 038, 995.91, A40 and A41), severe sepsis (ICD code 995.92 and
R65.20) or septic shock (ICD code 785.52 and R65.21) during the study period who were
discharged alive [24]. We excluded patients who had pre-existing end-stage kidney disease
maintained with dialysis or kidney transplant before discharge, were younger than 20 years
old, or who died during admission.

2.2. Class Definition

The class was labeled as 1 if there was rehospitalization with AKI during the follow-up
periods; otherwise, the class was labeled as 0 if there was no rehospitalization with AKI.
The diagnosis of AKI was defined as a 0.3 mg/dL within 48 h or 50% increase within 7 days
from the baseline creatinine based on the Kidney Disease Improving Global Outcomes
classification (KDIGO) definition [25]. We included the first-time rehospitalization with
AKI because multiple admissions may introduce a bias favoring survivors.

2.3. Machine Learning Algorithm and Statistical Analysis

Continuous data are presented as the median (interquartile ranges (IQRs)) and cate-
gorical data are presented as numbers (proportions). Before the machine learning processes,
the missing values of the clinical variables were imputed using the k-nearest neighbors
(KNN) algorithm [26,27]. The whole dataset was then randomly split into a training dataset
and a validation dataset at a ratio of 70:30%, respectively. In our study, we used several
machine learning methods, including logistic regression, a random forest [28], an extra
tree classifier [29], an extreme gradient boosting (XGBoost) [30], a light gradient boosting
machine (LGBM) [31], and a gradient boosting decision tree (GBDT) [32], to predict risks of
rehospitalization with AKI. The prediction abilities of various machine learning models
were examined based on the area under the curve of receiver operating characteristics
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(AUCs) and precision-recall curves of each model. As the methods of prediction in ma-
chine learning models are often unclear, we used SHapley Additive exPlanation (SHAP)
values to provide accurate attribution values for each clinical feature in our prediction
model [33–35]. The data were analyzed by using Python (Python Software Foundation
version 3.7.6, available at http://www.python.org, accessed on 1 November 2021). All tests
were two-tailed, and a p value < 0.05 was statistically significant.

3. Results
3.1. Study Population

In the 10-year study period, 23,761 sepsis survivors were included in our final cohort,
and the detailed patient demographic data are presented in Table 1. Sepsis survivors were
predominantly female, and 55.7% of the patients had hypertension, 32.8% had diabetes
mellites, and 44.3% used CCBs. The patients had a baseline creatinine level of 1.1 mg/dL.
We further divided the sepsis survivors randomly into the two groups and allocated 70% of
them to the training set and the remaining 30% to the test set. Among these patients, 8756
(36.9%) sepsis survivors had episodes of rehospitalization with AKI in sepsis survivors
with the median intervals from discharge to rehospitalization of 8.6 months. In addition,
there were 6076 (36.5%) and 2680 (37.6%) episodes of rehospitalization with AKI in the
training and testing datasets, respectively.

Table 1. Clinical features and classes in sepsis survivors divided into training and testing dataset.

All Patients Training Set Testing Set

(n = 23,761) (n = 16,632) (n = 7129)

Demographic and clinical characteristics
Age, years 76.4 (61.4, 85.2) 76.4 (61.2, 85.2) 76.4 (61.9, 85.2)

Male sex, n (%) 8557 (36.0) 5995 (36.0) 2562 (35.9)
Smoking, n (%) 5373 (22.6) 3744 (22.5) 1629 (22.9)

Alcohol consumption, n (%) 3945 (16.6) 2739 (16.5) 1206 (16.9)
Underlying Comorbidities

Hypertension, n (%) 13,238 (55.7) 9271 (55.7) 3967 (55.6)
Transient ischemic attack, n (%) 579 (2.4) 399 (2.4) 180 (2.5)

Ischemic stroke, n (%) 3343 (14.1) 2358 (14.2) 985 (13.8)
Hemorrhagic stroke, n (%) 1084 (4.6) 774 (4.7) 310 (4.3)

Dementia, n (%) 3190 (13.4) 2218 (13.3) 972 (13.6)
Diabetes mellitus, n (%) 7803 (32.8) 5432 (32.7) 2371 (33.3)

Gout, n (%) 2443 (10.3) 1737 (10.4) 706 (9.9)
Myocardial infarction, n (%) 1852 (7.8) 1272 (7.6) 580 (8.1)

Coronary artery disease, n (%) 6260 (26.3) 4308 (25.9) 1952 (27.4)
CHF, n (%) 4759 (20.0) 3282 (19.7) 1477 (20.7)

Atrial fibrillation, n (%) 2394 (10.1) 1667 (10.0) 727 (10.2)
Chronic liver disease, n (%) 3875 (16.3) 2729 (16.4) 1146 (16.1)

Cirrhosis, n (%) 1395 (5.9) 996 (6.0) 399 (5.6)
Peptic ulcer disease, n (%) 5632 (23.7) 3957 (23.8) 1675 (23.5)

COPD, n (%) 4469 (18.8) 3110 (18.7) 1359 (19.1)
Asthma, n (%) 1192 (5.0) 835 (5.0) 357 (5.0)
PAOD, n (%) 192 (0.8) 130 (0.8) 62 (0.9)

Autoimmune disease, n (%) 821 (3.5) 591 (3.6) 230 (3.2)
Cancer, n (%) 11,592 (48.8) 8145 (49.0) 3447 (48.4)

Valvular heart disease, n (%) 1303 (5.5) 908 (5.5) 395 (5.5)
Critical conditions

ICU admission, n (%) 12,962 (54.6) 9041 (54.4) 3921 (55.0)
Use of mechanical ventilators, n (%) 8740 (36.8) 6083 (36.6) 2657 (37.3)

Use of inotropes, n (%) 11,343 (47.7) 7933 (47.7) 3410 (47.8)

http://www.python.org
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Table 1. Cont.

All Patients Training Set Testing Set

(n = 23,761) (n = 16,632) (n = 7129)

Laboratory data
Blood urea nitrogen, mg/dL 24.0 (14.0, 51.0) 24.0 (14.0, 51.0) 24.0 (14.0, 50.0)

Creatinine, mg/dL 1.1 (0.7, 2.1) 1.1 (0.7, 2.2) 1.1 (0.7, 2.1)
White blood cells, /mm3 8100 (5700, 11,900) 8100 (5700, 11,900) 8100 (5700, 12,000)

Hemoglobin, g/dL 10.1 (8.9, 11.5) 10.1 (8.9, 11.5) 10.1 (9.0, 11.6)
Sodium, mmol/L 139.0 (135.0, 142.0) 139.0 (135.0, 142.0) 139.0 (135.0, 142.0)

Potassium, mmol/L 4.1 (3.6, 4.6) 4.1 (3.6, 4.6) 4.1 (3.6, 4.6)
Chloride, mmol/L 103.0 (98.0, 106.0) 103.0 (98.0, 106.0) 103.0 (98.0, 106.0)
Calcium, mg/dL 8.5 (8.0, 9.0) 8.5 (8.0, 9.0) 8.5 (8.0, 9.0)

Phosphate, mg/dL 3.3 (2.6, 4.0) 3.3 (2.6, 4.0) 3.3 (2.7, 4.1)
HCO3, mmol/L 23.7 (19.3, 28.0) 23.7 (19.3, 28.0) 23.8 (19.4, 28.0)

C-reactive protein, mg/dL 3.4 (1.2, 9.0) 3.4 (1.2, 9.1) 3.3 (1.1, 8.7)
Albumin, mg/dL 3.0 (2.6, 3.4) 3.0 (2.6, 3.4) 3.0 (2.6, 3.4)

Alanine transaminase, U/L 25.0 (15.0, 44.0) 25.0 (15.0, 45.0) 25.0 (15.0, 44.0)
Aspartate transaminase, U/L 29.0 (20.0, 51.0) 29.0 (20.0, 51.0) 29.0 (20.0, 50.0)
Alkaline phosphatase, U/L 95.0 (70.0, 147.0) 95.0 (69.0, 147.0) 94.0 (70.0, 147.0)

Gamma-glutamyl transferase, U/L 54.0 (25.0, 125.0) 53.0 (25.0, 125.0) 54.0 (24.0, 126.0)
Total bilirubin, mg/dL 0.6 (0.4, 1.1) 0.6 (0.4, 1.1) 0.6 (0.4, 1.1)

HbA1c, % 6.4 (5.8, 7.4) 6.4 (5.8, 7.4) 6.4 (5.8, 7.4)
Glucose, mg/dL 116.0 (95.0, 156.0) 116.0 (94.0, 155.0) 117.0 (95.0, 157.0)
Uric acid, mg/dL 5.5 (4.1, 7.1) 5.5 (4.1, 7.1) 5.6 (4.1, 7.1)

Cholesterol, mg/dL 151.0 (122.0, 182.0) 152.0 (122.0, 183.0) 150.0 (121.0, 181.0)
LDL-C, mg/dL 91.0 (70.0, 114.0) 91.0 (70.0, 115.0) 91.0 (69.0, 113.0)
HDL-C, mg/dL 41.0 (32.0, 51.0) 41.0 (32.0, 51.0) 41.0 (32.0, 51.0)

INR 1.1 (1.0, 1.2) 1.1 (1.0, 1.2) 1.1 (1.0, 1.2)
aPTT, seconds 29.9 (27.1, 34.0) 29.9 (27.2, 34.2) 29.9 (27.1, 33.8)

D-Dimer, ug/mL 3.6 (1.6, 8.1) 3.6 (1.5, 7.7) 3.9 (1.8, 9.3)
LDH, U/L 253.0 (196.0, 361.0) 252.0 (196.0, 361.0) 255.0 (197.0, 361.0)

NT-proBNP, pg/mL 3146.0 (836.5, 11,617.0) 3142.0 (823.8, 11,648.5) 3185.0 (856.8, 11,580.8)
Concomitant Medications

ACEI, n (%) 2225 (9.4) 1537 (9.2) 688 (9.7)
ARB, n (%) 6972 (29.3) 4884 (29.4) 2088 (29.3)

Alpha, blocker, n (%) 6109 (25.7) 4228 (25.4) 1881 (26.4)
Beta blocker, n (%) 8521 (35.9) 5891 (35.4) 2630 (36.9)

CCB, n (%) 10,534 (44.3) 7362 (44.3) 3172 (44.5)
Warfarin, n (%) 1263 (5.3) 893 (5.4) 370 (5.2)
DOAC, n (%) 147 (0.6) 106 (0.6) 41 (0.6)
Aspirin, n (%) 5445 (22.9) 3743 (22.5) 1702 (23.9)
Plavix, n (%) 3267 (13.7) 2242 (13.5) 1025 (14.4)
Nitrate, n (%) 6521 (27.4) 4473 (26.9) 2048 (28.7)
Statin, n (%) 3446 (14.5) 2387 (14.4) 1059 (14.9)

Diuretic, n (%) 14,714 (61.9) 10,287 (61.9) 4427 (62.1)
Spironolactone, n (%) 4927 (20.7) 3427 (20.6) 1500 (21.0)

Metformin, n (%) 3459 (14.6) 2447 (14.7) 1012 (14.2)
Sulfonylurea, n (%) 2214 (9.3) 1533 (9.2) 681 (9.6)
Meglitinide, n (%) 2150 (9.0) 1495 (9.0) 655 (9.2)

SGLT2 inhibitor, n (%) 47 (0.2) 33 (0.2) 14 (0.2)
GLP1 receptor agonist, n (%) 3 (0.0) 3 (0.0) 0 (0.0)

Dipeptidyl peptidase-4 inhibitor,
n (%) 2720 (11.4) 1883 (11.3) 837 (11.7)

Thiazolidinedione, n (%) 283 (1.2) 203 (1.2) 80 (1.1)
Alpha-glucosidase inhibitor, n (%) 1084 (4.6) 744 (4.5) 340 (4.8)
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Table 1. Cont.

All Patients Training Set Testing Set

(n = 23,761) (n = 16,632) (n = 7129)

Insulin, n (%) 11,163 (47.0) 7810 (47.0) 3353 (47.0)
NSAID, n (%) 11,300 (47.6) 7917 (47.6) 3383 (47.5)

COX-2 inhibitor, n (%) 3316 (14.0) 2284 (13.7) 1032 (14.5)
Proton pump inhibitor, n (%) 13,642 (57.4) 9506 (57.2) 4136 (58.0)

Steroid, n (%) 8227 (34.6) 5781 (34.8) 2446 (34.3)
Allopurinol, n (%) 1583 (6.7) 1110 (6.7) 473 (6.6)
Febuxostat, n (%) 1446 (6.1) 1006 (6.0) 440 (6.2)

Benzbromarone, n (%) 1424 (6.0) 1007 (6.1) 417 (5.8)
Class/Outcome

Rehospitalization with AKI † 8756 (36.9) 6076 (36.5) 2680 (37.6)

Data are presented as n (%) or median and interquartile range. † AKI was defined based on the criteria from Kidney
Disease: Improving Global Outcomes. Abbreviations: CHF, congestive heart failure; COPD, chronic obstructive
pulmonary disease; PAOD, peripheral arterial occlusive disease; ICU, intensive care unit; HCO3, bicarbonate;
HbA1c, hemoglobin A1c; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein-cholesterol;
INR, international normalized ratio; aPTT, activated partial thromboplastin time; LDH, lactate dehydrogenase;
NT-proBNP, N-terminal pro-brain natriuretic peptide; ACEI, angiotensin converting enzyme inhibitors; ARB,
angiotensin receptor blocker; CCB, calcium channel blocker; DOAC, direct oral anticoagulant; SGLT2, sodium-
glucose cotransporter 2 inhibitor; GLP1, glucagon-like peptide-1; NSAID, nonsteroidal anti-inflammatory drug;
COX-2, cyclooxygenase-2; AKI, acute kidney injury.

3.2. Model Prediction Ability

The 84 features, including the demographic characteristics, underlying comorbidities,
laboratory data and concomitant medications, that were used in our machine learning
models are listed in Table 2. We utilized the following machine learning methods with
all the clinical features as input variables: logistic regression, random forest, extra tree
classifier, XGBoost, GBDT, and LGBM (Figure 1). Regarding the predictive ability of the
models for outcome prediction, the LGBM exhibited the largest AUC of 0.816, and the
GBDT model had the second highest AUC of 0.813. The logistic regression exhibited the
smallest AUC of 0.683.

Table 2. Clinical features selected in machine learning algorithm.

Demographics Comorbidities Laboratory Data Containment Medications

Age Hypertension Blood urea nitrogen ACEI
Gender Transient ischemic attack Creatinine ARB

Smoking Ischemic stroke White blood cell counts Alpha blocker
Alcohol consumption Hemorrhagic stroke Hemoglobin Beta blocker

Dementia Sodium CCB
Diabetes mellitus Potassium Warfarin

Gout Chloride DOAC
Myocardial infarction Calcium Aspirin

Coronary artery disease Phosphate Plavix
CHF HCO3 Nitrate

Atrial fibrillation C-reactive protein Statin
Chronic liver disease Albumin Diuretic

Cirrhosis Alanine transaminase Spironolactone
Peptic ulcer disease Aspartate transaminase Metformin

COPD Alkaline phosphatase Sulfonylurea
Asthma Gamma-glutamyl transferase Meglitinide
PAOD Total bilirubin SGLT2 inhibitor

Autoimmune disease HbA1c GLP1 receptor agonist
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Table 2. Cont.

Demographics Comorbidities Laboratory Data Containment Medications

Cancer Glucose DPP4 inhibitor
Valvular heart disease Uric acid Thiazolidinedione

ICU admission Cholesterol Alpha-glucosidase inhibitor
Use of mechanical ventilators LDL-C Insulin

Use of inotropes HDL-C NSAID
INR COX-2 inhibitor
aPTT Proton pump inhibitor

D-dimer Steroid
LDH Allopurinol

NT-proBNP Febuxostat
Benzbromarone

Abbreviations: CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; PAOD, peripheral
arterial occlusive disease; ICU, intensive care unit; HCO3, bicarbonate; HbA1c, hemoglobin A1c; LDL-C, low-
density lipoprotein cholesterol; HDL-C, high-density lipoprotein-cholesterol; INR, international normalized ratio;
aPTT, activated partial thromboplastin time; LDH, lactate dehydrogenase; NT-proBNP, N-terminal pro-brain
natriuretic peptide; ACEI, angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blocker; CCB,
calcium channel blocker; DOAC, direct oral anticoagulant; SGLT2, sodium-glucose cotransporter 2 inhibitor;
GLP1, glucagon-like peptide-1; DPP4, Dipeptidyl peptidase-4; NSAID, nonsteroidal anti-inflammatory drug;
COX-2, cyclooxygenase-2.
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Figure 1. Comparison of (A) ROC curve, (B) PR curve and (C) predictive ability among different
machine learning models. Abbreviations: ROC, receiver operating characteristic curve; PR, precision-
recall; GBDT, gradient boosting decision tree; XGBoost, extreme gradient boosting; LGBM, light
gradient boosting machine LGBM. Abbreviations: ROC, receiver operating characteristic curve; PR,
precision-recall; AUC, area under the curve of receiver operating characteristic curve; LGBM, light
gradient boosting machine; GBDT, Gradient Boosting Decision Tree; XGBoost, extreme gradient
boosting.

3.3. Ranks of Feature Importance and SHAP Value in the Machine Learning Models

To identify important features in the LGBM model, we performed a feature importance
plot by using SHAP values and listed the features in descending order. The top five
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important features were C-reactive protein, white blood cell counts, use of inotropes, blood
urea nitrogen, and use of diuretics, which contribute to higher predictive powers than the
bottom features (Figure 2A). The local bar plot of a sepsis survivor showed how the SHAP
values of features affected the model prediction (Figure 2B). Red SHAP values increased the
prediction, and blue values decreased it. The SHAP heatmap plot were shown in Figure 3A,
and features with higher SHAP values were highlighted in redder boxes. The dependent
plots revealed the interaction effects between C-reactive protein (which is the top-most
important feature), white blood cell counts, and blood urea nitrogen in our LGBM model
(Figure 3B–D).
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final LGBM model (B)The local bar plots of feature importance reveal the SHAP values for features
in the model. The feature values are show in gray to the left of the feature names. Abbreviations:
SHAP, SHapley Additive exPlanation; LGBM, light gradient boosting machine; CRP, C-reactive
protein; WBC, white blood cell counts; BUN, blood urea nitrogen; CCB, calcium channel blocker;
INR, international normalized ratio; Hgb, hemoglobin; Na, sodium; NSAID, non-steroidal anti-
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Figure 3. (A) The SHAP heatmap plot with the model’s predictions for important features. The
heatmap plot function creates a plot with the features on the y-axis, the model inputs on the x-axis,
and the SHAP values encoded on a color scale with a higher value being redder, and a lower value
being bluer. The SHAP dependence plots showed the interaction effects between (B) CRP and WBC,
(C) CRP and BUN and (D) WBC and BUN in the LGBM model. Abbreviations: SHAP, SHapley
Additive exPlanation; CRP, C-reactive protein; WBC, white blood cell counts; BUN, blood urea
nitrogen; LGBM, light gradient boosting machine.

4. Discussion

In our cohort study, 23,761 sepsis survivors suffered from rehospitalization with AKI
after discharge. We developed machine learning algorithms using 84 clinical features
to predict rehospitalization with AKI and compared the AUCs of the different machine
learning models. We found that the LGBM model had the highest AUC of 0.816 compared
to the other machine learning models. Our study suggests that AKI might still be an
unrecognized outcome after discharge from sepsis, and the use of machine learning models
may help to predict rehospitalization with AKI.

AKI is frequently observed in patients with sepsis, and a study including 2871 patients
from the critical care database developed risk-prediction nomogram for AKI with C-index
of 0.75 [20]. Another study including 15,726 patients with sepsis from the same critical
care database established a prediction model by using logistic regression with a C-index of
0.71 [21]. The prediction models established by these studies were limited by only using
the logistic regression method rather than other machine learning models to improve the
predictive ability. Moreover, a study including 5984 septic patients with AKI established five
prediction models, including logistic regression, random forest, support vector machine,
artificial neural network, and extreme gradient boosting to predict persistent AKI [22]. The
artificial neural network and logistic regression models achieved the highest AUC of 0.76.
However, none of the studies carried out so far have considered whether sepsis survivors
are still at greater risks of AKI after discharge.

Sepsis survivors were found to be the highest risks for short- and long-term outcomes
after discharge from sepsis [7,36–38]. However, the rates of rehospitalization with AKI
have never been explored, and an understanding of such complication is required for
physicians to initiate early treatment and follow-up strategies. In our study, the incidence
of rehospitalization with AKI is still high, with approximately 36.9% of sepsis survivors
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after discharge. Our study is the first in the literature to use a machine learning approach
to predict risks of rehospitalization with AKI, and the optimal AUC was achieved to 0.816
in the LGBM model. The performance of LGBM was higher than that of traditional logistic
regression model (AUC: 0.683) for the prediction of rehospitalization with AKI.

In addition, the feature importance plot using SHAP value in our LGBM found some
important predictors for risks of rehospitalization with AKI, some of which were consistent
with the traditional factors. The important predictors for AKI, such as C-reactive protein,
white blood cell counts, and the use of inotropes may be associated with the infectious status
before discharge. In addition, blood urea nitrogen levels and the use of diuretics may reflex
the fluid status and were traditionally associated with future risks of rehospitalization with
AKI. Therefore, our machine learning model may help identify high-risk sepsis survivors
who are prone to rehospitalization with AKI after considering clinical features related to
their infection conditions or fluid status.

Our study has several strengths. First, compared to previous studies, our study is
the first to predict the risks of rehospitalization with AKI after discharge from sepsis for a
large number of sepsis survivors. Second, our study evaluated the laboratory data, and
we included sepsis survivors who had more than two serum creatinine measurements.
Therefore, we had the ability to discriminate the sepsis survivors’ outcomes, including
the rehospitalization with AKI, which may reduce the possible underreporting or mis-
classifications of AKI by using the International Statistical Classification of Diseases and
Related Health Problems (ICD) coding, compared to other studies that extracted data from
administrative datasets. Finally, we established predictive models of machine learning
algorithms that might be important to apply in clinical practice.

Our study may have several limitations that should be noted. First, because of the
nature of observational studies, the causal inference of rehospitalization with AKI might
be confounded by unmeasured factors. Second, as our analysis was based on a single
tertiary medical center’s data, some age and disease group particularities regarding old age
(median, 76.4 years) and higher cancer incidence (48.8%), which are factors that may induce
some bias to the renal function or rehospitalization with AKI in the analyzed subjects.
Third, the machine learning algorithm learned from the input clinical features, and some
hidden relationships may be unknown if the features were not included by the physicians.

5. Conclusions

Our study established a machine learning algorithm for the detection and prediction
of rehospitalization with AKI. Therefore, our findings support the implementation of a
useful machine learning algorithm for risks of rehospitalization with AKI. Due to the age
distribution, disease particularities, and single-center-based character of our study, external
validation is required to evaluate the generalizability.
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