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Abstract: The objective of this study was to present a methodology and manufacturing workflow
for non-invasive ventilation interfaces (NIV) for neonates and small infants. It aimed to procure a
fast and feasible solution for personalized NIV produced in-house with the aim of improving fit
and comfort for the patient. Three-dimensional scans were obtained by means of an intraoral (Trios
3) and a facial scanner (3dMd Flex System). Fusion 360 3D-modelling software was employed to
automatize the design of the masks and their respective casting molds. These molds were additively
manufactured by stereolithography (SLA) and fused filament fabrication (FFF) technologies. Silicone
was poured into the molds to produce the medical device. In this way, patient individualized oronasal
and nasal masks were produced. An automated design workflow and use of additive manufacturing
enabled a fast and feasible procedure. Despite the cost for individualization likely being higher than
for standard masks, a user-friendly workflow for in-house manufacturing of these medical appliances
proved to have potential for improving NIV in neonates and infants, as well as increasing comfort.

Keywords: ventilation mask; craniofacial malformations; facial scanning; intraoral scanning; cus-
tomized medical device; design and manufacturing workflow; rapid tooling

1. Introduction

Through growing availability and affordability of computer-aided design and computer-
aided manufacturing (CAD/CAM) technologies, it is now possible to meet the increasing
demands of personalized medical devices at the point of care [1]. Examples range from
patient-specific medical instruments [2] and orthoses [3] to personalized protective equip-
ment (e.g., protective mask) [4,5]. The individualization of therapeutic devices has certain
advantages, such as a more precise fit and built-in flexibility to adapt the product to the
end-user [6,7]. Combined with additive manufacturing (AM), a fast, on-demand in-house
production of highly complex parts is possible [8]. Individualization of an already existing
product can be performed by reverse engineering (RE), where the product is redesigned
based on the original device [9]. Medical RE (MRE) is additionally characterized by the
inclusion of patient data, i.e., medical imaging data, in the process [10,11].

MRE comes into play if standardized product dimensions do not meet the required fit-
ting standard. This is especially true for pediatrics, where the anatomy of the patient varies
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considerably, prohibiting development of a standard. This situation becomes particularly
challenging in children with congenital anomalies, such as craniofacial malformations [12].
These newborns may require non-invasive ventilation (NIV), e.g., continuous positive
airway pressure (CPAP), which is the most common reason for rehospitalization of new-
borns with acute respiratory disease [13]. NIV allows ventilation support while avoiding
problems related to intubation or mechanical ventilation, such as barotrauma or volu-
trauma [14]. Of the options available, pediatric units preferentially use NIV as the initial
respiratory support [15]. NIV interfaces for children are commercially available in different
configurations (Table 1), e.g., as oronasal masks, nasal masks and prongs [16].

Table 1. Interfaces for non-invasive ventilation in pediatrics with advantages and disadvan-
tages [14,17–22].

NIV Interface Nasal Mask Oronasal Mask Prong

Advantages • Allows communication
• Newborn sizes available

• No mouth leak • Allows communication
• Neonatal sizes available

Disadvantages • Risk of mouth leak
• Risk of skin injury

• Few newborn sizes available
• Risk of skin injury

• Painful procedure
• Risk of mouth leak
• Nasal injuries
• Difficult to secure position
• More traumatic

Due to the non-availability of oronasal masks in pediatric sizes [19], nasal masks are
the interface used most commonly in pediatrics [17]. Compared to prongs, applying CPAP
via facial masks significantly reduces the need for mechanical ventilation [23]. Nasal masks
and prongs, however, can be susceptible to air leaks, caused by an inadequate fit [24].
Additionally, more than 70% of patients with craniofacial anomalies treated with NIV
suffered from skin complications [25]. This is particularly true for neonates and toddlers
with craniofacial malformations, where proper fitting and positioning of traditional masks
is challenging [26]. Examples of these conditions include Robin sequence and Treacher–
Collins syndrome, where patients are suffering from obstructive sleep apnea (OSA) and
might require NIV in severe cases [27–29]. In Robin Sequence, approximately one-third
of reported cases receive CPAP [30]. The main problems associated with discomfort and
air leaks in off-the-shelf masks are caused by face morphology and size [31,32]. The lack
of fitting oronasal or nasal masks and prongs for young patients could, therefore, be
overcome by creating patient specific NIV interfaces, with the goal of improving CPAP
effectiveness [26,33,34].

For adults, several approaches already exist to produce fitted oronasal [35,36] and
nasal masks using CAD/CAM technology [37–39]. Personalized masks were found to be
useful for reducing complications and discomfort associated with traditional masks, such as
pressure ulcers [40]. Furthermore, a lower price-to-performance ratio was reported [39]. Ad-
ditionally, for complex cases, such as those with dysmorphic facial features or craniofacial
malformations, adequate anatomical positioning of the masks is crucial [41,42].

For pediatric patients, different attempts to produce nasal masks by conventional
methods can be found in the literature. These are based on facial impressions, which are
uncomfortable and invasive for the patient [43,44]. A less invasive approach includes
acquiring the anatomical data using a facial scanner. Willox et al. showed that hand-held
scanners are adequate for scanning faces for customizable NIV interfaces and emphasized
the importance of these interfaces for children [45]. There are, first, attempts of employing
CAD/CAM technologies and MRE for face mask manufacturing in children [26,46,47].
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Morrison et al. constructed a personalized CPAP mask insert to ensure a better fit for a
patient with Treacher–Collins syndrome and reported a significantly higher CPAP effective-
ness [26]. Carroll et al. developed a nasal mask for a two-month-old boy [46]. Both groups
applied a similar workflow: scanning the patient, designing the mask, constructing a mask
casting mold and, finally, casting the mask with silicone [26,46]. The design procedure and
the degree of automation could not be deduced from their studies. Despite these different
attempts, however, a fast, feasible and easy to adapt workflow to manufacture NIV masks
which could allow the in-house creation of the necessary medical device has not yet been
published. The current study aims to test a methodology and to present a manufacturing
workflow for nasal and oronasal masks for neonates and small infants. The objective
is to provide a certain degree of design automation by means of MRE and CAD/CAM
technologies, which aims to guarantee a fast and feasible mask fabrication. We applied
different MRE technologies for daily use in the hospital and compared manufacturing times.
Facilities could then produce patient-specific masks for newborns, in-house. A detailed
design process and workflow of a personalized nasal and oronasal mask is presented and
fitting is qualitatively compared to a commercially available solution.

2. Materials and Methods
2.1. Design of the Base Mask

To begin with, the base mask without any facial adaptation was designed in Fusion
360 CAD software (Autodesk Inc., San Rafael, CA, USA). The construction of both mask
types consisted of two main parts: a standardized part containing the connection to the
ventilator and a customized part. The connection to the ventilator was constructed to fit the
standard CPAP system EasyFlow nCPAP (Fritz Stephan GmbH, Gackenbach, Germany).
The customized part consisted of the nose outline (face outline in case of oronasal mask),
loft and contact area. In the contact area of the mask, a short tube was designed to form the
connection to the skin surface. The loft refers to the area between the connector and the
nasal outline. Based on this design, base mask constructions were created for both nasal
and oronasal masks, as shown in Figure 1.
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Figure 1. Isometric view of nasal and oronasal mask without face adjustment. (A) Nasal mask, top
view and side view (from top to bottom); (B) Oronasal mask, top view and side view (from top to
bottom).

2.2. Defining and Modifying Mask Parameters

Using the “Change Parameters” option, all relevant dimensions were saved as vari-
ables (called “User Parameters” in Fusion 360) that remain freely changeable within this
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separate window. In the sketches, the “Model Parameters” were connected to “User Pa-
rameters”, with the former being responsible for dimensioning bodies and sketches, while
the latter were accountable for customizing parameters related to the individualization.
These “User Parameters” were categorized as fixed and customizable parameters. Standard
values, such as wall thickness, were classified as fixed parameters (Table 2). A standard or
suggested value was given, e.g., 2.5 mm. A labeled technical drawing of the nasal mask
can be seen in Figure 2. The oronasal mask was created from the nasal mask by increasing
the customizable parameters.

Table 2. Summary of the customizable and fixed parameters for nasal masks.

Fixed Parameter Abbreviation Standard Value

Height of connection H_connection 12 mm
Length of connection L_connection 18 mm

Wall thickness wall_thickness 2.5 mm
Height of extrusion of connection E_connection 6 mm

Customizable parameter Abbreviation

Height of the nose H_nose
Space between the top of the nose outline

and the origin S_top_origin

Space between the bottom of the nose
outline and the origin (0/0/0) S_bottom_origin

x-coordinate of point I I_X
y-coordinate of point I I_Y
x-coordinate of point J J_Y
coordinate of point J J_X

Height of extrusion of nose outline E_nose_outline
Width of the tube D_tube
Height of the tube d_tube
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with corresponding stl. file; (B) Scanning with Trios3 intraoral scanner and respective stl. file. 

Figure 2. Technical drawing of the nasal mask obtained by Fusion 360. Top view in the left and
middle images; side view in the right one. The scheme shows the user parameters.

2.3. User Workflow

The user workflow is displayed in Figure 3. It allowed to first choose between nasal
and oronasal masks. The patient was scanned and the scan imported in CAD software
Fusion 360, where it was trimmed and reduced. The next step was to customize the base
mask. Mask parameters could be selected and the scan subtracted from the mask. After
subtracting the scan, the mold was automatically created and then produced by AM and
the mask by silicone casting.
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2.4. Patient Data Acquisition and Mask Individualization

To produce a prototype of the masks, a neonatal resuscitation training dummy (ALS
Baby Trainer, Laerdal Medical GmbH, Puchheim, Germany) was scanned with two different
technologies. A portable and a facial scanner were selected. The portable intraoral scanner
(Trios 3, 3Shape A/S, Copenhagen, Denmark) was used to acquire data around the nose,
while the facial scanner (3dMd Flex System, 3dmD Limited, London, UK) was employed
for obtaining information on the complete face. The scan from the facial scanner was used
for the oronasal mask, whereas that generated by the intraoral scanner was employed for
the nasal mask. These two scanning processes are presented in Figure 4.
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Standard tessellation language (stl.) files were obtained from both scanners and
imported into Fusion 360. The scan mesh was trimmed and reduced by the command
“Reduce”. This step ensured maintaining maximum accuracy and reducing scan size so it
would not exceed the computational limits of the software. Subsequently, the reduced scan
was imported into the file containing the base mask design. The customizable parameters
were adjusted and the mask was adapted to the respective scan by the command “Split
Body”. Figure 5 shows the facial scan with the mask and the nasal (oronasal) mask after
adjustment to the surface of the face.
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(B) Oronasal mask with (left) and without scan (right).

2.5. Design and Manufacturing of the Casting Mold

To manufacture the mask from silicone, molds were created based on the individual-
ized mask design. For both mask types, a casting mold was designed in Fusion 360. The
dimensions of the mold depended on the mask parameters. Dimension included width
(4.5 times the x-coordinate at point I), length (4 times S_top_origin) and height (sum of



J. Pers. Med. 2022, 12, 604 6 of 15

2 times E_connection, 2 times H_nose and d_tube). When the user selected the parameters,
the mold was automatically adjusted and the mask subtracted. The only major difference
between the two mask molds was in the mask’s size. To enable pouring of silicone, molds
were split into different sections. The casting mold for the nasal mask consisted of three
parts, whereas the larger oronasal mask mold comprised five. The nasal mask mold con-
sisted of two opposing parts and a core (Figure 6A). These three components were aligned
using guide pins. For the casting mold of the oronasal mask, the left and right parts were
additionally split into two halves. The mold also consisted of a core, as well as guide pins
to ensure proper alignment for pouring (Figure 6B).
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with (left) and without (middle) upper left part from casting mold for oronasal mask.

Molds for nasal and oronasal masks were both produced with two AM technologies,
stereolithography (SLA) and fused filament fabrication (FFF). The images below depict the
mold for the nasal mask produced with SLA and the mold of the oronasal mask produced
with FFF. Parameters, such as the guide pins’ tolerance and the taper angle, were modified
in respect to each technology. The molds were manufactured employing the SLA device
Form 3B (Formlabs, Sommerville, MA, USA) using the material Dental LT Clear Resin
V1 (Formlabs, Sommerville, MA, USA. Lot #XG461ND1) at 0.1 mm layer thickness. The
orientation and placement of the parts on the built platform are shown in Figure 7A.
Support was automatically generated by the software. To manufacture the casting molds
with this technology, a tolerance of 0.25 mm was chosen for the guide pins, while the
feeder was designed with a taper angle of 25◦. Additionally, the molds were produced
using the FFF device i3 MK3S (Prusa Research a.s., Prague, Czech Republic). They were
manufactured utilizing Polylactid Acid (PLA) filament (Prusament Vanilla White, Prusa
Research a.s., Lot #52ad59fe76) at a layer thickness of 0.1 mm. The orientation of parts on
the platform is shown in Figure 7B. No support structures were necessary. The tolerance
for the guide pins was 0.1 mm and the taper angle 45◦.

SLA printed parts were post-processed (washing and light curing) following manu-
facturer’s instructions and support structures were removed after post-curing. The outer
surface of the cast was smoothened using a grinding disk. Then, outer and inner sides
of the parts were mechanically polished with muslin buff using powdered pumice and
finished with polishing paste. The finished casting mold is presented in Figure 8A. The
FFF mold parts were detached from the printing platform and the brim was removed. No
further post-processing was necessary here as the fit was sufficient (Figure 8B).
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Figure 8. Manufactured molding form for nasal and oronasal mask. (A) SLA molding form for nasal
mask (B) (from left to right) upper left part, lower left part, core, lower right, and upper right part of
FFF molding form of oronasal mask.

2.6. Manufacturing of the Silicone Mask

An addition-curing, two-component 45 ShoreA silicone (SF45, Silikonfabrik, Ahrens-
burg, Germany. Lot #200121 and #290121) was poured into the molds. Trapped air bubbles
were removed using a vibrating plate and vacuum pot. To prevent the form from slipping
or rising, it was tightened with a rubber band. To fill the FFF mold for the oronasal mask,
two steps were required. First, the core was connected to the two lower parts of the mold,
silicone inserted and bubbles removed as described above. Then, silicone was injected into
the second part and air bubbles were removed as well. The silicone mold was cured in an
oven at 50 ◦C for 15 min. Once the silicone was fully cured, the mold was opened, and
the finished mask prototype removed (Figure 9). Silicone overflow was trimmed using a
scalpel.
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(B) Oronasal mask.

The required time of all processing steps was recorded during the manufacturing of
one nasal and one oronasal mask. Moreover, the fitting of the mask was evaluated by
placing the final masks on the face of the resuscitation dummy, directly compared to the
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fit of the conventionally produced mask (RD806-10, Fisher & Paykel Healthcare Limited,
Auckland, New Zealand). Furthermore, it was checked whether connecting the mask to
the standard applicator is possible.

3. Results
3.1. Required Time

The time required to personalize the nasal and oronasal mask is detailed in Table 3. In
addition, manufacturing time for the nasal and oronasal mask with both AM technologies
(SLA or FFF) is listed. The hands-on time comprises scan preparation, mask and casting
mold design, mold post-processing, silicone casting and finally, mask post-processing.
Hereby, the total hands-on time for the nasal mask produced with SLA was approximately
1.5 h (0.5 h with FFF), while the complete workflow (from receiving the scan to the finished
mask) was approximately 6 h (9 h with FFF). In case of the oronasal mask produced with
SLA, the hands-on time was 1.75 h (1 h with FFF), whereas more than 8 h were required for
completion (more than 16 h with FFF). Less time was required for postprocessing the FFF
molds, resulting in a shorter hands-on time. The duration of casting process and finishing
of the masks was independent of the employed AM technology for mold manufacturing.
With FFF, printing required considerably more time which was not compensated by the
shorter hands-on time.

Table 3. The required time for manufacturing a single nasal and oronasal mask. The time was taken
for FFF and SLA-method. Hands-on time consists of the steps indicated by *.

Workflow
Time Required

Nasal Mask Oronasal Mask

SLA FFF SLA FFF

Preparatory scan * 10 min 12 min
Creating mask and casting mold * 8 min 10 min

AM of casting mold 4 h 15 min 8 h 12 min 6 h 45 min 15 h 38 min
Postprocessing of the mold * 1 h 1 min 1 h 1 min

Casting the silicone * 10 min 2 × 10 min
Curing the silicone 15 min 15 min

Postprocessing the nasal mask * 4 min 4 min

In total
* Hands-on time

6 h 2 min
1 h 32 min

9 h
33 min

8 h 46 min
1 h 46 min

16 h 40 min
47 min

3.2. Mask Fit

An image of the nasal mask on the dummy’s face is shown in Figure 10. It is evi-
dent that the manufactured nasal and oronasal masks (Figure 10A,B) have an improved
adaptation to the skin surface compared to the conventional mask (Figure 10C). The ap-
plicator of the EasyFlow nCPAP system could easily be connected to all three masks
(Figure 10(A3,B3,C3)). The mask created by the SLA mold was clearer than that produced
with the FFF mold.
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4. Discussion

In this article, a method is presented to individualize nasal and oronasal masks for
ventilating neonates and infants as an alternative to using conventional, non-customized
masks, including the entire process from receiving a patient’s facial scan, designing the
individualized mask, as well as manufacturing and, finally, evaluating its fit.

4.1. Comparison of the Proposed Design to Other Customizable Masks

There have been numerous attempts at defining workflows for designing and manu-
facturing masks for children and adults. Despite this, no comparable study providing a
feasible and affordable in-house workflow for neonatal application could be found. In the
following section, the presented workflow is compared to other potential options.

Concerning nasal masks, two methods have been proposed. Cheng et al. created a
nasal cushion for CPAP in adults using CAD, from which, later, a mold was manufactured
by Polyjet AM and shape deposition manufacturing. They obtained the facial dimensions
by digitalizing a conventional face impression [39]. In another study, they applied CNC
techniques to produce the respective mold [37]. Their findings suggested that a better
fit can be obtained with the customized cushion compared to commercially available
products [37,39]. Despite proposing a feasible workflow, performing a facial impression
on neonates and infants is a rather invasive procedure in comparison to facial scanners.
Moreover, CAM technologies, such as Polyjet AM, are not as affordable and accessible
for hospitals as desktop AM devices, such as the SLA technology used in the presented
workflow. In addition, a larger variety of medically certified materials are commercially
available for SLA-based printers. Operating these devices has been described as user-
friendly [48]. Milling machines are widely used in hospitals in fields such as dentistry.
These milling devices are normally intended for manufacturing parts of dimensions much
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smaller than the presented mold and, therefore, would not suffice. Consequently, an
industrial CNC milling machine might be necessary which would require outsourcing
production, which results in a longer duration and additional costs. Generally, the shape
of the mold might be too complex to be milled where AM has much less dimensional
restrictions. Carrol et al. reported the customization of a nasal mask for a two-month-old
child with Down syndrome. After modifying a 3D-scanned conventional mask to fit the
patient’s face, a mold was created and manufactured using AM. Unfortunately, no further
data, such as the used printer, could be obtained from their study [46]. This proposed
design, however, does not allow modification of the mask based on some predefined
options and parameters. This could make the workflow more difficult to implement than
the current workflow. In addition, it has limits concerning scalability and standardization.

For oronasal masks, two other methodological reports were found in the literature.
Both are based on the principle of modifying commercially available masks by implement-
ing a new interface between face and mask. Morrison et al. created a NIV interface for a
single patient with Treacher–Collins syndrome. They designed an individualized inlay for
a generic mask (printed with FFF), with the objective of reducing leakage and improving
fit [26]. Despite proposing a workflow solution for neonates or infants with craniofacial
anomalies, the design procedure cannot be easily modified. Morrison et al. implemented
a procedure where the complete design of the inlay had to be created starting from the
scanned surface. A more feasible solution is only modifying selected parts of the mask
for individualization, such as modifying the parameters as in the proposed workflow. Wu
et al. performed a single case study where an oronasal mask for patients with variant
amyotrophic lateral sclerosis was created. Their construction consisted of a generic mask’s
hard shell, a silicone layer and an interface between hard shell and silicone layer [35].
Modifying a generic mask is unfortunately not suitable for preterm infants, who are the
beneficiaries of the presented workflow, as there are only few commercial oronasal masks
available [19].

4.2. Potential of the Workflow

The proposed design and manufacturing workflow may be a viable solution for in-
house manufacturing of personalized masks. Based on facial scans from the patient, an
individualized medical appliance could be fabricated. Two data acquisition devices were
considered: an intraoral scanner and a facial scanner. The intraoral scanner is a more
affordable solution, which might be available in every hospital with a dental department
nowadays. Moreover, these scanners are mostly portable and could even be used in an
intensive care setting. The intraoral scanner poses an advantage for scenarios where the
patient cannot be move from the ventilation device, other devices, or treatments. However,
high-quality scans can be challenging in babies that are constantly moving, particularly
for oronasal masks. Especially when crying, the region around the mouth is in constant
movement. In some cases, these devices might still be sufficient for acquiring a scan of the
nasal mask region.

With state-of-the-art technology, facial scanners might be a better choice, despite some
disadvantages. Although facial scanners are more expensive, they allow for recording a
video of a moving subject and enable to then obtain a 3D image from a single video frame.
Therefore, especially in moving patients the best 3D image can be selected after the scan
procedure. Other options range from recording the face with a smartphone camera to
more sophisticated handheld 3D Scanners. It thus remains a case-by-case decision which
scanning method is preferred.

Independent of the method used for data acquisition, the workflow can be applied to
any facial 3D model.

The software employed for the design procedure (Fusion 360) is a widely accessible
CAD program that is currently free for home or educational users [49]. This allows for the
developed method to be made more readily available to hospitals. Additionally, the design
of the mask can be adapted as well to allow addition of mask fixing systems, avoid areas,
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such as feeding tubes, applying different shore hardness of silicone, adapting mask wall
thickness, etc.

Referring to the manufacturing procedure, access to an AM device for mold production
is necessary. In this study, two widely accessible devices were employed: SLA and FFF.
Although SLA can provide molds with higher accuracy and surface finishing than FFF, it is
considerably more expensive and requires a more timely post-processing [48]. The mold
manufactured by a SLA-based printer also required manual post-processing, hence longer
hands-on time and more additional equipment is required. In this study, a completely
transparent silicone nasal mask could only be obtained by employing the SLA technology,
whereas an opaquer oronasal mask was obtained by using the FFF manufactured mold.
This could be accounted to the rougher surface of the FFF mold. Another advantage of
molds manufactured by SLA devices is that the mold is transparent, which facilitates
locating trapped air bubbles. Currently, a wider range of medically approved materials
are commercially available for SLA in comparison to FFF. Despite of this, with increasing
improvement of devices and materials for FFF, this situation is expected to change within
the next few years. Moreover, direct printing of the mask without a mold could be a valid
alternative. Some methods for direct printing of silicone have been utilized for different
applications (silicone, drop on demand, etc.). Medical-grade silicone printers could also
be employed for direct printing of the mask [50]. They are still expensive, and therefore,
the objective of creating a feasible but fast workflow would not be possible [51]. Direct
printing of masks with SLA technology is still in the future as there are no flexible, medically
approved materials on the market. With further development of materials and devices in
the following years, direct printing of masks by AM technologies might be possible [52].

In the first instance, this study aimed to provide a scalable workflow for individualized
masks for newborns and small infants, as well as patients with craniofacial anomalies.
Even though, the proposed design method can also be used to create customized masks
for patients of all sizes. Despite that standardized masks are more readily available for
adult patients, prolonged ventilation can lead to skin irritation and creation of pressure
ulcers [53]. Customized masks are known to decrease leakage and may improve the fitting
as well as comfort [26,53].

Alongside with the advantages of this workflow, some disadvantages must be men-
tioned. For example, individualization of any type of medical product is often closely
related to increased cost. Even though studies show a higher price-to-performance ra-
tio, not all facilities might have the required financial and material resources [37]. Even
though, for facilities without access to a printer, the production or the casting mold could
be outsourced. The workflow was presented in a way that users with no previous CAD-
knowledge could work with it and the presented devices are user-friendly. However,
dealing with digital technologies does require an additional learning stage for the facility’s
staff [54]. Regarding the workflow, it was automatized as much as possible, but still manual
processing steps are required, such as: post-processing of the molds, pouring of the silicone,
and the removal of the seam created by casting in the silicone mask.

4.3. Limitations

It is important to recognize some limitations of the study. First, the employed silicone
was not a medically approved material. Due to the increased price for the approved one,
a normal commercial silicone was used to test the presented methodology. In addition,
because of ethical implications of working with such patients, a resuscitation dummy was
employed as a patient to assess the feasibility of this workflow. Therefore, the scanning
and digital design was carried out on a non-moving subject. Thus, the use of these masks
for NIV, its leakage and fitting in real patients remains to be tested following the respective
ISO standards [55].
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5. Conclusions

The current study describes a feasible design and manufacturing workflow for patient-
specific oronasal and nasal masks for use in NIV. The presented solution was fast and easy
enough, so that users without previous CAD knowledge would be able to individualize
the designs to the patients. Moreover, the manufacturing could be carried out in-house
to give a solution for neonates and infants, as well as patients with dysmorphic features
or craniofacial anomalies, where the sizing and shape of standard masks is not suitable.
The design workflow was proposed so that a standardized pre-designed mask could be
fitted to every patient, by using an acquired scan from the patient and a changeable user
parameter interface. Despite the fact that costs for individualization are expected to be
higher compared to the standard masks, this is outweighed by the potential benefit for
the patient where a user-friendly workflow for in-house manufacturing of these medical
appliances has a lot of potential.

6. Outlook

Although this study concludes with a simple and feasible workflow for mask creation
and manufacturing, further studies are needed to achieve its implementation into daily
clinical practice. For a start, the mask must be validated regarding international standards.
The workflow must also be employed in a real patient scenario, where leakage and fitting
is studied.

This current workflow aims to keep costs to a minimum and use resources that could
be available in most facilities without the need for outsourcing. Nonetheless, scanning
and AM technologies are rapidly improving. Therefore, the workflow could be optimized
as the technology evolves. Concerning scanning, the use of smaller portable devices or
smartphone 3D cameras is soon to be conceivable as the basis of the workflow. Regarding
the designing of the mask, the program could be adapted by implementation of tools, such
as user interfaces, so that the design experience would be more user friendly and possibly
even faster. Referring to the manufacturing, a two-step manufacturing process was used
in this study, where the mask was not directly produced, and, instead, the fabrication of a
mold and casting with silicone were necessary. The main reason was to have an affordable
process that could be carried in-house in almost all facilities. However, as flexible materials
become more common for AM or as soon as silicone printers are more affordable, the direct
manufacturing of the mask and the avoidance of the mold would be possible.
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