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Abstract: Machine learning approaches, such as soft independent modeling of class analogy (SIMCA)
and pathway analysis, were introduced in depression research in the 1990s (Maes et al.) to construct
neuroimmune endophenotype classes. The goal of this paper is to examine the promise of precision
psychiatry to use information about a depressed person’s own pan-omics, environmental, and lifestyle
data, or to tailor preventative measures and medical treatments to endophenotype subgroups of
depressed patients in order to achieve the best clinical outcome for each individual. Three steps are
emerging in precision medicine: (1) the optimization and refining of classical models and constructing
digital twins; (2) the use of precision medicine to construct endophenotype classes and pathway
phenotypes, and (3) constructing a digital self of each patient. The root cause of why precision
psychiatry cannot develop into true sciences is that there is no correct (cross-validated and reliable)
model of clinical depression as a serious medical disorder discriminating it from a normal emotional
distress response including sadness, grief and demoralization. Here, we explain how we used
(un)supervised machine learning such as partial least squares path analysis, SIMCA and factor
analysis to construct (a) a new precision depression model; (b) a new endophenotype class, namely
major dysmood disorder (MDMD), which is a nosological class defined by severe symptoms and
neuro-oxidative toxicity; and a new pathway phenotype, namely the reoccurrence of illness (ROI)
index, which is a latent vector extracted from staging characteristics (number of depression and
manic episodes and suicide attempts), and (c) an ideocratic profile with personalized scores based on
all MDMD features.

Keywords: depression; neuro-immune; oxidative and nitrosative stress; inflammation; mood disor-
ders; biomarkers

1. Introduction

“Precision psychiatry” is a new hot topic in psychiatry. In his 2015 State of the Union
address, US President Barack Obama announced his intention to invest USD 215 million in
the National Institutes of Health’s “Precision Medicine Initiative”, and this initiative was
renamed “All of Us” in 2016 [1,2]. Precision medicine is a medical model that advocates
for customized healthcare by tailoring medical decisions, practices, and treatments to a
subgroup of patients rather than a one-drug-fits-all approach [1]. Precision medicine refers
to the classification of individuals into endophenotype classes based on their susceptibility
to a particular disease, the biology of the disease they may develop, the response to a
particular treatment, prognosis, and the process of tailoring medical treatments to each
patient’s unique features [1–7].

In precision medicine, diagnostic testing is routinely utilized to choose appropriate and
optimal treatments based on molecular pathological epidemiology and precision medicine
biomarkers, namely the patient’s genetic makeup, and molecular or cellular data [1,3–7].
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When pan-omics data are combined with the patient’s environmental and lifestyle data, a
significantly greater level of predictivity is expected than when single indicator data are
used [6]. These data enable the development of new endophenotype classes that can be
used to make more targeted decisions about disease staging and prognosis, as well as the
development of biosignatures (based on molecular biomarkers) that can provide an early
warning of impending disease states even before they manifest. As such, precision medicine
enables the development of novel preventive and therapeutic interventions tailored to
endophenotypic subgroups or biosignatures, thereby increasing the cost-effectiveness of
treatments and avoiding adverse side effects [1,3–7].

Precision psychiatry is now frequently described in psychiatric journals as a novel
technique that has the potential to significantly advance psychiatric clinical practice, just as
precision cardiology and oncology have been demonstrated to improve the treatment of
cardiovascular disease and cancers, respectively [8–13].

The aim of this opinion paper is to examine precision psychiatry’s promise in using
information about a depressed person’s own genes, pan-omics data, and environmental
and lifestyle data to prevent, diagnose, or treat major depressive disorder (MDD) or a major
depressive episode in bipolar disorder (MDE), or to tailor preventive measures and medical
treatments to endophenotype classes of depressed patients in order to achieve the best
clinical outcome for each individual.

2. Methods

In this conceptual analysis, I will review (1) the aims of precision medicine models
and the three steps that characterize precision medicine; (2) the current misconceptions of
precision medicine models held by psychiatrists; (3) the core issues in psychiatry which
prevent the development of precision psychiatry models of MDD/MDE; and (4) how to
construct new precision nomothetic models in mood disorders.

3. The Aims of Precision Medicine and Machine Learning

The foundation for precision medicine is built on the amassment of complex and big
datasets (pan-omics, electronic registries, biobanks, complex imaging data), as well as the
application of machine learning techniques to learn from the data and improve predictions
of outcome variables (classifications, disabilities, prognosis, course of disease, treatment
response, adverse drug reactions) at the disease, endophenotypic and personal level [6,7].
Three steps are emerging in the precision medicine approach, namely: (1) the optimization
and refinement of classical disease models, (2) the precision medicine approach to construct
endophenotype classes and pathway phenotypes or biosignatures, and (3) the personalized
medicine approach, which focuses on a particular patient. Figure 1 shows these three
different steps which characterize precision medicine, the machine learning techniques that
can be used to achieve the three goals, and the products of these techniques.

3.1. Step 1: Optimize Existing Models

First, the application of complex and large pan-omics datasets and supervised machine
learning approaches allows for the improvement of the prediction of classical disease
models (of diagnosis, prognosis, and drug discovery) and the optimization of the criteria
of existing diagnostic classes [14–18]. Moreover, some of these supervised methods allow
us to learn from the data and may reveal new pathways underpinning the disease. These
techniques may be used to construct data-driven models that can be employed to predict
class membership—for example, who is classified as an MDD/MDE patient or who is
classified as a control. When such data have a cross-validated accuracy of more than 90.0%,
the prediction model can be used to predict class membership [14], to optimize existing
models, learn from the data, and classify individuals into distinct categories. Table 1 shows
the definition and aims of supervised pattern recognition methods as well as examples of
major supervised techniques.
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Figure 1. The three different steps which characterize precision medicine, the machine learning
techniques that can be used to achieve these goals, and the products of these techniques. AOP:
adverse outcome pathways; SVM: support vector machine, SIMCA: soft independent modeling of
class analogy; LDA: linear discriminant analysis, PLS: partial least squares path analysis.

The labeled data to conduct supervised pattern recognition methods always consist of
paired input (explanatory, independent variables, e.g., features of MDD/MDE) and correct
output (dependent) data, namely the predefined classes (e.g., a correct depression model of
MDD/MDE versus controls) or continuous outcome scores, for example, severity of illness.
When no correct output data are available, supervised learning cannot be employed.

Support vector machine (SVM), linear discriminant analysis (LDA), neural networks,
independent modelling of class analogy (SIMCA), logistic and multivariate regression, and
partial least squares (PLS) path modelling are some of the supervised machine learning
approaches that can be employed to achieve this goal, and they all significantly enhance
prediction accuracy either from prespecified classes (SVM, LDA, neural networks, SIMCA,
and logistic regression) or quantitative scores (multivariate regression) [18–20]. A combina-
tion of these methods is recommended because some are better suited for classification (e.g.,
SVM and neural networks), the prediction of quantitative outcome data with (pathway
analysis) and without (multiple regression analysis) mediated effects, and learning from
the data (SIMCA, neural networks, multivariate or logistic regression analysis), while other
methods (e.g., SIMCA) are better suited for authenticating cases as healthy volunteers or as
patients [14,21]. Some of these approaches and their applications in precision medicine will
be discussed in Section 4.

The results of these supervised machine learning techniques (top-down with a priori
definition of a class) should be employed to constantly update the original disease model
through deductive reasoning—namely, the original model laws are coupled with the
conclusions of machine learning to refine the original model. For example, using precision
medicine in conjunction with machine learning can improve the detection and diagnosis
of cardiovascular disorders, as well as the promotion of cardiovascular health and the
reduction in cardiovascular risk [6]. A combination of different MRI techniques in precision
models (including gadolinium enhanced MRI and diffusion weighted imaging) is now
used to improve the diagnosis of brain tumors [22,23].
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Table 1. Supervised and unsupervised pattern recognition methods useful in precision medicine.

Supervised Learning Unsupervised Learning

Definition

The use of labeled datasets to train algorithms
capable of reliably classifying data or

predicting outcomes.
These data always consist of paired input

(explanatory) and correct output data (dependent
data, i.e., predefined classes, or continuous data).

Training data are analyzed to produce an
algorithm (model) that can be employed to map

new cases for example as belonging to the
depressed or control class.

An algorithm is trained on the input data to detect
underlying patterns that are associated with the

prespecified output variables.

The computer algorithm learns from unlabeled
datasets (training sets).

The model determines the similarities or patterns
in the input variables without associating these

data with the output variables.

Examples

Support vector machine
Neural networks

Soft independent modelling of class analogy
Linear discriminant analysis
Multiple regression analysis
Logistic regression analysis

Decision trees
Partial least squares path analysis

K-mean clustering
K-median clustering

Forgy’s clustering
Hierarchical clustering

Principal component analysis (PCA) +
Correlation loadings + PC plot

Exploratory factor analysis
Correspondence analysis

Aims general

Classification
Prediction of predefined classes or scale variables

Mapping of unknown cases
Learn from the data

Delineating associations

Discovery of patterns
Uncover clusters of cases

Learn from the data
Uncover associations between input

variablesDelineating rules that describe the data

Aims precision medicine

Optimizing existing disease models
Defining new pathways in the input variables

associated with a disease
Classifying unknown cases as a patient or control
Cross-validation of new endophenotype classes

Cross-validation of pathway phenotypes
Construct new disease models based on causal

associations

Construct new endophenotype classes
Construct pathway phenotypes

Useful in precision
nomothetic psychiatry

Partial least squares path analysis
Support vector machine

Neural networks
Soft independent modelling of class analogy

Clustering techniques
PCA

PCA plot
Exploratory factor analysis

3.2. Step 2: Uncover Endophenotype Classes and Pathway Phenotypes

Second, through the use of machine learning, multi-modal data (including pan-omics
data, symptoms, health-related quality of life (HR-QoL) and disability scores) can be
combined to construct endophenotype classes and pathway phenotypes that are relevant
regarding specific pathophysiological events, treatments, staging, prognosis, and adverse
effects of medications [1,3–7]. For instance, not only various MRI methods but also mor-
phological measurements of imaging abnormalities and tumor biomarker testing may help
to define endophenotype classes of individuals with brain tumors (glioblastoma) who may
react differently to novel therapies or have a varied prognosis [22–24].

An endeavor such as this should be based primarily on unsupervised learning (no
a priori definition of a class or model) with the assumption that, within a correct disease
model, new clusters of patients (endophenotype classes) or new constructs that combine
symptoms and biomarker data (pathway phenotypes or biosignatures) may be uncovered.
Table 1 shows the definition and aims of unsupervised pattern recognition methods as
well as examples of the major unsupervised techniques. For instance, several clustering
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approaches (Forgy’s method, K-means, K-median, and hierarchical clustering) may be
used to identify novel endophenotype classes (depression subgroups) within the depressed
population, while factor analysis or PLA path analysis may be used to uncover new
pathway phenotypes [25,26].

Pathway phenotypes are different from endophenotype classes in that they are based
on quantitative scores of interrelated symptoms, biomarkers, or genetic or environmental
features of depression [14,27]. Principal component analysis (PCA) and factor analysis are
adequate tools to detect pathway phenotypes. The prerequisite is that strongly interrelated
features belong to the same reflective latent vector, which in fact is the cause of all its mani-
festations [18–20]. For example, the abstract construct “HR-QoL” may be conceptualized
as a reflective latent vector (factor) extracted from self-rated quality of life domain scores,
such that the latent vector HR-QoL is the cause of all its manifestations [28]. If this factor
also comprises biomarkers or genetic data, a pathway phenotype is formed, and the latent
vector scores may be used as quantitative severity scores of this biosignature [19]. Of course,
the factors should comply with stringent quality criteria as explained in Almulla et al. [18]
and Section 4.

3.3. Step 3: Towards the Personalized Approach

The first and second applications of precision medicine allow us to achieve the ultimate
goal of precision medicine, namely personalized medicine. For example, in precision
cardiology, machine learning in conjunction with pan-omics and wearable electronic devices
which monitor cardiovascular functions, coupled with lifestyle and environmental factors,
may aid in developing preventive treatments tailored to individual patients or individuals
at risk of developing atherosclerosis [6]. In precision oncology, the clinical utility of this
approach has been demonstrated by genotyping tumor tissues from cancer patients, which
may provide information on the type of drugs to be used and the drugs with the fewest
side effects [29].

What is critical is that precision medicine should begin by refining the existing illness
model (step 1) and then delineating new endophenotype classes and pathway phenotypes
(step 2) that can be utilized at the personalized level (step 3) (see Figure 1). Consequently,
endophenotype classes, pathway phenotype scores, and scores on related markers and
feature sets may be utilized to generate digital models of patients and controls as well
as an idiomatic profile for each case (a digital self for each individual). As discussed in
Sections 5 and 7, PLS path analysis, SIMCA, and factor analysis are well-suited to this
personalized approach. For example, PLS analysis allows us to compute feature set scores
that are consequently used to construct digital models and digital selves, while SIMCA
is used to compare the idiomatic profile of an individual (the digital self) with the digital
models (in statistical terms: to project a case within the class model limits of a diagnostic
group).

Once a digital model of healthy controls is built (e.g., using SIMCA), this model en-
ables us to delineate normal functioning (a case may be authenticated as a healthy human
or not) and optimization and maintenance of performance (some features of a normal
control may deviate from the norm). Once a SIMCA digital model of depressed cases based
on a newly developed endophenotype class is formed, the latter can be used to diagnose
malfunctioning (who suffers from severe depression), predict malfunctioning (making
inferences about who may later develop severe depression), prevent malfunctioning (pre-
vention in high-risk subjects), repair and restore (best treatment for severe depression), and
examine functionality following repair (treatment response versus partial or non-response).

Before I describe how we utilized SIMCA, PCA, PLS-path and clustering analysis to
create digital models and digital selves for patients and controls [14–17,19–21,26,30], I will
first provide some context for those approaches (see Section 4). While these approaches
are the cornerstone of our precision psychiatry approach, we always combined them
with additional machine learning techniques such as SVM, neural networks, PCA plot,
correspondence factor analysis, and regression analysis, as previously mentioned [14–18].
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4. Specific Supervised and Unsupervised Pattern Recognition Methods
4.1. SIMCA: A Supervised Learning Method

SIMCA is a class modeling strategy that uses PCA to model patient and control
groups based on the relevant features including genetic and environmental data, pan-
omics and other data [14,21]. SIMCA is a supervised learning approach that starts with
labeled datasets, namely paired input data (all disease features) and correct output data
(predefined categories) [21,30–32]. SIMCA generates separate principal component analysis
(PCA) models for each class (e.g., depressed patients and healthy controls), using a cross-
validation technique to determine the number of PCs, which may vary by class. Both study
samples are divided into a training or calibration sample (e.g., 50% of patients and 50% of
controls) and a validation sample (e.g., 50% of patients and 50% of controls) (also 50%) to
cross-validate the results.

SIMCA generates two distances, namely the distance between the cases and the
class model (Si) and the distance between the cases and the class center (Hi or leverage),
which are used to define the class limits (borders) and decide whether subjects should be
allocated to or rejected from a class. These calculated distances are utilized to generate two-
dimensional graphs, including a Si/Hi plot, which depicts the subjects’ relative distance to
the class model and the distance to the class center. Figure 2 illustrates such a Si/Hi plot, in
which we build a PC model surrounding healthy controls and project severe depression
cases into the SIMCA model’s class limits.
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and the class center or leverage) obtained by soft independent modeling of class analogy (SIMCA).
Green triangles: normal volunteers; red bullets: patients with major depression.

The Si and Hi distances define the class limits (borders) of a diagnostic class (e.g.,
the lower left quadrant which delineates the limits of the normal control class). Thus, all
normal controls are allocated to the normal control class, although there are three outliers
(which decrease the specificity of the model). Most depressed patients are not authenticated
as normal controls, except two cases that should be considered as intruders.

Thus, controls may be allocated to their target class (in Figure 2, the normal control
class) based on their estimated critical class boundaries, and so establishing their authentic-
ity as normal controls. Additionally, cases with a clinical diagnosis of depression but who
intrude into the target class are in fact incorrectly diagnosed as patients, as they appear to
have similar features to normal controls. Additionally, if cases fall into both categories, the
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model should be adjusted for improved performance by selecting more specific features. In
Figure 2, just two depressive cases are intruders, indicating a reasonable sensitivity of the
predictive model’s accuracy [14,30].

Additionally, SIMCA generates two figures of merit: (a) the confusion matrix, which
contains information about classification accuracy, sensitivity, and specificity; and (b) the
model-to-model distance, with a distance greater than 3 indicating significant differences
between groups and distances greater than 20–30 indicating qualitative differences between
predefined classes [14,15,30]. Furthermore, SIMCA computes a discrimination plot that
illustrates the discriminatory power of all input features in distinguishing patients from
controls. As such, SIMCA is a powerful approach in Step 1 because this method allows us
to optimize disease models and predict class memberships, and in Step 3 because it enables
us to compute SIMCA models of controls and patients in which the projection of unknown
cases may allow us to authenticate those unknown cases.

4.2. PLS Path Modeling: A Supervised Technique

PLS modeling enables the following: (a) the construction of causal models linking
genetic factors to biomarker pathways, cognitive dysfunctions, staging characteristics, and
symptoms of depression; (b) the construction and inclusion in the model of latent vectors
that are based on variables that cannot be measured directly (unobservable variables), such
as HR-QoL; (c) the delineation of mediation effects, such as the effects of immune genes
or environmental factors on HR-QoL which are mediated by neuro-immune pathways;
and (d) the estimation of complex multistep mediation models that link numerous single
indicator variables (e.g., age or sex) and latent vectors (e.g., HR-Qol) in structural causal
paths without imposing distributional assumptions on the data [16,19,25,26,33,34].

Different indicators and latent vectors extracted from a set of strongly interrelated
indicators can be entered as input variables predicting the outcome variable [25,26]. Only
when the quality of the model meets predefined quality requirements is a complete PLS
analysis with 5000 bootstrap samples conducted. The most important requirements are that
the model’s overall quality is appropriate, that the latent vectors have adequate composite
reliability, that their average variance extracted is greater than 0.500, and that all indicators
of the latent constructs have a high factor load [14]. Complete PLS path analysis with
bootstrapping (5000 subsamples) is then used to compute path coefficients with exact
p-values, and total, specific indirect and total indirect effects, which assess the significance
of mediated paths. Moreover, once the model has been validated, latent variable scores of
the different indicators and latent constructs may be computed, yielding a reduced number
of feature set scores, reflecting the impact of various genetic, environmental, pathway,
cognitive and symptom data.

As a result, PLS path modeling is a powerful method in Step 1 because it allows for
the construction of new models or the optimization of classic models of complex disorders,
which are characterized by causal links from genetic and environmental factors to pathways
and severity of depression. It is also a powerful method in Step 2 because it allows us to
build pathway phenotypes by combining strongly interrelated biomarker pathways and
staging data in validated latent constructs that may predict the outcome. Furthermore,
PLS path modeling is a powerful method in Step 3 because it allows one to compute
personalized scores that reflect all features of an illness, thereby shaping a personalized
idiomatic profile or digital self.

4.3. Principal Component Analysis: An Unsupervised Machine Learning

Joint principal component analysis (PCA) is performed on the features of depressed
cases with or without controls using a standard deviation weighting procedure and a
20-fold cross-validation scheme in order to visualize the distribution of the cases in a
2D space [14,18,30]. The distributions of both classes are shown by examining various
combinations of PCs, with PC1 versus PC2 being the most important since it includes most
of the variance in the data. When clusters of patients with clear boundaries (a large street)
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are discovered, it suggests the presence of endophenotype classes. The correlation loading
plot enhances the comprehension of this PC plot by displaying the correlation loadings for
all variables in PC1 and PC2 with respect to two ellipses, with the outer ellipse representing
100% explained variance and the inner ellipse representing 50% explained variance. PC
plots are an effective tool for illustrating the data distribution in Step 2, since they depict
the data distribution [18].

In Section 4.2, I discussed how to create pathway phenotypes using factor analysis
as part of PLS path modeling. However, such investigations should be preceded by
exploratory factor analysis (EFA), a data-driven technique for determining the factor
structure of associated indicator variables [18]. Thus, by combining biomarker pathways
and clinical data into a single component, this technique allows for the building of a
pathway phenotype if one general component accounts for a considerable percentage of the
variance (>50%) and has high loadings for all indicators (>0.6). Additionally, the number
of retained factors should be one, as determined by the Hull test, parallel analysis, or
Schwartz’s Bayesian information criterion; and this factor should be unidimensional, as
determined by tests for closeness to unidimensionality, such as the mean of item residual
absolute loadings, unidimensional congruence, and explained common variance [18]. Apart
from discovering new patterns in a dataset, this method is also used as a feature reduction
method whereby a larger number of interrelated indicators are reduced to one factor.
Finally, using this method, factor scores may be computed that reflect the severity of the
constructed pathway phenotypes.

4.4. Clustering Analysis: An Unsupervised Learning Technique

Clustering analysis is an unsupervised machine learning approach that may be used to
discover hidden patterns or clusters of cases within a population sample based on common
attributes or communalities. Clustering is an unsupervised technique, since it makes use of
unlabeled and uncategorized data without predefining any classes [21]. Table 1 summarizes
some of the most frequently used clustering methods. Clustering is a powerful method
in Step 2 because it allows one to discover new endophenotype classes when applied
to the features of depression. Consequently, the characteristics of the clustering-derived
classes may be investigated using basic descriptive statistics, analysis of variance, and
contingency analysis and, consequently, the clustering solution and model algorithms
should be confirmed in independent subsamples, for example, using SVM, SIMCA or
neural networks, which enable the estimation of the cross-validated accuracy in an output
sample [14,21]. When these subclasses are thoroughly cross-validated and include genetic
or environmental data, pathway biomarkers, symptoms, and/or cognitive scores, a new
endophenotype class is formed [14].

5. Core issues in Psychiatry Which Prevent the Development of Precision
Depression Models
5.1. Contemporary Depression Research Is a Chaos of Many Concepts, Diagnoses, and Labels

It is a noble goal to make psychiatry more precise, but psychiatry is the most imprecise
medical discipline that exists. Furthermore, it is not only imprecise, but also a jumble of
various model concepts, conceptual frameworks, and classifications of the same disorder.
There is no other medical discipline that offers multiple model versions of a disease. How-
ever, in psychiatry, this is not only common, but it is an art to generate new classification
models, either through consensus meetings or just by publishing a newly created model.
Thus, according to Zachar and Kendler [35,36], major psychiatric illness may be conceptual-
ized using a variety of concept models, including organic disease models, altered function
models, biopsychosocial models, harmful dysfunction models, dimensional models, alter-
native models, and interpersonal models. These models are proposed even without any
evidence. For example, according to the interpersonal models, disturbed relationships are
the cause of severe psychiatric illness, although no evidence for this has ever been provided.
Nonetheless, new interpersonal treatments are frequently advocated and used based on
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this untested and unfalsifiable theory. Passing Karl Popper’s falsification criteria [37] is
something far off for most psychiatrists. Psychiatry is also the only discipline that proposes
a non-model in which a narrative account may reveal the true cause of a major psychiatric
illness, including MDD/MDE [35]. Producing a non-model of a severe medical disease,
e.g., atherosclerosis, would be absurd, but not in the field of psychiatry.

Previously, we discussed the many competing and even mutually antagonistic ap-
proaches to understand depression, including many non-falsifiable theories including
psychoanalysis (depression is a defense against loss and mourning), psychodynamic psy-
chiatry (depression is the result of a pathological object relationship between parts of
the self), commonsense or folk psychology (depression is a response to a psychological
problem), self-system theory (depression is a response to a self-problem), systemic therapy
(depression is caused by systems such as the family), cognitive-behavioral therapy (depres-
sion is the result of negative thoughts), and the mind–brain dualism (neural and/or mental
processes interact to cause depression) [38]. Critical psychiatry with psychiatric survivor
networks, a recent development indicating that contemporary psychiatry is in deep crisis,
calls into question the decontextualization of experience, scientific methods, knowledge
base, psychiatric practice, and treatment, and accuses status quo psychiatrists of harmful
and unethical principles [38]. Figure 3 depicts this status quo chaos and the non-models in
psychiatric depression concepts.
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This extreme chaos in modern status-quo psychiatry is further demonstrated by
the numerous proposed MDD/MDE subtypes, subclasses and labels and the constant
establishment of new depression subtypes with new case definitions that may vanish
after a while [38]. Psychiatric epidemiologists do not contribute to the resolution of the
overall chaos; in fact, they exacerbate it. For example, the existence of distinct diagnostic
categories is conceptualized without any cross-validation, and then it is demonstrated
that they all exhibit significant comorbidity. This, in turn, is followed by a large series of
pointless papers discussing the prevalence and incidence of the disorders with and without
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comorbidities, the effects of various threshold values, and whether these classes are distinct
or shape a continuum.

Thus, any psychiatrist can invent new models, diagnostic criteria, diagnostic labels,
and therapies, and new comorbidities, all of which are then published in high-impact
psychiatric publications as if they were high science. However, the newly introduced
classes and new case definitions are based on unverified ideas of some highly or less highly
cited psychiatrists and are sometimes shaped through consensus discussions but never
validated or cross-validated with accurate machine learning models [8,38,39].

Mental health professionals have typically relied on psychosocial or mind–brain
theories to explain mood disorders, including MDD/MDE. An internationally recognized
psychiatric superstar such as Kendler [40] asserts that the goal should be to understand
how the psychosocial environment interacts with networks inside the mind–brain system
to create mental diseases and asserts that the conceptual foundation for psychiatry should
be based on the acknowledgment of a bidirectional causality between the brain and the
mind as well as between the mind and the brain. However, these models have proven
unsatisfactory because we constructed new precision psychiatric models of MDD/MDE
based on adverse outcome pathways (AOP) in peripheral blood, which are activated by
interactions between genetic and environmental factors, including psychological trauma
and increased bacterial load in the peripheral blood (see below) [25,26]. As such, psychiatry
is the only medical discipline that does not adhere to the premise that medical concepts
should pass the critical rationalism tests as proposed by Karl Popper [37] namely that
models should be falsifiable, changeable, parsimonious, and progressive. As a result,
contemporary psychiatry is perpetually in chaos without a compass to guide it.

5.2. The Core Issue Which Undermines Progress in Precision Depression Research

Even before precision psychiatry could start, it was criticized due to the fact that
its foundations are outdated and flawed because one cannot reduce mental suffering to
biological essences [41,42]. According to the latter authors, precision psychiatry does not
constitute an adequate replacement to current phenomenological classification systems,
since biological processes do not capture qualia and meaning, mental suffering or even
pathology. Among the main criticisms is that mental events are not physically represented,
and thus finding biomarkers is not important to understanding mental processes. Phrased
differently, for these authors falsifiability is not even a concern because their dogma is that
the mind cannot be falsified. The authors then give falling in love as an example: falling
in love would be a “boundary experience” that can bring some people dangerously close
to experiencing intense mental suffering with a loss of ground and autonomy that may
manifest as a mini-neurosis, a mini-psychosis, or a behavioral pathology [41]. Such a view
is also supported by sociologists who consider that “psychiatry transformed normal sorrow
into depressive disorder” [43] and by psychiatrists who caution about the medicalization
of normal human behavior and the emotional responses of normal life such as sadness, low
mood, feeling blue, grief and demoralization [44,45].

Unconsciously, these authors have addressed the root cause of why psychiatry and
precision psychiatry cannot develop into true sciences, namely that there are no reliable
and validated “laws” or correct models to discriminate a normal emotional response with
depressive feelings from their pathological counterpart, including MDD/MDE, conceptu-
alized as a severe medical illness or a major psychosis, and labeled as “Major DysMood
Disorder” (MDMD) [25,26]. As a comparison, is there really a spectrum between, for
example, a tension headache and a headache caused by a brain tumor? By analogy, is
there really a spectrum from an emotional response or a process in the mind (e.g., being
in a mini-neurosis due to falling in love or the consequent sadness after breaking up) and
MDMD symptoms such as feelings of guilt and worthlessness, profound despondency
and despair, self-blame, anhedonia, emptiness, hypoesthesia, psychomotor retardation
and agitation, diurnal variation, neurocognitive deficits, severe physio-somatic symptoms,
inexplicable desperateness, and (mood-congruent) delusions or hallucinations [38]. Thus,
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the medical approach promoted in the current paper does not aim to medicalize normal
human responses but rather seeks to discriminate a normal human response from a severe
medical illness. In fact, the main aim in psychiatry should be to discriminate MDMD from
a human emotional distress response, just as it is important to diagnose a headache due
to a brain tumor and differentiate it from a tension headache. The mainstream view of
psychologists, psychotherapists, sociologists, psychosocial psychiatrists, and psychiatric
epidemiologists that MDD/MDE is an expression of a dysfunction in the mind–brain axis
and that there is a spectrum from a distress response to MDD/MDE [38] may be quite
unethical if one fails to recognize MDMD as a major psychosis or a serious medical illness.

Thus, the critical issue is that psychiatry currently lacks a correct disease model for
MDMD. Rather than changing unproven case definitions of depression with additional
unproven criteria, psychiatry should focus on establishing innovative validated or cross-
validated models of MDMD. Indeed, there is currently no evidence base for precision
psychiatry because there is not even a correct disease model of depression. Without a
correct model, supervised machine learning cannot be applied and, as shown in Section 3
and Figure 1, the prerequisite for Steps 2 and 3 is a cross-validated correct model.

5.3. The Gold-Standard Psychiatric Rating Instruments Are Impediments

The gold standard DSM [46] and ICD [47] categorization and case definitions of
MDD/MDE are unreliable and show often a flawed intraclass kappa reliability with little
agreement among psychiatrists [38,48]. More importantly, these categories do not allow one
to distinguish between individuals who suffer from an emotional response with depressive
symptoms, minor depression, MDD/MDE and those who suffer from MDMD. A direct
consequence is that psychiatrists use rating scales to assess depression, whereby a small
increase is then regarded as reflecting depressive symptoms, MDD/MDE, or even a severe
pathological condition. Never mind that these rating scales have virtually no validity
because: (a) the most common depression scales do not comply with the unidimensionality
criterion and measurement invariance; and (b) the items of the scales are derived from
folk psychology (“I believe I am depressed”) which are, after some window dressing,
translated into statistical entities that are used as proxies for a severe medical disorders
such as MDMD [38,48].

The most disturbing aspect is that all the concepts and models described in Sections 5.1
and 5.2. and the gold-standard case definitions of the APA and WHO (all except the non-
models) are based on a dogma-like, top-down-generated method [38,39,48]. Indeed, the
DSM and ICD diagnostic classification systems treat the most fundamental components
of any medical disease as auxiliary information that may or may not support their new
dogma-like constructs, including the causome/protectome, AOP (multi-omics data), and
brain circuitry assessments [38,39,48]. Worse yet, these flawed methodologies preclude
falsification and restrict deductive and inductive causal reasoning because no general
conclusions are allowed to be drawn from the most important features of MDMD [38,39,48].
Notably, the DSM/ICD models fail Karl Popper’s tests of critical rationalism, as they are not
only unfalsifiable (top-down approach and no refutation is allowed), but also unchangeable
(ex-consensus-based committees of professionals make the criteria) and non-progressive
(because they do not consider the state-of-the art information) [48].

Following the development of unfalsifiable mind–brain models and non-validated
case definitions of MDD/MDE, it is absurd that the same authors and the American Psy-
chiatric Association then declare that decades of research in the field of biomarkers, brain
circuits, and genes has failed to produce any biological subgroup or biomarkers of major
psychoses, and that there are no valid, and replicable associations between biology and
mental suffering [35,36,46,49]. In fact, the lack of a cross-validated, correct phenotype (a
correct depression model) precludes the use of supervised learning technique in Steps 1,
2 and 3 of the precision medicine process and impedes the normal development of preci-
sion psychiatry. As such, it may appear as though the American Psychiatric Association,
psychotherapists, social psychiatrists, psychologists, psychotherapists, and psychiatric epi-
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demiologists are attempting to defend phenotype errors and prevent changing the status
quo, thereby cementing their position as the most critical components of psychiatry (see
Figure 2).

6. Precision Medicine in Psychiatric Research

Examining recent papers published by psychiatrists that discuss precision medicine
and its application in psychiatry reveals that many authors do not recognize the need for a
correct model before machine learning can be applied.

Insel [50] described the Research Domain Criteria (RDOC) project of the NIMH as
the precision medicine for psychiatry. RDoC relies on dimensions of psychopathology as
critical measures, whereby psychopathology is caused by aberrations in neural circuits
in the brain and should be examined using a matrix with eight columns, namely genes,
molecules, cells, circuits, physiology, behavior, self-reports, and paradigms, and a number
of rows, including memory, rewards, threats, and perception. Nonetheless, this is again
a top-down dogma-like construct whereby the NIHM dictates some rows and columns
but does not provide any evidence of how this matrix was constructed and why some
factors are in the rows and not in the columns and vice versa. Put differently, there is
no evidence-base for the top-down dogma-like RDoC matrix approach. In addition, the
number of combinations in this matrix is limited and does not allow the unsupervised
discovery of new endophenotype classes or pathway phenotypes.

Zanardi et al. [13] published a paper on precision psychiatry in clinical practice,
defining it as “a method for integrating biological and environmental information in
order to personalize treatments and complement clinical judgment” and claiming that
it represents a revolution in psychiatric care. For Passos et al. [11], precision psychiatry
encompasses “big data and machine learning to move beyond evidence-based group-
level approaches into individualized care”. They claim that the next step in precision
psychiatry is “to incorporate tools from machine learning guided trials for individualized
interventions, providing a new generation of findings in psychiatry, beyond current group-
based approaches.”

Salazar de Pablo et al. [12] propose that implementing precision psychiatry may help
to predict diagnostic models (namely psychiatric disorders versus controls), prognosis (in
terms of disabilities), and treatment response (in psychiatry but especially in psychosis) at
the individual level. However, this is a systematic review of validated supervised prediction
models, which are not examples of precision psychiatry, because the latter primarily aims
to develop endophenotype classes derived from unsupervised learning experiments.

Arns et al. [51] describe stratified psychiatry as tomorrow’s precision psychiatry.
These authors argue that stratified psychiatry is a way of subgrouping depressed patients
with similar biomarker profiles to enhance the probability of a clinical response to on-
label antidepressants. For example, this approach would allow for tailoring on-label
treatments to a specific EEG profile, thereby maximizing the clinical efficacy of selective
5-HT reuptake inhibitors and not selective noradrenaline reuptake inhibitors. Nevertheless,
the major problem with this approach is that a) biomarkers are found in networks of highly
intercorrelated gene expression, protein–protein interactions, and multi-omics network
data that interact with neurocognitive functions and the brain connectome data, making
stratifying one or another biomarker or a group of biomarkers meaningless [52]. Most
importantly, as explained in Section 4.2, a correct depression model should be based on the
causal links between the building blocks of an illness (see also below).

Fernandez et al. [9] gave another definition of precision psychiatry: “Precision psychi-
atry aims to transform the psychiatric landscape through a bottom-up approach applied to
pan-omics using system biology and computer science to compute a biosignature, which in
turn may be used in a top-down approach to help to understand domains that differ from
components but allow to construct endophenotypes” [48]. In another paper, the authors
employ what they believe to be precision medicine, but instead demonstrate the outcomes
of a top-down experiment utilizing LDA (not the most appropriate supervised classification
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technique) to differentiate patients diagnosed with inaccurate DSM case definitions from
controls [53]. Unsurprisingly, combining immune-inflammatory biomarkers with cognition
tests results in an inaccurate confusion matrix, with sensitivities ranging from 80% to 84%
and specificities ranging from 71% to 73%. The authors then assert that a ROC curve of at
least 70% is a success, despite the fact that such figures of merit do not allow for a precise
prediction, as this requires a cross-validated accuracy of at least 90% [14]. Their findings
indicate that while there are some variations between the groups, their technique cannot be
described as precision psychiatry because the authors did not even complete Steps 1 and 2
(and 3) to delineate a correct depression model and more precise endophenotype classes.

Two other descriptions come from the Max Planck Institute [10] and Bzdok and Meyer-
Lindenberg [54]. The latter ascertain that “modern machine learning approaches may
have a natural potential to improve the well-being of psychiatric patients.” To that end,
machine learning could be used to make measurements of the brain, behavior, and genes,
allowing us to objectively measure endophenotypes, which could allow for early disease
detection, individualized treatment selection, and dosage adjustment to reduce disease
burden. The Max Planck Fellows Group for Precision Psychiatry [10] proposes that machine
learning may be used to extract patterns from complex databases that can be used to predict
individual illness courses and outcomes rather than just differences between patient groups.
Both groups emphasize the personalized medicine approach, in which machine learning is
used to extract signatures from pan-data (clinical, neuropsychological, imaging-based, and
genetic) that can be used to predict drug effects in individual patients, either unwanted or
desired effects.

Nevertheless, all studies mentioned in this section miss the point that precision
medicine is based on a correct outcome depression model, which unfortunately does
not exist (Step 1), and then delineate new endophenotype classes and pathway phenotypes
(Step 2) that can be used at the personalized level (step 3).

7. Precision Nomothetic Networks of Mood Disorders

Overall, it appears that current MDD/MDE concepts and research have not resulted in
a “correct” disease model that is regarded as the only model by all psychiatrists. When car-
diologists use the term “atherosclerosis,” everyone understands what they are talking about.
However, all that psychiatrists have is a jumble of models, concepts, and labels, as well as
gold-standard case definitions that are not valid but have cemented dogmas that preclude
any adjustments based on deductive and inductive causal reasoning. Other psychiatrists
then propose unfalsifiable models or even non-models of the same disorder. Others loudly
proclaim precision psychiatry a pseudo-science even before it can demonstrate its merits,
because the mind and qualia cannot be quantified. Models and case criteria never met or
cannot meet Popper’s criteria, but all this is irrelevant to most psychiatrists. The root cause
for the fact that psychiatry has not developed into a true science and that precision psy-
chiatry models cannot be developed is that there are no correct models for discriminating
between an emotional response such as sadness and its pathological counterpart, namely
severe depression, as a major psychosis.

Since the 1990s, my laboratories have been using machine learning techniques such as
SIMCA, PCA plots, and pathway analysis to delineate novel endophenotype classes using
biomarker assays. For instance, we demonstrated, using both supervised (SIMCA) and
unsupervised (PCA) machine learning, that MDD/MDE, particularly when melancholia
features are present, are qualitatively distinct classes based on various T-cell activation
markers and defined a subgroup of patients with a T-cell activation endophenotype [55,56].
We delineated a new MDD endophenotype class using cluster analysis which was validated
by lowered levels of tryptophan, a neuro-immune biomarker [30].

Recently, we developed a new precision nomothetic medicine method in conjunction
with machine learning methods, including SIMCA, PLS path, cluster and factor analysis
which allowed us to (a) build validated disease models of depression; (b) discover a
new endophenotype class, namely MDMD, and a new pathway phenotype, namely the
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reoccurrence of illness index (ROI); and (c) construct digital models of MDMD and controls
and compute a digital self of depressed individuals [25,26].

7.1. Conceptual Framework and Validation of A New Precision Model of MDMD

The term “nomothetic” refers to the proclivity for deriving laws from indicator (in-
dependent) variables that account for the variability of phenomena and allow for model
generalization, which is governed by mathematical laws that serve as explanations for
the disease. Our precision nomothetic approach is based on elucidating the causal rela-
tionships between the most critical components of a complex psychiatric disease, such as
depression. Table 2 and Figure 4 show the different building blocks of “depression” as a
medical disorder.

Table 2. Building blocks included in the digital models of major dysmood disorder (DMDM).

Building Blocks Of
Depression Description Examples in the Current

Conceptual Analysis

Causome All causal factors that increase risk toward MDMD
(genetic, environmental, and lifestyle factors) Early lifetime trauma (ELT)

Protectome All factors that protect against the onset of MDMD
(genetic, environmental, and lifestyle factors)

High high-density lipoprotein cholesterol
paraoxonase 1 gene (PON1)

Risk-resilience index Composite based on risk and resilience factors Early lifetime trauma by PON1 gene
interactions

AOP (adverse outcome
pathways) Pathways leading to a medical disease Latent vectors extracted from neuro-oxidative

and neuro-immune biomarkers

Brainome Aggregate of brain imaging assessments Changes in the brain connectome

Cognitome Aggregate of impairments in cognitive functions Latent vector extracted from executive,
attention, and memory dysfunctions

Symptomatome Aggregate of all symptoms, severity of illness,
global clinical impression (CGI)

Latent vector extracted from symptoms,
severity indices, GCI, suicidal behaviors

Phenomenome Self-experience of the illness
Latent vector extracted from phenomenome

data including self-rated disabilities and
quality of life

Phenome All symptomatome and phenomenome features Latent vector extracted from symptomatome
and phenomenome data
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First, causome (e.g., early lifetime trauma, genes including paraoxonase 1 (PON1), in-
creased bacterial translocation) and protectome (genes, lifestyle factors including nutrition)
features can be combined into a risk/resilience ratio via feature reduction, for example, by
considering the patterns of interaction between genes and environmental factors (PON1
gene and ELT interaction [19,57].

Second, adverse-outcome pathways (AOPs), which include molecular, intracellular,
neuro-immune, oxidative and nitrosative stress (O&NS), and metabolic pathways. The
latter can be used to create constructs that reflect more specific pathways, for example, by
combining O&NS biomarkers into a latent vector extracted from multiple O&NS indicators
(feature reduction using PCA).

Third, brainome features, namely the totality of brain region abnormalities either
structural or functional, including changes in the connectome [58].

Fourth, cognitome features, namely the aggregate of impairments in neurocognitive
functions, including in attention, episodic and semantic memory, working memory and
executive functions [57].

Fifth, and this is unique to mood disorders and other disorders with recurrent episodes
(e.g., autoimmune disorders), the ROI [19,57]. In patients with MDD/MDE, we conceptual-
ized the ROI as a latent vector extracted from the number of depressive and (hypo)manic
episodes, the number of suicidal attempts and the lifetime history of suicidal ideation. In
fact, the strong loading of all these indicators on the same ROI latent vector shows that
MDD/MDE (and thus unipolar and bipolar depression) share a common core (the patho-
physiology of ROI) that underpins the number of depression and (hypo)manic episodes
and suicide attempts [25].

Sixth, the phenome consisting of the symptomatome and phenomenome. The symp-
tomatome is the aggregate of the broad spectrum of symptoms that are characteristic of the
illness, including severity of depression, severity of depressive symptoms such as feelings
of guilt and worthlessness, profound despondency and despair, self-blame, anhedonia,
emptiness, hypoesthesia, diurnal variation, psychomotor retardation and agitation, neu-
rocognitive deficits, severe physio-somatic symptoms, and mood-congruent delusions or
hallucinations, severity of anxiety, overall severity of illness (e.g., as assessed with the
Clinical Global Impression scale), and severity of suicidal ideation. The phenomenome
is the aggregate of different aspects of the self-experience of illness, as assessed by using
self-rating scales of depression, anxiety, health-related quality of life (HR-QoL), disabilities,
trigger factors, and life events. Moreover, various symptomatome and phenomenome
features should be combined into one latent vector which is the cause of all phenome
indicators. For example, previous research [25] was able to extract one common core from
CGI, suicidal ideation, severity of depression and anxiety ratings, the four domains of
HR-QoL scores, and different domains of disability scores. The construction of such a
latent variable outcome reflecting the phenome of severe depression contrasts with the
status quo of psychiatry, which uses questionable DSM/ICD diagnostic groups or one folk
psychology-derived rating scale as the outcome data [38,48].

Figure 4 illustrates a knowledge-based causal framework based on causal reasoning
and current state-of-the-art research that describes the causal relationships between the
various components of clinical depression. Expanding on this framework will require in-
corporating pan-omics data, environmental (lifestyle/nutrition/toxins) data, psychological
(personality/coping mechanisms), social (socioeconomic/social support), and medical data
(body mass index/comorbidities/heart rate variability) as well as socio-demographic data
and other factors.

Consequently, this framework may be validated using PLS path analysis, which
enables the construction of latent vectors and the mapping of risk-resilience factors to
AOPs, ROIs, and phenome constructs [25,26]. Figure 5 illustrates the output of a PLS
analysis, which enabled the development of a new neuro-immune/neuro-oxidative model
of clinical MDD/MDE that reassembled all components of depression into a data-driven,
bottom-up, digital model that is cross-validated and proven to be replicable using the
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accurate statistical tests as described in [38]. It is important to note that this digital model
allows one to assemble symptomatome, phenomenome and ROI features with multiple
risk-resilience (genes, ELT, environmental, lifestyle) factors and multiple AOPs, thereby
concretizing the abstract concept “phenome” as a neuro-immune and neuro-oxidative
entity, a process dubbed “reification of the phenome of depression” [38]. As a result,
rather than relying on precision psychiatry (a contradiction in terms), we constructed novel
precision nomothetic models of clinical depression in our research.
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disorder. This is an output of partial least squares (PLS) path analysis showing a multi-step mediation
model linking risk-resilience factors (causome, protectome) with adverse outcome pathways (AOP),
the reoccurrence of illness index (ROI), the cognitome-brainome, and the phenome of depression.
G: genome markers; L: lifestyle factors; E: environmentome factors; B: biomarkers or biomarker
sets; DE: number of depressive episodes; ME: number of (hypo)manic episodes; SA: number of
suicidal attempts; S: symptoms and severity of illness scores, Q: quality of life data; D: disability
data. ROI-AOP: a pathway phenotype, namely a common core underpinning ROI and neuro-
oxidative pathways. Shown are path coefficients with exact p-value; white figures in the circles:
explained variance.

Figure 6 shows the different steps in precision nomothetic medicine, from constructing
a cross-validated model, extracting endophenotype classes and pathway phenotypes and
the machine learning techniques that can be used to this end. Figure 7 shows the three steps
of precision nomothetic modeling of mood disorders and the different products generated
during this process.
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Figure 6. The major steps in precision medicine as applied in precision nomothetic psychiatry for
constructing a new model of depression, new endophenotypes including major dysmood disorder
(MDMD), and an idiomatic profile. ROI-O&NS: a pathway phenotype comprising staging of mood
disorders and oxidative and nitrosative stress biomarkers.

This figure shows that partial least squares (PLS) pathway analysis may be used to
compute a digital model of depression. Consequently, the new model is validated using
various statistical techniques which check model fit, replicability, compositional invariance,
and whether the factors are misspecified as a reflective model. Using unsupervised learning
(e.g., various clustering techniques) new endophenotypes may be discovered. These new
classes should be validated using supervised pattern recognition methods including soft
independent modelling of class analogy (SIMCA), support vector machine (SVM), and
neural networks (NN). The top features of the new endophenotypes should be determined
using analysis of variance, SIMCA, and NN. Novel pathway phenotypes are constructed
using PLS and principal component analysis (PCA). Indicator, latent vector, and pathway
phenotype scores are computed to determine an idiomatic profile for each patient.

7.2. Construction of Endophenotype Classes and Pathway Phenotypes within the New
MDMD Model
7.2.1. New Endophenotype Classes

As discussed in the previous sections and shown in Figures 1, 6 and 7, the second step
in the precision nomothetic process is to detect new endophenotype classes that cluster
patients into meaningful subgroups and discover new pathway phenotypes in the model.
Thus, after constructing the PLS depression model, latent variable scores of all constructs in
the model may be computed, including different risk-resilience scores, different AOP scores,
an ROI score, and cognitome, brainome, and phenome scores, which reflect the severity
of the different building blocks of the disorder. Consequently, the scores are subjected to
unsupervised learning, namely cluster analysis, to discover new subgroups of patients
based on the features of the illness. Simeonova et al. [26] discovered that 70% of MDD
patients were assigned to a novel cluster with increased phenome, bacterial translocation
(leaky gut), and O&NS scores, indicating that our unsupervised machine learning disclosed
a novel endophenotype class. Maes et al. [25] discovered that when PLS-derived scores for
the key components were clustered in a sample of depressed patients (including MDD and
MDE), a cluster characterized by increased risk-resilience, O&NS, ROI, and phenome scores
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was formed. Additionally, this new diagnostic class (MDMD) had a greater influence than
the diagnoses of MDD or MDE or bipolar disorder, indicating that even these diagnostic
categories are not important [25]. Therefore, we renamed the new endophenotype class
with elevated risk-resilience, AOP, ROI and phenome scores “MDMD” and showed that
this endophenotype class is due to increased neuro-affective toxicity. It is important to note
that using SIMCA, we can construct digital (twin) models of the new endophenotype class
MDMD, and a digital healthy model as well.
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Figure 7. Three steps of precision medicine applied to precision nomothetic models of mood disorders
and the different products generated during this process. These methods allow us to construct a
digital giant model of depression comprising all building blocks of the disease, endophenotype classes
(including MDMD or major dysmood disorder) and pathway phenotypes (e.g., ROI-AOP, which
is a common core underpinning reoccurrence of illness and a specific adverse outcome pathway)
and personalized scores on these new constructs and other indicators in the model which together
delineate a idiomatic profile for each individual. ROI-O&NS: a pathway phenotype comprising
staging of mood disorders and oxidative and nitrosative stress biomarkers.

Our findings show that biological processes capture mental disease and suffering,
that mental experiences are physically reflected, and that the phenome of mood disor-
ders is predicted by biomarker combinations. Moreover, precision nomothetic psychiatry
(Figures 6 and 7) can be used to discover more influential diagnostic classes for mood
disorders than those conceptualized in the current phenomenological classification (e.g.,
unipolar versus bipolar), and that this new classification should eventually replace the
current ones after further validation and falsification. These findings refute Kohne and van
Os’s contention that biomarkers are inadequate to capture mental experiences and that
precision psychiatry cannot replace present phenomenological categorization methods [41].

Additionally, precision nomothetic models of mood disorders demonstrate that severe
mental suffering may originate in the periphery, not necessarily the brain, implying that
physical states (specifically activated neuro-oxidative and neuro-immune pathways) de-
termine severe mental suffering in patients with mood disorders. This contrasts with the
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widespread folk psychology belief that “all is in the mind” [41], as well as with philosophy
of mind and other philosophical-psychological mind theories, such as those on the immate-
rial mind, intentionality, neutral monism, and mental causation. MDMD is, in summary, a
severe medical disorder with a distinct pathophysiology, namely neuro-affective toxicity,
which has nothing to do with philosophy, qualia, or meaning.

7.2.2. New Pathway-Phenotypes

Pathway phenotypes (biosignatures or endophenotypic quantitative scores) may be
computed by extracting latent vector scores from highly interconnected paths, for exam-
ple, linking ROI with cognitome and phenome features, yielding a ROI-phenome signa-
ture (Maes et al., staging index); linking ROI with ELT and cognitome data, yielding a
causome-ROI-phenome signature [19]; or linking ROI with O&NS indicators, yielding a
ROI-biosignature [57]. Such constructs are extremely important because they offer severity
scores for specific pathway phenotypes and they allow one to learn from the data for
example that the pathophysiology of ROI is tightly coupled with aberrations in O&NS
pathways [57].

The ultimate goal of developing these digital, either new endophenotype classes
or pathway-endophenotype scores, is to allow for more targeted interventions, either
therapeutic or preventive, and to shorten the time for medical innovations, thereby reducing
costs. As such, our results reveal that neuro-immune, autoimmune, O&NS pathways
and lowered antioxidant defenses are new drug targets in MDMD and patients with an
increased ROI.

7.2.3. Towards Personalized Medicine

The last step in precision nomothetic medicine (see Figures 1, 6 and 7) is to develop a
more personalized approach which will allow the individual patient to benefit from the
construction of the nomothetic model, endophenotype classes and pathway phenotypes by
predicting MDMD membership and treatment response, thereby opening the door toward
preventive treatments. As previously stated, there are two primary statistical machine
learning methods that can be used.

To begin, the latent variable scores derived from PLS, or factor analysis not only
delineate the precision nomothetic model, the novel endophenotype class and pathway
phenotype severity, but also build an idiomatic profile that is unique to each individual.
Indeed, this unique profile incorporates risk-resilience, causome, protectome, multiple AOP,
cognitome, brainome, symptomatome, and phenomenone scores, all of which contribute to
the creation of a unique profile that varies between patients. Furthermore, the different fea-
ture set scores that comprise this idiomatic profile may show the top anomalies in causome,
environmentome, AOP, cognitome, or brainome components in a certain person, allowing
for the formulation of individualized treatment methods [38]. Applied to subjects at risk
(those with symptomless illness), the model and pathways phenotype scores may reveal
a propensity to develop MDMD (e.g., ELT combined with specific genes and increasing
O&NS) or may predict the reoccurrence of MDMD (high ROI score) and thus suicidal
behaviors, thus paving the way towards preventive medicine.

Recently, Al-Hakeim et al. [14,59] developed SIMCA as a useful machine learning
method for predicting treatment response, and the same method may also be used to
predict who is at risk for MDMD. In both cases, SIMCA PCA models surrounding normal
volunteers are constructed using the model features (risk-resilience, AOP, ROI, cognitome,
brainome and phenome) measured in healthy controls. SIMCA models of normal controls
are composed of principal components extracted from the control pan-data and thus
describe the feature similarities between those individuals [21,30]. Consequently, the
SIMCA feature scores obtained in subjects at risk or in a clinical partial remitter may be
projected into the class limits of the normal control model (see Figure 2), allowing us
to authenticate subject as belonging to the normal control class or refute normal class
membership. Thus, if a patient treated with antidepressant treatments or an individual at
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risk is not authenticated as a normal control (i.e., is not allocated to the SIMCA control class),
the results indicate that the patient is not remitted (and thus is a partial or non-remitter) or
is at risk to develop MDMD, respectively.

8. Conclusions

In this paper, we explain that precision medicine can be broken down into three steps:
(1) optimizing and enhancing conventional models and generating digital twins; (2) using
precision medicine to establish endophenotype classes and pathway phenotypes; and (3)
developing a digital self for each patient. None of these phases have been fulfilled in
psychiatric research. The failure of precision psychiatry to progress into actual sciences is
due to the lack of an accurate (cross-validated and reliable) model of clinical depression as a
severe medical illness distinct from an emotional reaction. We show how to use SIMCA, PLS
path, factor, and cluster analysis to create a new precision nomothetic depression model.

The term “nomothetic psychiatry” refers to the ability to reify the clinical diagnosis of
depression utilizing causome, protectome, cognitome, symptomatome, and phenomenome
data, as well as AOP data. We use the term “precision” nomothetic psychiatry to describe
how we employed precision medicine methodologies to uncover a new endophenotype
class, MDMD, induced by neuro-oxidative toxicity, as well as new pathway phenotypes,
such as ROI-AOP, which combines the ROI and O&NS pathways. It is worth noting that
the machine learning approaches used in our research enabled us to create digital models
of MDMD and controls (using SIMCA) as well as a digital self for a specific patient. Our
endophenotype classes and pathway phenotypes (based on Thai, Brazilian, and Iraqi
people) should be verified in separate samples, particularly in other Western nations, and
should be optimized and enhanced using pan-omics and comprehensive brainome data.
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