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Abstract: At present, artificial intelligence (AI) has already been applied in cardiovascular imaging
(e.g., image segmentation, automated measurements, and eventually, automated diagnosis) and it
has been propelled to the forefront of cardiovascular medical imaging research. In this review, we
presented the current status of artificial intelligence applied to image analysis of coronary atheroscle-
rotic plaques, covering multiple areas from plaque component analysis (e.g., identification of plaque
properties, identification of vulnerable plaque, detection of myocardial function, and risk prediction)
to risk prediction. Additionally, we discuss the current evidence, strengths, limitations, and future
directions for AI in cardiac imaging of atherosclerotic plaques, as well as lessons that can be learned
from other areas. The continuous development of computer science and technology may further
promote the development of this field.

Keywords: artificial intelligence; atherosclerosis; plaque characterization

1. Introduction

Although modern medical care has increasingly advanced, cardiovascular disease
(CVDs) that has an increasing incidence worldwide still poses a serious threat to the quality
of human life and health. According to the latest report, CVDs remains the main cause of
premature death in most countries, especially low- and middle-income countries [1], which
suggests that treatment and prevention of CVDs still need to be improved [2]. Coronary
atherosclerosis underlies CAD and major adverse cardiac events (MACEs). Detection of
these atherosclerotic plaques, identification of components, and assessment of their risk
are essential for the management of patients with cardiovascular disease. Over the past
two decades, various medical imaging techniques, including the invasive measurements
such as optical coherence tomography (OCT), intravascular ultrasound (IVUS), and nonin-
vasive measurements, such as computed tomography (CT), magnetic resonance imaging
(MRI), and ultrasonography (US) have been developed for the assessment of coronary
atherosclerosis [3].

With the continuous development of imaging technology and the popularization of
imaging examination, massive image datasets have been generated. Meanwhile, big data
are a major driver in the development of precision medicine clinicians and researchers alike
have more opportunities than ever before to engage in the development and evaluation of
novel image analysis algorithms, with the ultimate goal of creating new tools to optimize
patient care [4,5]. Artificial intelligence (AI) is regarded as an exciting research topic
in multifarious fields, as major advances in AI have occurred in recent years [6]. The
application of artificial intelligence to the medical imaging field allows the identification of
the information that improve clinical work efficiency. Additionally, AI has recently been
propelled to the forefront of cardiovascular medical imaging research [7,8].
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The aim of this paper was to focus on research that applied AI for coronary atheroscle-
rotic plaques so as to summarize imaging methods (e.g., OCT, IVUS, CT) and different fields
of coronary atherosclerotic plaques (e.g., identification of plaque properties, identification
of vulnerable plaque, detection of myocardial function and risk prediction). Finally, we
pointed out some current existing problems and future directions.

2. Application of AI in Coronary Atherosclerotic Plaque
2.1. Overview of Artificial Intelligence

Previous articles have described in detail AI algorithms for cardiovascular
imaging [5,9–11]. To facilitate understanding of this review, this section provides a short
introduction to some terminology. The concept of AI, which instructed machines to have in-
telligence similar to humans through learning so as to perform specific intelligent tasks [12],
discover patterns, and make decisions based on data, was born in the 1950s. Machine
learning (ML) is a branch of AI, in which machines or algorithms extract information
independently from big data to make predictions without explicit programming [13]. The
predictive pattern of ML is similar to traditional regression statistical methods. Still, ML
makes predictions based on information obtained from a broad range of big data rather
than a limited set of risk factors. Deep learning (DL) is the most advanced branch of ML
that most commonly uses a multilayer artificial neural network and a multilayer machine
learning model. The distribution characteristics of data are extracted by combining the
low-level local image features and converting them to high-level features, and thus devel-
oping a model simulating the human brain through a neural network. Nowadays, DL is
being used more and more for dealing with large and complex datasets [14]. ML and DL
can be classified into two varieties according to whether the labels are clear or not; these
two varieties are namely supervised and unsupervised learning. When the label of input
data is clear, the supervised learning mode can be selected. When the label of input data is
not clear or is lost, the unsupervised mode can be selected to capture and classify the data
automatically [15].

2.2. Coronary Atherosclerotic Plaque

Coronary atherosclerosis is a common physiological disorder characterized by the
formation of fatty streaks proliferation of intimal smooth muscle cells, which eventually
leads to coronary artery stenosis [16]. Atherosclerosis (AS) is a complex process that in-
volves interactions between monocyte-derived macrophages, endothelial cells, lymphocyte,
and smooth muscle cells [17,18]. The vast majority of CVDs and MACEs usually occurs
following the buildup of plaque inside the coronary arteries that supply oxygen-rich blood
to the heart muscle. Atherosclerotic lesions start with adaptive thickening of intima char-
acterized by aggregation of intimal smooth muscle cells, which can gradually develop
into pathological intima thickening, and are characterized by the presence of cell-free lipid
pools. The presence of a necrotic core is the characteristic manifestation of the fibrous
aneurysm, where fibrocalcific plaque tends to form following the further development of
necrotic core [19]. With complex pathological environmental components, there are notable
differences among different evolution stages and compositions of coronary atherosclerotic
plaques with regard to outcome [20]. Detection of these atherosclerotic plaques, identifi-
cation of components, and assessment of their risk are essential for the management of
patients with cardiovascular disease.

2.3. Characterization of Coronary Atherosclerotic Plaques

Different components of coronary atherosclerotic plaques correspond to different
mechanisms, leading to different outcomes [21]. Therefore, accurate identification of
plaque components is essential for follow-up treatment. Several previous studies have
automatically identified plaque components.

In the field of noninvasive examinations, Zreik [22] and Rajendra [23] have developed
training models to identify plaque calcification in the CCTA automatically. The former uses
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a multi-task recurrent convolutional neural network (RCNN) to develop an ML model to
characterize atherosclerotic plaque properties and coronary stenosis automatically. CCTA
images of 81, 17, and 65 patients were used for model training, validation, and testing. The
accuracy of this model for plaque characterization (calcification, no calcification, mixing,
no plaque) was 0.77 [22]. The latter achieved higher accuracy. He compared the efficacy
of different ML algorithms and probabilistic neural networks (PNN), obtaining the best
accuracy of 0.89 [23].

Masuda and colleagues proposed a model combining ML with a histogram to detect
the characteristics of coronary atherosclerotic plaques (fibrous plaques, fatty plaques) in
CCTA. The model shows a significantly higher area under the curve than the traditional
method (area under curve 0.92 and 95%, confidence interval 0.86–0.92 vs. 0.83 and 0.75–0.92,
p = 0.001) [24]. Yamak et al. trained a supervised model using organic phantom plaques
fabricated from low-density polyethylene (LDPE) and high-density polyethylene (HDPE).
Plaque images from a dual-energy CT scan were used as training data, and the model has
shown the ability to identify lipid and calcified plaque by validation analysis in coronary
scan images of three patients [25].

In the field of invasive examinations, Kim [26] and Sheet [27] attempted to identify
plaque components in IVUS images automatically. Kim extracted six image texture features
from IVUS images, after which a three-level network classification model was used to
classify the coronary plaque into fibrous tissue (FT), fibro-fatty tissue (FFT), necrotic cor
(NC), and dense calcium (DC) based on the image texture. The method achieved relatively
high sensitivity (82.0%) and specificity (87.1%) in distinguishing between FT/FFT and
NC/DC groups [26]. Sheet et al. developed a novel machine-learning-based technique
called Stochastic Driven Histology (SDH), which can automatically characterize image
components in IVUS images. Validation analysis revealed that SDH is highly consistent
with traditional histology in characterizing calcification, fibrotic tissues, and lipids, with
99%, 97%, and 99% accuracy, respectively [27].

There were many studies directed at OCT. Shalev [28] and Xu [29] used a support
vector machine (SVM) to identify plaque components in OCT. Shalev trained and validated
the model using frozen microscopic data, and the accuracy of calcified plaque recognition
achieved 0.97. Xu used a linear SVM classifier to detect unhealthy objects. On this basis,
Zhou [30] used more data and improved models to identify lipid plaques and mixed
plaques, reaching an accuracy of 91.5% and 78.1%, respectively. Kolluru’s [31] model
also trained on frozen images to classify plaques in OCT into four categories, fiber, lipid,
calcium, and others. OCT images were paired with frozen images to extract features, after
which five-fold cross-validation was performed on the training dataset to optimize classifier
parameters. The model achieved an accuracy value that exceeded 90% in all categories. Rico-
Jimenez [32] proposed an A-line modeling method to characterize plaques in OCT, which
can automatically identify fibrotic plaques and lipid-containing plaques with 85% accuracy.
Wilson et al. [33] developed a of convolutional neural network (CNN) in identifying plaque
properties in OCT images using line-based modeling methods, learning that CNN can
significantly outperform in this task. After that, they proposed a method based on the
SegNet deep learning network, proving that the performance of the model was significantly
improved compared with the previous method [34]. Athanasiou [35] and Ughi [36] used
random forest (RF) classifier to classify atherosclerotic plaques (calcium, lipid pools, fibrous
tissue, and mixed plaques) with an accuracy of 80.41% and 81.5%, respectively.

2.4. Detection of Coronary Atherosclerotic Plaque

After years of research, a variety of medical imaging techniques have now been
used to analyze atherosclerotic plaques. These techniques can detect anatomical and
functional abnormalities caused by atherosclerosis, provide detailed information about
plaque composition, and even evaluate the risk of atherosclerotic plaques. These methods
provide a reference for measuring the severity of coronary atherosclerosis in daily clinical
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practice and cardiovascular research and have an important role in the diagnosis and
treatment of related patients [37].

Mainstream noninvasive measurements of coronary atherosclerotic plaques include
CT and MRI. The CT can be used to characterize luminal stenosis, assess the component
load of plaques and vascular remodeling. As a noninvasive test, it can detect asymptomatic
patients with high-risk plaques and stratify the risk of cardiovascular disease [34]. At
the same time, CCTA detection of high-risk plaque can identify high-risk patients with
MACE events and can be used as an independent predictor of the acute coronary syndrome
(ACS) [38]. However, due to the constraints of spatial resolution and radiation dose, CT
cannot identify subtle lesions [39]. MRI provides good contrast resolution of soft tissues. In
addition to showing the vascular cavity and vascular wall structure, it can also clearly show
the plaque load and the progress of plaque bleeding. However, its low spatial resolution
and long imaging time make it unsuitable for the diagnosis of active vascular such as
coronary arteries. Additionally, there are contraindications in the examination of patients
with pacemakers or metals [40], so it is less used for clinical diagnosis of coronary plaque.

Mainstream invasive measurements of coronary atherosclerotic plaques include OCT
and IVUS, which are intravascular techniques that provide a cross-sectional view of the
coronary artery. IVUS has special advantages in detecting vulnerable plaques as it can
clearly distinguish the properties and composition of different plaques [41]. Yet, IVUS is
invasive and expensive, so it is not suitable for a wide population-based screening. OCT
provides a greater resolution than IVUS, which clearly shows thin fiber caps; however,
some large lipid cores and extravascular elastic layers cannot be observed due to weak
tissue penetration [42].

Existing imaging tools can analyze coronary atherosclerotic plaques based on their
morphology and structure, but modern precision medicine requires a more detailed analysis
of plaque. A large amount of data in the image is inevitably overlooked due to the
limitations of the naked eye. Additionally, the methods mentioned above produce large
amounts of image data. Working long hours increases the possibility of missed diagnosis
or misdiagnosis risks made by radiologist due to the subtle variations in the image that can
be easily ignored. Therefore, new imaging diagnosis approaches are urgently required to
improve diagnosis efficiency and accuracy by using existing medical imaging data with the
ultimate goal of Precision Medicine.

3. Application of AI in Coronary Atherosclerotic Plaque Analysis
3.1. Identification of Vulnerable Plaques

Vulnerable plaque rupture is the most common cause of acute coronary syndrome
(ACS), which is the most dangerous type of CAD [43]. Pathological features of most
vulnerable plaques are characterized by a large necrotic core covered with a thin fibrous
cap, as well as abundant inflammatory cells and small amounts of smooth muscle cells [44].
The identification of vulnerable plaques is important for predicting acute cardiovascular
events [45].

Numerous studies have focused on the field of CCTA. Kolossvary et al. extracted
4400 radiological features from CCTA images of 60 patients by using radiomics and found
that 916 features (20.6%) were associated with napkin-ring sign (NRS), of which 440 (9.9%)
multiple radiographic features (short-run low-gray-level emphasis, long-run low-gray-level
emphasis, the surface ratio of component 2 to the total surface) were more sensitive to
high-risk plaques than plaque volume and other conventional quantitative parameters [36].
Then, they performed coronary CT angiography on 21 vitro coronary arteries in the hearts
of 7 male donors (average age, 52.3 ± 5.3). Training radiomics-based ML models were used
for the diagnosis of advanced atherosclerotic lesions on 333 cross-sections of 95 plaques and
evaluation of an additional 112 cross-sections. The results showed that the model was supe-
rior to several traditional methods (plaque attenuation pattern scheme in CT angiography
cross-sections, histogram-based measurements area of low attenuation (<30 HU), average
Hounsfield units of the plaque cross sections) [46]. Recently, they conducted research on
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44 plaques of 25 patients. CTA, OCT, IVUS, and NaF 18-PET examinations were performed
in all patients. The study found that radiomics outperformed traditional CTA parameters
in detecting IVUS low-attenuating plaques, OCT validated thin-cap fibroatheroma (TVFA),
and naf18-pet positive lesions (AUC: 0.59 vs. 0.72, 0.66 vs. 0.80, 0.65 vs. 0.87) [43]. They
conducted a series of studies, which confirmed the feasibility of using radiomics to detect
vulnerable plaques in CCTA, but with similar problems: the studies were based on a single
center, using the same scanning and reconstruction parameters, with the small sample size,
which may limit the extensive use.

Madani formulated the training model to predict the maximum von Mises stress,
which could indicate the risk of plaque rupture, and provide new ideas for the detection of
high-risk plaques in the clinical field [44].

Bae [47] and Jun [48] used ML to predict OCT-TCFA in IVUS and compare the accuracy
of several different algorithms (SVM, ANN, RF, CNN, etc.). The overall prediction accuracy
of the OCT-TFCA exceeds 80%. Sheet et al. collected 13 isolated hearts, using a machine
learning framework to identify real necrotic areas of plaques in the IVUS, which is a marker
of vulnerable plaques. The speckled appearance of these regions is similar to that of
real shaded or severe signal loss regions. Compared with a traditional method such as
histological, the sensitivity and specificity of the method were 96.15% and 77.78% [26].

Concerning OCT, Wang et al. [49] proposed a computer-aided method for quantifi-
cation of fibrous cap (FC) thickness to indicate vulnerable plaques. Liu [50] proposed
an automatic detection system of vulnerable plaque for IVOCT images based on a deep
convolutional neural network (DCNN). The system is mainly composed of four modules:
pre-processing, deep convolutional neural networks (DCNNs), post-processing, and en-
semble. The method was intensively evaluated in 300 IVOCT images. The accuracy of
the system reached 88.84%, which was a great improvement compared with the previous
detection methods.

Fractional flow reserve (FFR) derived from coronary CTA(CT-FFR) is a promising
noninvasive maker of coronary physiology and identification of high-risk plaques. Lee,
J.M. [51] investigated the utility of noninvasive hemodynamic assessment in the identi-
fication of high-risk plaques that caused subsequent acute coronary syndrome (ACS). In
this study, the process of deep learning-based CT-FFR is as follows: (1) coronary models,
including all epicardial coronary arteries, were constructed by the extraction of vessel
centerlines, identification of coronary plaques, and segmentation of lumen boundary along
the coronary trees. (2) The flow and pressure in the coronary model were computed by
solving the Navier–Stokes equations, using computational fluid dynamics (CFD) methods
with assumptions of a rigid wall and a Newtonian fluid [52]. (3) Boundary conditions
for hyperemia were derived from myocardial mass, vessel sizes at each outlet, and the
response of the microcirculation to adenosine. (4) Combine physiological parameters
and fluid mechanics principles with anatomical models to calculate the blood flow and
blood pressure of the coronary arteries in the state of maximum hyperemia, and then
computed the CT-FFR, change in CT-FFR across the lesion (∆CT-FFR), wall shear stress
(WSS) [53]. Additionally, axial plaque stress [54]. The results showed lower CT-FFR and
higher ∆CT-FFR, WSS, and axial plaque stress in culprit lesions compared with non-culprit
lesions (all p values < 0.01), indicating noninvasive hemodynamic assessment enhanced the
identification of high-risk plaques that subsequently caused ACS. This study suggests that
the integration of noninvasive hemodynamic assessment would enhance the prediction
ability for ACS risk and may help provide optimal treatment for those high-risk patients.

Since the recent machine learning algorithm with pixel-level coarse coronary segmen-
tation was insufficient for surface model reconstruction, a new CT-FFR technique with
a “Coarse-to-Fine Subpixel” algorithm for lumen contour was proposed to achieve more
precise reconstructions. This technique computed subpixel level lumen contour generating
the artery centerline after the first coarse coronary segmentation on a pixel level. The new
technology would lead to more precise lumen boundary and vessel reconstructions and
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provide a high diagnostic performance in identifying hemodynamically significant stenosis,
“gray zone” lesions, high-risk plaques, and severely calcified lesions.

3.2. Assessment of Myocardium

At present, the gold standard for the diagnosis of myocardial specific ischemia is the
fractional flow reserve (FFR), which can guide interventional therapy and improve the
prognosis of patients with CAD [55]. The study showed that the characteristics of coronary
plaque can also characterize myocardial ischemia [56]. Dey et al. [57] combined quantitative
stenosis, plaque burden, and myocardial quality into a comprehensive risk score to predict
the impairment of MFR through enhanced integrated machine learning algorithms. The
experiment demonstrated that arterial non-calcified plaque (NCP) load and the approach
combined CTA quantitative stenosis and the above comprehensive score significantly
improved the identification of vascular dysfunction in the downstream compared with
stenosis. Next, they explored the possibility of effectively combining CTA clinical data,
quantitative stenosis, and plaque indicators with AI to predict specific ischemia. A total
of 254 patients were enrolled, and quantitative plaque analysis was used to predict lesion-
specific ischemia, with a final AUC of 0.84 [58]. Other experts tried to combine AI-based
plaque analysis tools with CT-FFR to improve the prediction of myocardial ischemia. Teams
of Gaur [59], von Knebel Doeberitz [60], and Kawasaki [61] used FFR as the gold standard
and proposed machine-learning-based approaches combining CCTA plaque analysis and
CT-FFR. Their results showed that the predictive ability of local ischemia was 0.90, 0.93 and
0.835, respectively, which was superior to that of traditional CCTA narrow grading.

3.3. Risk Prediction

The risk assessment of cardiovascular disease depends on a variety of factors, such as
sex, age, weight, smoking, drinking, and so on [62]. Moreover, the risk level of patients
with diabetes [63], elevated cholesterol, or blood pressure [64] also tend to differ. Different
morphologies of plaques in medical imaging are significant for cardiovascular risk stratifi-
cation [65,66]. Therefore, another important application of AI algorithms in the medical
field is the prediction of cardiovascular disease risk.

In the field of IVUS, Araki presented a model to assess the risk of coronary heart dis-
ease by combining the IVUS grayscale plaque morphology and carotid B-mode ultrasound
carotid intima-media thickness (cIMT) based on SMV, which is a marker of subclinical
atherosclerosis [67]. The team then added plaque major component analysis to the model,
proposed an SVM framework based on plaque morphology and major component (PAC)
to assess coronary plaque risk, AUC = 0.98 [64]. The same team established an ML model
by merging the plaques texture-based with the wall-based measurement features (coro-
nary calcium area, coronary vessel area, coronary lumen area, coronary atheroma area,
coronary wall thickness, and coronary wall thickness variability), which improved the
accuracy of risk assessment by about 6% compared with the plaques texture-based informa-
tion [68]. Cao [69] proposed a neural network-based method to determine the critical point
of a vulnerability index, which distinguishes the fragile plaque from the stable plaque,
AUC = 0.7143. Zhang [70] reported a machine learning approach for predicting the location
and type of high-risk coronary plaque in patients treated with statins therapy.

Considering the studies of risk predicting focuses on CCTA in the field of noninvasive
examination, van Assen [71] used ML to automatically extract plaque information so as to
predict MACEs, AUC = 0.924. Van Rosendael [72] trained the ML model using coronary
artery stenosis and plaque component information to predict mortality in patients with
CAD, AUC = 0.771, beyond other conventional risk scores. Johnson [73] evaluated the
prognosis of 6892 CCTA patients by ML, reporting that the AUC for all-cause death, CAD
death, coronary heart disease death, and nonfatal myocardial infarction was 0.77, 0.72,
0.85, and 0.79, respectively. Motwani et al. [74] further added clinical risk factors to predict
5-year all-cause mortality in patients with CAD. They evaluated 25 clinical and 44 CCTA
parameters, and ML showed higher AUC than other models (segment stenosis score,
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segment involvement score, modified Duke Index, Framingham risk score). Han [75]
and Kigka [76] used ML to predict the rapid development of coronary plaque, which
was thought to be associated with cardiovascular events [77,78], revealing the prediction
accuracy of 0.81 and 0.84, respectively. Table 1 displays the application of AI in coronary
atherosclerotic plaque analysis.

Table 1. Application of AI in coronary atherosclerotic plaque analysis.

Authors Vascular
Segments Year The Method Applied Outcomes Advantages Disadvantages

Athanasiou Plaques 2011 OCT Random forest (RF),
accuracy of 80.41%

Random forest (RF)
classifier to classify

atherosclerotic plaques
(calcium, lipid pools,

fibrous tissue, and mixed
plaques)

Invasive

Wang Vulnerable
plaques 2012 Fibrous cap (FC)

Proposed a
computer-aided method

for quantification of
fibrous cap (FC)

thickness to indicate
vulnerable plaques

A method for
quantification of fibrous

cap (FC) thickness
Invasive

Sheet D Coronary plaque 2013 IVUS

Validation analysis
revealed that SDH is

highly consistent with
traditional histology in

characterizing
calcification, fibrotic

tissues, and lipids, with
99%, 97%, 99% accuracy,

respectively

Developed a novel
machine-learning-based

technique called
Stochastic Driven

Histology (SDH), which
can automatically

characterize image
components in IVUS

images

Invasive, the small
number of

observation

Ughi Plaques 2013 OCT Random forest (RF),
accuracy of 81.5%%

Random forest (RF)
classifier to classify

atherosclerotic plaques
(calcium, lipid pools,

fibrous tissue, and mixed
plaques)

Invasive

Yamak D Coronary plaque 2014

Non-calcified
coronary

atherosclerotic plaque.
Characterization by

Dual Energy
Computed

Tomography

Learning approaches
were explored as a more
advanced mathematical

analysis to use
additional information

provided by DECT

Three models (ANN, RF
and SVM)

The small number
of observations is

the other limitation
of this study

Xu M Atherosclerotic
heart disease 2014 OCT

A linear SVM classifier
to detect unhealthy

objects

The system classifies the
image from healthy and

unhealthy subjects
automatically by utilizing

texture features

Invasive

Gaur Coronary 2016

Coronary CTA
stenosis, plaque

volumes, FFRCT, and
FFR were assessed

Redictive ability of local
ischemia was 0.90

Coronary atherosclerotic
plaque and FFRCT

assessment improve the
discrimination of

ischaemia

Did not confirm
plaque findings by

intravascular
ultrasound

Shalev R Coronary plaque 2016 OCT

Rained and validated
the model using frozen
microscopic data, and

the accuracy of calcified
plaque recognition

achieved 0.97

Regions for extraction of
sub-images (SI’s) were
selected by experts to

include calcium, fibrous,
or lipid tissues

Invasive



J. Pers. Med. 2022, 12, 420 8 of 14

Table 1. Cont.

Authors Vascular
Segments Year The Method Applied Outcomes Advantages Disadvantages

Rico-
Jimenez Aining plaques 2016 OCT

An A-line modeling
method to characterize
plaques in OCT, which

can automatically
identify fibrotic plaques

and lipid-containing
plaques with 85%

accuracy

Automatically identify
fibrotic plaques and

lipid-containing plaques
Invasive

Kolossváry
M

Coronary
vulnerable

plaques
2017

Features are superior
to conventional

quantitative
computed

tomographic metrics
to identify coronary

plaques with
napkin-ring sign

Radiomics and found
that 916 features (20.6%)

were associated with
napkin-ring sign (NRS),

of which 440 (9.9%)
multiple radiographic

features (short-run
low-gray-level

emphasis, long-run
low-gray-level

emphasis

High-risk plaques,
napkin-ring sign

The true prevalence
of the NRS is
considerably

smaller compared
with non-NRS

plaques in a real
population

Kim G Coronary plaque 2018

Plaque components
were classifed into FT,
FFT, NC, or DC using

an intensity-based
multi-level

classifcation model

The classifers had
classifcation accuracies

of 85.1%, 71.9%, and
77.2%, respectively

Three diferent nets. Net 1
diferentiated

low-intensity components
into FT/FFT and NC/DC

groups. Then, net 2
subsequently divided

FT/FFT into FT or FFT,
NC or DC via net 3

Invasive, it did not
acquire signifcant

classifcation results
compared with VH

Kolluru Classify plaques
in OCT 2018 OCT

The model achieved an
accuracy value that
exceeded 90% in all

categories.

Model also trained on
frozen images to classify
plaques in OCT into four

categories, fiber, lipid,
calcium, and others

Invasive

Wilson Plaques 2018 OCT

Convolutional neural
network (CNN) in
identifying plaque
properties in OCT

images using line-based
modeling methods,

learning that CNN can
significantly outperform

in this task

A method based on the
SegNet deep learning

network
Invasive

Zreik M Coronary artery
plaque 2019

A recurrent CNN for
automatic detection
and classification of

coronary crtery
plaque and stenosis in

coronary CT
angiography

For detection and
characterization of

coronary plaque, the
method was achieved

an accuracy of 0.77

Three-dimensional
convolutional neural
network and neural
networkautomatic

detection and
classification of coronary

artery plaque and stenosis
are feasible

Coronary artery
bifurcations were

not manually
annotated and the
network was not
trained to detect

these as a separate
class

Rajendra Coronary artery
plaque 2019

Seven features are
extracted from the
Gabor coefficients:
energy, and Kapur,

Max, Rényi, Shannon,
Vajda, and Yager

entropies

The features acquired
were also ranked

according to F-value
and input to several

classifiers, an accuracy,
positive predictive

value, sensitivity, and
specificity of 89.09%,
91.70%, 91.83% and

83.70% were obtained

Automated plaque
classification using

computed tomography
angiography and Gabor
transformationscan be

helpful in the automated
classification of plaques
present in CTA images

The database was
limited to only

73 patients.
Furthermore, no

quantitative
calcium score was

calculated
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Table 1. Cont.

Authors Vascular
Segments Year The Method Applied Outcomes Advantages Disadvantages

Masuda
T

Coronary artery
plaque 2019

Recorded the
coronary CT number

and 7 histogram
parameters

(minimum and mean
value, standard
deviation (SD),

maximum value,
skewness, kurtosis,
and entropy) of the
plaque CT number

Coronary CT number
(0.19) followed by the
minimum value (0.17),
kurtosis (0.17), entropy
(0.14), skewness (0.11),
the mean value (0.11),
the standard deviation

(0.06), and the
maximum value (0.05),

and energy (0.00)

The machine learning was
superior the conventional

cut-off method for
coronary plaque

characterization using the
plaque CT number on

CCTA images

A small
single-protocol

study and only the
performance of the
machine learning

algorithm was
evaluated

Kolossváry
M.

Coronary
vulnerable

plaques
2019

Diagnosis of
advanced

atherosclerotic lesions
on 333 cross-sections

of 95 plaques and
evaluation of an
additional 112
cross-sections

The results showed that
the model was superior

to several traditional
methods.

Radiomics-based ML
models outperformed

expert visual assessment
and histogram-based

methods in the
identification of advanced

atheroscle
radiomics-based machine

learning rotic lesion

Limited spatial
resolution of
coronary CT
angiography

Kolossváry
M.

Coronaryvuinerable
plaques 2019

Radiomics
outperformed

traditional CTA
parameters in

detecting IVUS
low-attenuating

plaques, OCT
validated thin-cap

fibroatheroma (TVFA)
and naf18-pet

CTA, IVUS, OCT,
positive lesions (AUC:
0.59 vs. 0.72, 0.66 vs.
0.80, 0.65 vs. 0.87)

Coronary CTA radiomics
showed a good diagnostic

accuracy to identify
IVUS-attenuated plaques
and excellent diagnostic

accuracy to identify
OCT-TCFA

Our results of the
general populations

are limited,
multicenter

longitudinal studies
are warranted

von
Knebel Coronary 2019 ICA, CT-FFR Redictive ability of local

ischemia was 0.93

CCTA-derived plaque
markers and CT-FFR have
discriminatory power to

differentiate between
hemodynamically

significant and
non-significant coronary

lesions

Did not
systematically
correlate our

findings on CCTA
with an invasive

reference standard

Kawasaki Coronary 2019 CT-FFR rRdictive ability of local
ischemia was 0.835

CCTA features and
functional CT-FFR was

helpful for detecting
lesion-specific ischemia

Did not evaluate
the influence of CT
image quality on

the CT-FFR
measurements

Liu Vulnerable
plaques 2019

IVOCT images based
on a deep

convolutional neural
network (DCNN)

Automatic detection
system of vulnerable

plaque for IVOCT
images based on a deep

convolutional neural
network (DCNN). The
accuracy of the system

reached 88.84%

Intravascular optical
coherence tomography

(IVOCT)
Invasive

4. Limitations

There are still limitations in this field. In the research of ML used in coronary atheroscle-
rotic plaques analysis, more prominent problems are the following two points: first, in
almost all studies, data derived from a single research center or an old public dataset make
it difficult to cover patients with different conditions and scanning parameters, making
the training model difficult to satisfy the complex scenarios of clinical. Larger, rich public
datasets should be established in the future for higher-quality research. Second, most of
the research in this field takes the diagnostic opinion of artificial experts as the standard,
lacking validation of the gold standard of pathology; therefore, the individual bias of
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experts may affect the accuracy of the final model. Future research on artificial intelligence
for coronary atherosclerotic plaque analysis should be based on more big data; additionally,
multicenter research is necessary to provide better algorithmic models.

5. Conclusions

In summary, artificial intelligence has the potential to expand and improve medical
technologies for better patient care, by reducing the analysis time and provide automated
recommendations to physicians regarding diagnosis and downstream treatment decision
making. A proposed workflow for the incorporation of machine learning and deep learning
analysis of imaging modalities in clinical practice. The workflow brings in a promising
algorithm, based on a recurrent convolutional neural network, for automatic detection and
characterization of coronary artery plaque, as well as detection and characterization of the
anatomical significance of coronary artery stenosis. The areas of AI-based cardiovascu-
lar imaging covered range from imaging analysis (e.g., image segmentation, automated
measurements, and eventually, automated diagnosis) to diagnostic imaging, including iden-
tifying plaques, assessing plaque vulnerability, myocardial hemodynamic evaluation, such
as deep learning-based CT-FFR, and carrying out risk prognosis assessments. Specifically,
the ability of the AI algorithms to make more accurate diagnoses is useful for physicians
to detect diseases earlier in their course to plan for the right treatment action (Figure 1).
With the development of computer technology, bioengineering, and medical imaging tech-
nology, the future of AI in cardiovascular imaging is bright as the collaboration between
investigators and clinicians will have great benefits.
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Figure 1. AI in cardiovascular atherosclerosis imaging. A proposed workflow for the incorporation of
machine learning and deep learning analysis of imaging modalities in clinical practice. AI analysis can
reduce the analysis time and provide automated recommendations to physicians regarding diagnosis
and downstream treatment decision making. The workflow brings in a promising algorithm, based
on a recurrent convolutional neural network, for the automatic detection and characterization of
coronary artery plaque, as well as the detection and characterization of the anatomical significance of
coronary artery stenosis.
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