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Abstract: Two genes are said to have synthetic lethal (SL) interactions if the simultaneous mutations
in a cell lead to lethality, but each individual mutation does not. Targeting SL partners of mutated
cancer genes can kill cancer cells but leave normal cells intact. The applicability of translating this
concept into clinics has been demonstrated by three drugs that have been approved by the FDA to
target PARP for tumors bearing mutations in BRCA1/2. This article reviews applications of the SL
concept to translational cancer medicine over the past five years. Topics are (1) exploiting the SL
concept for drug combinations to circumvent tumor resistance, (2) using synthetic lethality to identify
prognostic and predictive biomarkers, (3) applying SL interactions to stratify patients for targeted
and immunotherapy, and (4) discussions on challenges and future directions.
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1. Introduction

Two genes are called synthetic lethal (SL, a type of genetic interaction [1]) when a
simultaneous mutation of both genes leads to cell death, but a single mutation of either
does not; see Figure 1 for an illustration. Although synthetic lethality was first observed
in fruit flies by Calvin Bridges, the concept of synthetic lethality can be applied to ex-
ploit cancer-cell specific mutations for therapeutics as indicated in seminal papers [2,3].
Targeting SL partners of mutated cancer genes will selectively kill cancer cells but spare
normal cells. Therefore, the synthetic lethality strategy offers a way to treat cancer cells
with non-druggable mutant tumor suppressor genes (TSGs) and stability genes, e.g., TP53
and BRCA1, by targeting their SL partners. The clinical relevance of synthetic lethality has
been rapidly recognized. For example, pioneering studies of SL partners in BRCA1 and
BRCA2- deficient cancer cells identified PARP1. PARP inhibitors (PARPi) have become the
first clinically approved drugs exploiting the synthetic lethality concept. The US FDA ap-
proved PARPi for ovarian cancer in 2014, breast cancer in 2018 and prostate cancer in 2020.
Notwithstanding, it has taken more than 15 years since the concept of synthetic lethality
was first indicated for cancer therapies [2] to develop these PARP inhibitors, which are
used to treat breast cancer and high-grade serous ovarian cancer patients with homologous
recombination deficiency (HRD), which includes mutation in BRCA1/2, RAD51C/D, or
PALB2, hyper-methylation of the BRCA1 promoter, or a series of yet to be defined causes [4].
It has been reported that PARP inhibitors are more effective for patients with BRCA1- and
BRCA2- mutant ovarian cancer than for breast cancers [5], which shows that genetic context
is crucial for functional genomic target screening. Advances in biotechnology such as
CRISPR [6,7] have been expedited, which shall support the discovery of genetic contexts
under which SL-based inhibitors work. Furthermore, there are many resources to mine
novel SL interactions [8], e.g., Project DRIVE [9] and Project Achilles [10], which used a
large set of human cell lines to uncover SL interactions, and multi-omics and clinical data
of 33 cancer types at The Cancer Genome Atlas (TCGA). Additionally, a database named
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The Network Data Exchange (NDEx) [11] was built to organize the published SL interac-
tions. As there are so many drug combinations, there are simply not sufficient patients to
recruit for clinical trials, in addition to a huge amount of costs and time-consuming. Thus,
adapting computational approaches, in particular machine learning-based approaches [11],
will greatly benefit research on translating SL interactions to personalized medicine, as
discussed later.

Here, we review applications of the SL concept to translational medicine in cancer
over the past five years. In particular, we focus on the applications of synthetic lethality
to personalized medicine. The scope of the article includes (1) exploiting the SL concept
for drug combinations to circumvent tumor resistance, (2) using synthetic lethality to
identify prognostic and predictive biomarkers, and (3) applying SL interactions to stratify
patients for targeted and immunotherapy. We close with discussions on challenges and
future directions.
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Figure 1. A graphic illustration of synthetic lethality. (a,c) Gene A and gene B are synthetic lethal
when simultaneous mutation of gene A and B leads to cell death, but a single mutation of either does
not. (b) The SL concept can be exploited to inhibit the SL partner (Gene A) of a mutant Gene B in a
tumor cell.

2. Exploiting SL Interactions for Drug Combinations

Taking tumor heterogeneity into account, combinations of drugs will be more effective
than single agent approaches [12]. Further, resistance may also be developed by a single targeted
agent in a tumor, thus identification of effective drug combinations which target resistance
pathways will also be crucial [13]. Experimentally validated SL pairs could lead to clinically
relevant drug combinations provided that the genetic context of a tumor is well understood.
This has been demonstrated by the success of PARP inhibitors and other SL combined drugs
currently undergoing phase III clinical trials, e.g., olaparib combined with AR-pathway targeting
in patients with metastatic castration-resistant prostate cancer (CRPCa) [14].

Jariyal and colleagues [15] reviewed several SL interactions which have been under
clinical trial studies, in addition to olaparib and other PARP inhibitors. For example, Wee1 and
TP53 is a known SL pair [16]. Hirai and colleagues showed that Wee1 inhibition (MK-1775)
combined with DNA damage agents, such as gemcitabine, carboplatin, and cisplatin, led to
apoptosis in p53-deficient cells [17]. This result provided a scientific basis for the phase II trial
on MK-1775 in combination with carboplatin for patients with p53-mutant ovarian cancer
[NCT01164995]. Moreover, ATM and TP53 are also known SL. Durant and colleagues showed
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that ATM inhibitor (ATMi, AZD1390) combined with radiation therapy improved survival
of preclinical brain tumor models [18], which led to a phase-1 clinical trial (NCT03423628).
Thus, exploiting verified SL interactions to select patients with the associated mutations will
optimize the patient outcomes and make clinical trials more efficient.

Currently, there are 342 clinical trial studies, registered at the US clinicaltrials.gov
(accessed on 10 December 2021), for olaparib or olaparib-based drug combinations. In
addition to breast cancer and ovarian cancer, there are also several clinical trials on PARP
inhibitors for BRCA1/2- or ATM- mutant patients with prostate cancer [19] or cervical
cancer [NCT04641728]. Recent studies of gene signatures for response to the PD-L1 in-
hibitor therapy (atezolizumab) in urothelial cancer (UC) [20–22], non-small cell lung cancer
(NSCLC), and renal cell carcinoma (RCC) [23] revealed that the pathways most significantly
associated with tumor mutation burden (TMB, a known factor correlated with response
to immunotherapy checkpoint inhibitors), were cell cycle, DNA replication, and DNA
damage response (DDR). DDR genes include BRCA1/2, ATM, RAD51, and others, and the
former four genes are SL partners of PARP1. This provided a foundation for clinical trials
on checkpoint inhibitors (CPIs) combined with PARPi in UC, NSCLC and RCC. Indeed,
olaparib combined with pembrolizumab has been used for recurrent or metastatic cervical
cancer patients in a phase II trial (NCT04641728). Several on-going clinical trials on combi-
nations of olaparib and immunotherapies are listed in Table 1 (collected till 10 December
2021, from clinicaltrials.gov). Some studies include additional targeted therapies. We note
that there is no phase III trial on combinations of olaparib and immunotherapy. However,
there are phase III clinical trials on other PARP inhibitors, e.g., the JAVELIN Ovarian PARP
100 trial (NCT03642132), which failed due to no improvement of progression-free survival
in patients. Additionally, another phase III clinical trial was withdrawn (NCT03806049).

Table 1. 16 clinical trials on combinations of olaparib and various immunotherapies; some studies
include additional targeted therapies.

No. Immunotherapy (and Targeted Therapies)
Investigated

Cancer
Types

Clinical
Phase Refs/Clinical Tal No.

1 Olaparib, AZD6738 or Durvalumab TNBC 1 Phase II NCT03740893

2 Olaparib and Pembrolizumab Pancreatic Cancer Phase II NCT04548752

3 Olaparib, Durvalumab and Tremelimumab Solid Cancers Phase II [24] NCT04169841

4 Olaparib and Pembrolizumab Cervical Cancer Phase II NCT04483544

5 Olaparib and Pembrolizumab TNBC Phase II NCT04683679

6 Olaparib and Pembrolizumab Breast Cancer Phase II NCT03025035

7 Olaparib and Tremelimumab
Peritoneal Cancer,

Fallopian Cancer and
Ovarian Cancer

Phase II NCT04034927

8 Olaparib, Nilotinib, Everolimus, Sorafenib, Lapatinib,
Pazopanib, Durvalumab and Tremelimumab Solid Neoplasms Phase II NCT02029001

9 Olaparib and Pembrolizumab Pancreatic Cancer Phase II NCT05093231

10 Olaparib and Atezolizumab Breast Cancer Phase II NCT02849496

11 Olaparib and Durvalumab Prostate Cancer Phase II NCT04336943

12 Olaparib and Durvalumab Bladder Cancer Phase II NCT04579133

13 Olaparib and Ramucirumab Gastric Cancer
Esophageal Cancer Phase I/II NCT03008278

14 Olaparib and Tremelimumab Ovarian Cancer Phase I/II NCT02571725

15 Olaparib and Pembrolizumab Melanoma Phase II NCT04633902

16 Olaparib and Bevacizumab, Cediranib
and Cediranib Maleate Glioblastoma Phase II NCT02974621

1 Note that TNBC denotes triple-negative breast cancer.

clinicaltrials.gov
clinicaltrials.gov
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Resistance also develops after patients are treated with PARP inhibitors, and resistance
is important to the initiation of therapy. For example, olaparib prevents DNA repair. Thus,
these tumor cells gain a growth advantage due to accumulated mutations, leading to clinical
resistance to PARP inhibitors eventually [25]. Furthermore, most patients with advanced
cancer eventually develop resistance to targeted therapies [26–28]. This acquired resistance
may be treated by a secondary drug uncovered by synthetic rescue (SR) interactions [29].
Note that both primary and secondary resistance can be mediated by SR mechanisms.
SR interaction refers to a functional interaction where a fitness reduction of cancer cells
due to the inactivation of one gene, called a vulnerable gene, is compensated for by the
altered expression of another, called a rescuer gene. Sahu and colleagues developed a
computational approach (INCISOR), which successfully associated gene pairs with SR
interactions. The inhibition of predicted rescuer genes sensitized resistant tumor cells to
therapies, which was validated in vitro. Thus far, there is no clinical validation on SR
interactions. The concept of SR-interactions has the potential for future basic research.

After effective drug combinations are discovered, these drug combinations could be
used to identify patient populations that would respond. For example, prostate cancer
patients with BRCA1- mutations could be selected for clinical trials and for treatments
with olaparib and ATM inhibitor, provided that the drug combination is approved by the
FDA. Note that the combination of olaparib and AZD0156 (an ATM inhibitor) is currently
undergoing a phase-I clinical trial (CT02588105) for patients with advanced cancer.

3. SL Interactions to Uncover Prognostic and Predictive Biomarkers

In general, two types of biomarkers are investigated: prognostic and predictive [30]. A
panel of prognostic biomarkers identified for cancers could enable the selection of patients
best suited for intensive adjuvant therapies in clinics. Thus, prognostic biomarkers could
help advance personalized medicine.

Using published SL gene pairs, Shieh and colleagues developed a systematic approach
to uncover IHC prognostic markers in colorectal cancer, lung adenocarcinoma and oral
squamous cell carcinoma [31–33]. Specifically, they utilized a list of 643–742 SL pairs
collected from the literature, gene expression data of the corresponding cancer under study,
IHC expression, and clinical data on local cancer patients, to develop a computational
approach to identify IHC prognostic biomarkers for the aforementioned three cancers. The
authors first screened the collected SL pairs, most of which were validated by genome-wide
RNAi screenings in various cancers [34,35], using microarray gene expression data of
cancerous and non-cancerous tissues. They sorted the SL pairs by the fractions of the (up,
up), (up, down), (down, up), and then (down, down) patterns, which were computed using
patients’ gene expression of the associated cancers. About 20 genes with high fractions in
the (up, up) pattern were selected for IHC staining. Next, they successfully identified single
and combined IHC prognostic markers by correlating the single/paired IHC with overall
survival of cancer patients via univariate Cox regression analysis [36]. The predicted
prognostic markers were further verified by at least one external data set, e.g., TCGA
lung adenocarcinoma for [32]. The approach revealed IHC marker pairs when neither
single IHC was a marker. Furthermore, several of the identified prognostic markers with
components involved in different pathways, e.g., the pair CK1e(C)-Rb1(N) was revealed
to be a prognostic biomarker [33], but phosphorylation of CK1e is involved in the p53
pathway [37], which is different from the Rb pathway. As most of methods to uncover IHC
markers to date have been mainly based on one or two proteins [38] or one pathway [39],
their approach improved the current state-of-the-art for IHC markers. The flowchart of
their approach is presented in Figure 2.

Srivas and colleagues [40] applied the conserved tumor suppressor genes (TSGs) from
yeast to humans to identify TSGs interacting with the target of an FDA-approved drug. In
particular, they identified ATM-irinotecan (inhibitor of TOP1 [41]). To date, both FOLFIRI
(5-flourouacil plus irinotecan) and FOLFOX, which is a chemotherapy regimen made up of
folinic acid, fluorouracil and oxaliplatin, have been indicated to treat metastatic colorectal
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cancer (mCRC) patients with an approximately 40% response rate. Nevertheless, there is
no diagnostic test to guide selections from the aforementioned regimen for better response.
Applying the SL combination ATM mutation and irinotecan, they found six out of 16 mCRC
patients with ATM mutations, who were treated with irinotecan, had improved survival
(44 months versus 29 months). Therefore, ATM could be a predictive biomarker to stratify
mCRC patients for FOLFIRI [15].
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Figure 2. A graphical display of the approach in [31–33] to discover prognostic biomarkers. Gene
expression of cancerous versus non-cancerous tissues was used to select SL gene pairs relevant
to a cancer under study, from the collected SL pairs. This procedure resulted in ~20 genes for
immunohistochemistry (IHC). Then combinations of IHC and overall survival of patients were
analyzed by Cox regression to yield prognostic markers, which were further validated by at least one
external data set such as TCGA.

4. Synthetic Lethality Applied to Stratify Patients for Targeted and Immunotherapy
4.1. Selection of Patients for Clinical Trials

Medical doctors determine whether new treatments are safe and more effective than
current treatments through clinical trials. SL interactions can be applied to stratify patients
for clinical trials of targets therapies as follows. In clinical trials of targeted drugs, if only a
small proportion of patients have the required genetic context for response in a trial. Strong
signals in individual patients will be diluted by patients without the necessary genetic
context, and the trial may fail. In order to conduct clinical trials effectively, patients with
proper genetic contexts should be selected. For example, de Bono and colleagues reported
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that only ~10% of patients enrolled showed mutations in the homologous recombination
repair (HRR) biomarkers [42]. This lack of specificity poses a significant problem in clinical
trials [19]. On the other hand, the first major biomarker study in prostate cancer (PCa) (the
PROfound study) reported that 17.6% of the 4425 patients had mutations in at least one of
the predefined 15 HRR genes, which included BRCA1, BRCA2, and ATM [42]. De Bono and
colleagues revealed that Pca patients with BRCA1, BRCA2, or ATM mutations responded
better to therapy and had increased progression-free survival and overall survival, whereas
patients with long-tail HRR alterations such as FANCL or RAD51C did not have significant
clinical benefits [43]. Analysis of DNA or/and RNA profiling of cancer patients and
exploiting verified SL interactions will help prioritize candidates for clinical trials on
SL-based drugs.

One example of how to select patients for a clinical trial using known SL pairs, e.g.,
TP53-WEE1, is the case of small cell lung cancer. As 100% of small cell lung cancer has the
TP53 mutation, it is expected that most small cell lung cancers have lost the G1 checkpoint
and have a high probability of depending on Wee1 for proper DNA repair and cell cycle pro-
gression. Thus, we could select patients with p53-mutant small cell lung cancer for a clinical
trial of Wee1 inhibitor, which is also an on-going phase II clinical trial (NCT026688907).

4.2. Synthetic Lethality Applied to Stratify Patients for Immunotherapy

Almost 90% of human cancer deaths are due to metastases. Immunotherapy is one
of the most effective treatments for patients with certain metastatic cancer types to date.
For instance, the PD-L1 inhibitor atezolizumab can treat certain patients with metastatic
urothelial tumors [20,22]. Nevertheless, for some cancer types, e.g., HGSOC, CPIs did not
work well [44]. Note that the objective response rate (ORR) for several cancers remain
very low, for example ORR for urothelial cancer is only about 10% and less than 30% for
non-small cell lung cancer. Thus, the identification of biomarkers to select patients for
immunotherapy is important and very useful in clinical practice.

In addition to uncover biomarkers for checkpoint inhibitor immunotherapy, synthetic
lethality can be exploited to direct immune cells specifically to tumor cells and destroy them
as follows. The accumulation of genetic alterations in cancer cells, results in neoantigens. In
theory, the immune system should generate T cell responses to recognize and kill nascent
cancer cells. Nevertheless, tumor cells can escape immune pressure by evolving intrinsic
genetic changes, for which [45] provided evidence. Zaretsk and colleagues found that
loss of function mutations in JAK1 could enhance immune evasion and confer anti-PD1
resistance in patients treated with a checkpoint inhibitor [45].

Recent studies also suggest that many oncogenes and TSGs may be involved in
immune evasion. For example, LKB1 was reported to be a putative tumor-intrinsic immune
evasion gene [46]. Skoulidis and colleagues showed that Lkb1/Stk11 loss promoted PD-
1/PD-L1 inhibitor resistance, using Kras- mutant murine lung adenocarcinoma models.
Furthermore, they found that patients with LKB1 loss, correlating with reduced PD-L1
expression, did not respond to treatment with PD-1 inhibitors. This indicated that LKB1
was a genuine suppressor of immune evasion. Other genetic alterations that correlated
with immune evasion include MYCN amplification [47], CASP8 loss of function [48], and
PTEN loss of function [49]. CASP8 loss of function was found to rescue cancer cells
from T cell-killing by blocking the TNF pathway, while PTEN loss of function promoted
resistance to T cell-mediated immunotherapy. Therefore, a functional evaluation of all
known cancer genes may lead to the identification of drug targets to reverse immune
evasion phenotype, and these targets can also serve as biomarkers to select patients for
clinical trial of immunotherapy. For instance, the inhibition of over-expressed SL partner(s)
of LKB1, MYCN, CASP8, and PTEN may reverse the immune evasion. Note that the
identification of biomarkers through immune evasion targets has a great advantage, as
biomarkers for immunotherapy have been difficult to find.

Discovery of immune evasion targets requires two procedures: (1) identification of a
genetic context that gives rise to immune evasion, and (2) identification of drug targets that
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can reverse such immune evasion. As previously reviewed [5], SL-based CRISPR screening
can be applied to tackle the first step. After an immune evasion genetic context has been
uncovered, target screening can be performed in vitro with PD-L1 expression or other
relevant immune readout, which may be the most efficient way to identify drug targets,
as reported [5]. For example, identification of the immune evasion context for JAK1 loss
of function can be performed using cell lines harboring a JAK1 loss of function mutation
to measure PD-L1 expression after interferon stimulation. After the genetic context of
immune evasion is revealed, SL-based target discovery approaches can be applied to
discover the targets, which can reverse the immune evasion phenotype when knocked out.
Advances in CRISPR technology [5] will enable the integration of cancer genetics (including
the concept of synthetic lethality) and immune-oncology to elucidate the mechanism of
immune evasion and make immunotherapy more clinically effective in the future.

5. Discussion and Future Directions

As mentioned in Section 1, there are too many drug combinations to recruit patients
for clinical trials. Therefore, adapting computational approaches, followed by functional
genomics screening to validate and confirm the SL interactions will be efficient. To achieve
this aim, some useful computational algorithms and databases are available. Mining Syn-
thetic Lethals (MiSL) [50] was developed to predict SL partners using multi-omics data,
such as DNA mutation, copy number alteration, and gene expression, from 12 TCGA
cancers. Sinha and colleagues exploited conserved TSGs from yeast to humans and used
pancancer data to identify SL combinations [40]. The Network Data Exchange platform
(NDEx) organizes published SL interactions [11] and is machine readable and searchable,
so machine learning and database algorithms can be applied. As it encompasses a large
volume of data, namely SL interactions in humans and other species and multi-omics data
of ~33 cancer types, it will be efficient for predicting new SL interactions and the genetic
context in which an SL-based drug will affect a particular cancer, through a machine learn-
ing approach. In addition to the big volume of omics data of various types of cancer, many
validated genetic (including SL) interactions, protein interactions and prior knowledge
are available, all of which can be used to train a machine learning algorithm. For instance,
a deep learning algorithm was shown to predict drug combination effectively [51]. One
can foresee that, once DNA sequencing and/or gene expression data of a patient’s tumor
is profiled, and the data are fitted into a pre-trained machine learning algorithm, it will
be possible to output the genetic context of the tumor and suggest an SL-based drug or a
drug combination, in the near future. Then, a medical doctor can prescribe the suggested
treatment to the patient accordingly. For example, olaparib combined with an immune CPI
therapy can be prescribed to patients with BRCA2- mutant breast cancer.

Although Project DRIVE [9] and Project Achilles [10] have discovered SL interactions
using a large set of human cell lines, the uncovered and fully verified drug targets remain
limited. Project Score [52] has provided compelling evidence that there are still many drug
targets for discovery, and they can be uncovered using a functional genomics approach.
Synthetic lethality, ML-based computational algorithms, and the recent advances in biolog-
ical science/technology, e.g., the powerful CRISPR-based functional screening, will enable
the discovery of new SL interactions and new drug targets in cancer.

As SL-interactions work in a context-dependent fashion, the genetic context under
which a targeted therapy or immunotherapy is added to the primary treatment (chemother-
apy or targeted therapy) is critical to develop combined therapy. A future direction is to
incorporate a computational approach to mine SL-based drug combinations, followed by
validation using CRISPR, single cell techniques, and patient-derived organoids, which
will enable the discovery of tumor heterogeneity underlying the primary drug resistance
and secondary resistance driven by tumor cell evolution. This will eventually lead to
combined drugs.
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