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Abstract: The use of eHealth and healthcare services are becoming increasingly common across
networks and ecosystems. Identifying the quality and health impact of these services is a big problem
that in many cases it is difficult determine. Health ecosystems are seldom designed with privacy
and trust in mind, and the service user has almost no way of knowing how much trust to place
in the service provider and other stakeholders using his or her personal health information (PHI).
In addition, the service user cannot rely on privacy laws, and the ecosystem is not a trustworthy
system. This demonstrates that, in real life, the user does not have significant privacy. Therefore,
before starting to use eHealth services and subsequently disclosing personal health information
(PHI), the user would benefit from tools to measure the level of privacy and trust the ecosystem can
offer. For this purpose, the authors developed a solution that enables the service user to calculate
a Merit of Service (Fuzzy attractiveness rating (FAR)) for the service provider and for the network
where PHI is processed. A conceptual model for an eHealth ecosystem was developed. With the
help of heuristic methods and system and literature analysis, a novel proposal to identify trust
and privacy attributes focused on eHealth was developed. The FAR value is a combination of the
service network’s privacy and trust features, and the expected health impact of the service. The
computational Fuzzy linguistic method was used to calculate the FAR. For user friendliness, the
Fuzzy value of Merit was transformed into a linguistic Fuzzy label. Finally, an illustrative example of
FAR calculation is presented.

Keywords: privacy; trust; modelling; antecedents; Fuzzy attractiveness rating

1. Introduction

Nowadays, people use digital services such as e-commerce, online shopping and,
increasingly, eHealth services, nearly every day. These services are often built on platforms
that—together with different stakeholders—form an ecosystem, where transactions take
place without physical contact [1,2]. Although information privacy, security and trust
are major concerns in digital markets, researchers have observed that digital information
systems are seldom designed with privacy in mind [2]. Tan found that digital information
systems are unreliable, unsecure and risky, and service providers deploying them have the
power, tools and intention to manipulate their users’ (a person or patient) trusting beliefs [3].
The assumption that a user can control the use of their personal information on the Internet
and in ecosystems is only an illusion. In fact, we simply do not have privacy [4–6]. In
real life, it is nearly impossible for the service user (SerU) to prevent unnecessary data
collection, and to know to whom data is disclosed [7]. Often, the SerU is unaware and lacks
understanding of actual privacy threats and their possible consequences [8]. Unfortunately,
she/he cannot expect that domain-specific laws guarantee privacy and trust [9]. Instead,
personal information is often disclosed and distributed to other stakeholders across health
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ecosystems without the user’s consent or an awareness of privacy policies [10]. Frequently,
the only choice for a SerU is to blindly trust the service provider (SerP) or to reject the
service [11].

Today’s eHealth services and applications offer many health promises, but to be bene-
ficial they require a large amount of personal health information (PHI), such as vital signs,
lifestyle, psychological characteristics and personal health beliefs. The SerU’s education
and socioeconomic status are also often exploited [12]. The ongoing transition towards per-
sonalized, participative, preventive, predictive and precision health and social care requires
even more PHI, such as personal behaviors, social relations and environmental data [12]. A
significant privacy concern is that PHI is not collected and used just by regulated healthcare
organizations, but also by commercial web service providers and social web applications.
PHI is also shared across eHealth ecosystems between stakeholders following different
business models. These facts raise meaningful privacy and trust concerns. They result from
the insufficiency of security-oriented privacy protection tools currently used in eHealth,
such as access control, consent, and data anonymization. Furthermore, data encryption has
limited power, as eHealth applications frequently need PHI in plain form [13].

From a privacy and trust point of view, the current situation is unsatisfactory. To enjoy
the health benefits offered by eHealth, personal health apps and precise health services, the
SerU has to maintain information privacy and know how much trust to place in a service
provider and in the ecosystem, and what the level of actual offered privacy is. To meet
this challenge, the authors have developed a solution that enables the SerU to calculate the
level of trust and privacy to place in online eHealth ecosystems.

2. Definitions

Many of the terms used in this research do not have clear meaning. In this paper, the
following definitions are used:

• Attitude is an opinion based on beliefs. It represents our feelings about something and
the way a person expresses beliefs and values [10];

• Belief is the mental acceptance that something exists or is true without proof. Beliefs
can be rational, irrational or dogmatic [14];

• eHealth is the transfer and exchange of health information between health service
consumers (subject of care), health professionals, researchers and stakeholders us-
ing information and communication networks, and the delivery of digital health
services [15];

• Harm is a potential direct or indirect damage, injury or negative impact of a real or
potential economic, physical or social (e.g., reputational) action [11];

• Perception refers to the way a person notices something using his or her senses, or
the way a person interprets, understands or thinks about something. It is a subjective
process that influences how we process, remember, interpret, understand and act on
reality [16]. Perception occurs in the mind and, therefore, perceptions of different
people can vary;

• Reputation is a related but distinct concept of trust. It can be considered as a collective
measure (a common opinion or recommendation) of a community about a trustee [17,18];

• Risk is a subjective expectation of loss, and the probability, likelihood or possibility of
something that people fear as negative [19]. Consequently, risk perception is a feeling,
impression, judgement and subjective evaluation about the likelihood of negative
occurrences [20].

3. Methods

This study drew from existing privacy, trust, e-commerce, Internet shopping, and
eHealth literature. Instead of defining separate privacy and trust scores, a Merit of Service
as a combination of privacy, trust and expected health impact was calculated for the
service used as a whole. Figure 1 shows the different phases of this study. Methods
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such as literature analysis, system analysis, modelling, Fuzzy mathematics and heuristics
were used.
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In this study, the first step was a deep literature analysis followed by the development
of a conceptual model for the eHealth ecosystem. Up to 480 research articles covering
different views on e-commerce, Internet shopping, privacy, trust and eHealth published
in major journals were reviewed in detail. Because e-commerce, Internet shopping and
eHealth build on the same format of ICT architecture and technology, concerns researchers
have found in e-commerce and Internet shopping were also expected to exist in eHealth
services that are modelled ecosystems. Appropriate privacy and trust models for eHealth,
and privacy and trust attributes for calculating the Merit of Service, were selected using a
heuristic method and findings were obtained from the literature analysis.
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The Fuzzy attractiveness rating (FAR) method was used for calculating the Merit of
eHealth service. The value of Merit was calculated using a linguistic Fuzzy approximation
method, where the input attributes were Fuzzy trust rating, linguistic privacy value, and
expected quality of service. Personal weights for attributes were also supported. To make
the result (a linguistic FAR number) user-friendly, it was finally transformed into a Fuzzy
linguistic label.

4. Related Research

Privacy is an elusive concept that has been studied as a philosophical, psychological,
sociological, behavioral, economical and legal concept [19,21]. Traditionally, privacy is
understood as an interpersonal concept, but today we understand that it exists in person–
computer, computer–computer, and person–organization contexts. Two basic modes of
privacy are general privacy and contextual privacy. Basic approaches for general privacy
are value-based (e.g., human rights) or cognate-based, where privacy is related to the
individual’s mind, perception and cognition [19,22]. Privacy violations involve harm to
individuals that can also take place in the future [21].

Widely used privacy approaches include privacy as an individual’s right to control; privacy
as a commodity, property, contextual integrity, a behavioral concept and social good; privacy as
a concern or legal construct; risk-based privacy; and privacy as a fiducial duty [23,24]. The focus
of control theory is self-determination regarding personal information. Modern control
approaches see privacy as the ability to control access to the self [22,23]. In Pertronio’s
boundary theory, people control information flow through boundaries [23]. According to
Lilien, privacy is “the right of an entity acting on its own behalf, to determine the degree
to which it will interact with its environment, including the degree to which the entity is
willing to share information about itself with others” [25].

The concept of privacy as a commodity understands privacy as economic good that
can be traded for other goods or services [22,26]. In the model of privacy as personal
property, the person has data ownership [27,28]. Privacy as a concern refers to individuals’
anxiety regarding data collectors’ and processors’ information practices [20]. Privacy as
a regulative (legal) construct tries to regulate the disclosure and use of information in a
context, and to protect individuals [27]. The risk-based approach to privacy focuses on risk
(e.g., social discrimination, negative impacts of data misuse, surveillance and behavioral
manipulation) caused by data collection, use and disclosure [19]. Risk includes uncertainty,
and in real life it is difficult or impossible for the SerU to measure the actual level of privacy
risk at play [19].

Consumer privacy and online privacy are contextual privacy approaches used in
consumer-to-business relationships (e.g., in e-commerce and Internet shopping) [29]. Online
privacy can be understood as the level of privacy a user has on the Internet and social
networks.

The vague and context-dependent nature of privacy and the lack of reliable infor-
mation available make the measurement of actual (objective) privacy challenging [30].
Therefore, different proxies such as disposition, belief, expectation, perception, service-
level agreements, contracts, external third-party seals, service provider’s privacy policy
documents, reputation, audit trails, direct observations, and degree of compliance with
standards and risk are widely used [25,31,32]. Unfortunately, all of these have weaknesses.
Belief is a personal trait, disposition is a psychological prerequisite, and neither can be mea-
sured [33]. In real life, a SerU has almost no chance to negotiate a service-level agreement
(SLA) or to make a contract with the service provider. Third-party seals and certification
are seldom available for the eHealth user, and the current security-oriented access-control
solutions are ineffective. Privacy damage frequently takes place after the incident, and risks
and perceptions are often only opinions [13].

Researchers have developed many methods for calculating or estimating levels of
privacy, such as privacy calculus, risk evaluation and assessments, privacy threat analysis,
regulatory compliance analysis, the evaluation of privacy documents and privacy policy
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compliance, and the privacy level of an information system [25]. In these calculations,
the SerP’s privacy features and user’s privacy concerns are typically used. Regarding the
privacy calculus method, it assumed that individuals can rationally estimate and weigh
risks, and maximize benefits. According to Kruthoff, the assumption that people are
aware of the risk is seldom true; therefore, the privacy calculus is not a good solution [34].
According to Mitchell, objective risk is a good proxy for privacy but, unfortunately, it
cannot be measured in real life [35].

Similarly to privacy, trust is a vague concept that is defined in various ways in different
cultures and contexts [9]. Trust exists in the relationship between a trustor and trustee,
and it is widely understood as a subjective feature, psychological state, and personal trait,
and it is the prerequisite of an action [9,36,37]. Trust has been studied from the viewpoints
of philosophy, psychology, social sciences, information science, and economy. Basic trust
types are general trust that has no relation to features of the trustee, and domain-specific
trust [38]. Interpersonal trust takes place between humans, but the trustor/trustee can be
any entity, such as an organization, institution or artefact [39]. Typically, trust is needed in
situations where the trustor has insufficient information about the features and behaviors of
the trustee [39]. Disposition (propensity) to trust is the tendency to trust others [40]. Trust
is also widely understood as a belief, expectancy or feeling [41]. According to Castelfranchi,
trust is, at the same time, a mental attitude towards another agent and a simple disposition
to rely upon the other [42]. Chen defined trust as an intention to accept vulnerability under
the conditions of risk caused by a trustee’s actions [36]. A widely used definition of trust
is “The willingness of a party to be vulnerable to the actions of another party based on
the expectation that the other will perform a particular action important to the trustor,
irrespective of the ability to monitor or control that other party.” [38,41,43]. For Gambetta,
“trust is a particular level of the subjective probability with which an agent will perform
a particular action, both before one can monitor such action and in a context in which
it affects own action” [9]. Economic perceptions of trust are based on calculations, i.e.,
rational choice mechanisms [38]. Trust and risk are interrelated concepts, i.e., trust is only
needed if risk is involved. For Mayer, trust in fiduciary relationships is based on belief in
the professional’s competence and integrity [44].

Trust (or lack of trust) is one of the major problems in digital environments, e.g., in
information systems, computer–computer and human–computer interactions, e-commerce,
Internet shopping, social networks, smart physical environments, mobile networks and
eHealth [45]. Computational trust imitates the human notion of trust, and it is widely used
to substitute mental trust models [18]. It helps the SerU to estimate the degree of trust
in a situation. Methods such as intuitive formula, simple mathematics (e.g., mean value,
weighted average, weighted rank), probabilistic approaches, cost/benefit calculations, risk
evaluations, recommender systems, game theory, utility theory, entropy, belief calculus,
subjective logic, collaborative filtering, calculations using linguistic variables, analytic
hierarchy processes, use of regression models, and machine learning are widely used
for computational trust [18,38,46–54]. According to Nefti and Liu, major challenges with
computational methods regard how to quantify trust, the lack of sufficient and reliable
(direct) information, and uncertainty in attributes [48,55].

The Fuzzy nature of trust makes it logical to use Fuzzy logic in presenting and calcu-
lating levels of trust. This process has many advantages: Fuzzy logic is a computational
method that is capable of using imprecise data and quantifying uncertainty [55]. Further-
more, Fuzzy logic is able to present measurement values and results in linguistic terms,
such as “low”, “high” and “good” [56].

For modelling and calculation, Fuzzy trust methods such as simple arithmetical op-
erations (e.g., Fuzzy mean, simple additional weighting, and Fuzzy weighted average),
Fuzzy distance measurement, Fuzzy multicriteria decision making, the Fuzzy analytic
hierarchy process, and Fuzzy attractiveness ratings [57–59] are used. Truong et al. devel-
oped a reputation and knowledge-based Fuzzy trust service platform for the calculation of
personal trust in IoT environments using utility theory [56]. Mahalle et al. used a utility
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function to calculate the overall trust value for a service using attributes such as experience
and knowledge [60]. In a solution developed by Nefti et al., Fuzzy trust was used to
evaluate a merchant’s trust in e-commerce. Thereby, attributes such as the existence of a
provider, policy fulfilment, and affiliation were deployed [55]. Lin et al. used linguistic
terms describing weights of criteria and values of ratings to calculate Fuzzy attractiveness
ratings (FARs) for different bids [61].

According to Herrera et al., there are situations where information cannot be presented
in crisp numbers. Instead, a qualitative linguistic approach should be used where values of
variables are described with words. The value of a variable is characterized by a label (a
word), and the meaning is presented as a Fuzzy membership function [62].

Fuzzy logic-based trust solutions have also been used in health care in topics such as
medical decision-making, patient monitoring, supporting diagnosis, the analysis of medical
(big) data, the quality evaluation of health care services, the analysis of personal health and
the creation of Fuzzy healthcare systems [63–67].

5. Solution to Calculate the Merit of eHealth Services
5.1. Conceptual Model for the eHealth Ecosystem

People use eHealth services and disclose their PHI for applications to obtain personal
health benefits. At the same time, they intend to maintain privacy, and to trust in the service
provider and in the ICT technology used. Nowadays, eHealth services are increasingly
offered via eHealth ecosystems. To understand how this functions and which trust and
privacy relations and challenges exist in eHealth ecosystems, a conceptual model has
been developed (Figure 2). Typical stakeholders in the eHealth ecosystem are the SerU (a
primary source of PHI), health service providers, secondary users of PHI, computational
service providers, communication service providers, the service platform operator, and
regulators. The platform orchestrates health applications and information sharing in
the network. The Internet and mobile networks are typically used for communication.
According to Vega et al., typical eHealth websites include portal sites, support groups,
charity sites, governmental sites, pharmaceutical sites, sales sites, personal sites, medical
databases, media sites and clinical sites [32]. Health services offered by them include health
promotion (e.g., nutrition, personal activity), self-care, and self-assessment, forecasting of
future disease risk, and different test-, disease- and health-specific information services [68].
The delivery of health services needs large amount of PHI, such as information about
conditions, treatments, symptoms, outcomes, laboratory results, genetic information, and
health survey responses [6]. An eHealth application collects, processes and stores PHI, and
it can also share PHI with other partners in the ecosystem.
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5.2. Privacy and Trust Challenges in eHealth Ecosystems

In an ecosystem, stakeholders can locate different domains, having their own business
models and domain-specific laws/regulations with their own privacy policies and trust fea-
tures. The main features which separate eHealth ecosystems from e-commerce ecosystems
are summarized in Table 1.

Table 1. Specific features of eHealth ecosystems.

Highly sensitive health-related data (e.g., diseases, symptoms, social behavior, and psychological
features) are collected, used and shared

Healthcare-specific laws regulate the collection, use, retention and disclosure of PHI

To use services, the user must disclose sensitive PHI

Misuse of PHI can cause serious discrimination and harm

Service provided is often information, knowledge or recommendations without quality guarantee
or return policy

The service provider can be a regulated or non-regulated healthcare service provider,
wellness-service provider or a computer application

Service user can be a patient, and there exists a fiducial patient–doctor relationship

The SerU’s challenge is to find answers to the questions: “How shall I trust the faceless
and the intangible?” [39] Who are the stakeholders in the system? Who are the data sharers?
Who else can see and use my data? Who has control over my data, and how long it is
stored? Furthermore, he or she needs to know the level of trust and privacy of the whole
ecosystem, what kind of actual privacy risks exist, and what the harmful future effects of
data misuse are. The SerU’s concerns are linked to the lack of reliable and precise privacy
and trust information, such as: to which unknown partners and purposes PHI is disclosed;
data ownership; whether the SerP and other stakeholders will behave as expected and
follow ethical rules and regulatory requirements; whether PHI is sold for direct marketing
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purposes; and the legitimacy and presence of the vendor, and the quality of the health
services offered [58,68–70]. Furthermore, it is difficult for the SerU to know which laws
and regulations are applied by a certain stakeholder [71]. Often, the SerP’s privacy policy
document does not explain which protection tools and procedures required by law are
actually implemented [19]. Furthermore, tamper-proof audit trails are seldom available,
and even if policy documents are available, they do not explain precisely how PHI is
processed [72].

In real life, service providers often expect that the SerU’s privacy needs can be bal-
anced with the providers’ business needs [73,74]. SerU’s and providers can also have
contradictorily opinions concerning who “owns” the user’s data. Additionally, often, a
service provider assumes the right to use PHI for their own purposes, and share or sell
it to business partners [75]. Gomez et al. found that most websites use personal informa-
tion for customized advertising, and many “trusted” firms share data with their affiliated
companies [22]. Furthermore, commercial service providers often have minimal incentives
to enforce strong privacy policies [76], and they do not always do what they promise in
their policy documents and trust promises. In eHealth, the situation is not much better.
Huckvale et al. found poor information privacy practices in health apps [68]. According to
Papageorgiou et al., many eHealth service providers failed to provide even basic privacy
protection. According to their review, 80% of health apps transmit users’ health-related
data, and 50% of apps send data to third parties without encryption [77].

5.3. Privacy and Trust Models for eHealth

The different privacy and trust approaches discussed in Chapter 4 present different
views on privacy and trust, with different factor weights. Therefore, for the calculation of
the level of privacy and trust in eHealth ecosystems, it is necessary to choose appropriate
models. In this research work, a heuristic method was deployed.

As eHealth services are used in specific contexts, the general privacy approach cannot
be successful. Researchers have found (Chapter 4) that a control approach is only an illusion,
and from the SerU’s point of view, privacy as commodity, social good, and contextual
integrity approaches are insufficient [13]. Because the SerU is unable to utilize information
systems and program codes, he or she cannot know the actual privacy risks or estimate the
impacts of possible harm. Furthermore, risk perception and probabilities are only subjective
opinions and, for the user, it is impossible to know to what extent they represent the actual
risks. Therefore, the privacy as risk approach is not suitable for eHealth. According to Kosa,
information privacy is about legislation and compliance [78], and because Internet users
often have limited knowledge of the SerP’s privacy features and no power to protect their
data, they must rely on laws and regulations [79]. Based on the analysis performed above,
the authors’ state that, in eHealth ecosystems, a good privacy model is to understand
privacy as a personal property [27], and to use legal norm (law) responsibilities and privacy
policies as proxy. A benefit to this approach is that both laws and organization’s privacy
policy documents are often publicly available, and the privacy as property approach enables
the SerU to decide what PHI to disclose and what to protect.

Dispositional trust and trusting belief models are widely used in e-commerce. McK-
night has proposed a human disposition to trust technology, as well as trusting beliefs
and trusting intentions for information systems [80]. The authors’ state that reducing trust
to a personal trait (i.e., propensity to trust) and belief has meaningful weaknesses. Both
are strong personal feelings without connection to actual trust in information systems
and data processing, and user’s beliefs and feelings are easy to be manipulated by the
service provider. Therefore, disposition and trusting beliefs cannot be used in eHealth. The
approach comprising willingness to be vulnerable to the actions of another party (Chapter
4) also does not work, because it is based on belief or feelings [81]. Furthermore, trust
as subjective probability is not useful, because it is only an opinion, and the definition
of realistic probability is frequently impossible. The economistic rational choice model
approach also fails because of the limited capacity of humans to make rational choices.



J. Pers. Med. 2022, 12, 657 9 of 21

Based on the aforementioned analysis, the authors’ selected a computational trust
model. It has many advantages, such as imitating human trust and enabling the service
user to compute the level of trust in a context using measurable attributes, such as direct
experiences, historical (past) information of the SerP’s features and behaviors, and it also
takes into account the SerU’s perceptions [48]. Computational methods are mathematically
formulated algorithms which can be quite easily programmed and implemented. As the
computational linguistic Fuzzy trust approach has the power to manage uncertainty and
the ability to present both attributes and results in an easily understandable linguistic form,
it was used in this research.

5.4. A Method for Calculating the Value of Merit of eHealth Services

The solution developed by the authors can be used by the SerU to calculate a contextual
value of Merit (Fuzzy attractiveness rating, FAR) for a selected health service and other
participating stakeholders (Figure 3). The SerU can use the calculated value of Merit in the
decision to use or not to use the service.
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In this research, the computational Fuzzy linguistic method, developed by Lin at al.,
was used for FAR calculation, and the formative measurement approach for the selection of
attributes was applied in the calculation [61,82]. FAR was calculated using Equation (1) [56].
In the calculation, three variables were deployed: the service computational privacy score,
trust rating, and expected health impact of service (EXPHI). The SerU’s psychological and
personal factors and impacts of marketing were not included because these are difficult
or impossible to measure. To simplify the calculation, the Fuzzy triangular membership
function was used. The privacy score was calculated as the numeric (crispy) average of
selected attributes, and it was transformed into a linguistic Fuzzy number using a method
proposed by Delgado et al. [83–85]. The Fuzzy trust number is a simple Fuzzy average of
the linguistic values of the trust attributes.

FAR = ∑n
j=1(Wj ⊗ Rj)/ ∑n

j=1 Wj (1)

where Wj is the personal weight for j’s attribute and Rj is the Fuzzy linguistic rating for j’s
attribute.

The calculated FAR was itself a Fuzzy number. To make its meaning easily understand-
able for a human it was matched to the linguistic labels used earlier for trust. Additionally,
the label whose meaning was closest to the meaning of the FAR number was selected
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for the proxy for FAR. Different methods such as the Fuzzy similarity measurement and
Fuzzy set distance measurement can be used for this transformation [61,86,87]. As the
Euclidian method requires the use of alpha cuts, a mathematically easier method using
center-of-gravity points of Fuzzy numbers was deployed in this paper. According to Zhang,
the value of full similarity of two Fuzzy sets in this method is “1” [86].

5.5. Information Sources and Quantification of Privacy and Trust

The main challenge in FAR calculation is the availability and usability of attributes.
Furthermore, the attributes used should be easy to use and to understand for a human, and
the number of attributes should be kept low. Furthermore, attributes should be, if possible,
directly measurable, matching both SerU’s privacy and trust concerns, and be in line with
previously selected trust models (Chapter 5). Based on our performed literature analysis, a
summary of available sources for privacy and trust attributes is shown in Table 2.

Table 2. Typical sources for privacy and trust attributes from [7,54,88–97].

Direct measurements, experiences, interactions and observations

Service provider’s privacy policy document

Content of privacy certificate or seal for the medical quality of information, content of certificate
for legal compliance (structural assurance), andaudit trial (transparency).

Past experiences, transaction history, previous expertise

Information available on service provider’s website

Provider’s promises and manifestations

Others recommendations and ratings, expected quality of services

Information of service provider’s properties and information system

Vendor’s type or profile (similarity information)

The optimal solution is to measure the level of actual privacy. As mentioned earlier,
this is nearly impossible for the SerU. Therefore, proxy variables (legal norm responsibilities
and privacy policies) are used instead (Chapter 5.3). Their attributes can be extracted from
available sources such as policy documents, certificates and audit documents (Table 2).
Third party seals and the use of data encryption in communication can be also exploited.
The literature analysis performed by the authors resulted in a summary of eHealth user’s
privacy needs and how they are expressed in privacy policy documents and privacy law
(Appendix A).

Researchers have intensively studied the privacy policy documents of organizations.
Wilson et al. found that privacy policies vary in length, complexity, legal sophistication,
and coverage of services, and the majority of them are unstructured, making their analysis
difficult for a human [98]. In real life, privacy policies are usually long narrative documents
written in legalese [99]. According to Pollach, the primary goal of policy documents
is to protect companies against privacy lawsuits [100]. Iwaya et al. noted that policy
documents are commonly publicly available on the service provider’s website, and a level
of communication privacy can be estimated from their content [101]. Oltramari et al. note
that privacy policies are legally binding documents [102]. Researchers have found that the
main challenge for the content analysis of policy documents is to select a useful granularity.
According to Harkous et al., researchers have proposed the use of 10 classes for privacy
policy analysis; however, in his Polisis solution, 122 privacy classes were used. For a human,
such a large number of factors can be confusing. However, computer-based automatic
analysis seems to be a promising solution [103].

Based on the performed literature analysis and previous discussions, the authors state
that policy document analysis is a suitable tool to identify privacy attributes. In this research
work, privacy attributes for eHealth services were selected using heuristic analysis. The
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findings are shown in Appendix A, and the proposals made by Egger, Oltamari, Harkous,
Costance, and Beke [102–105] were used to select the privacy attributes applied (Table 3).

Table 3. Selected privacy attributes and their possible values.

Name Meaning of Attribute Value = 2 Value = 1 Value = 0

P1 PHI disclosed to third
parties

No data disclosed to third
parties

Only anonymous datais
disclosed Yes/no information

P2 Regulatory Compliance
Compliance certified by

experts third-party privacy
seals

Demonstrated regulatory
complianceAvailable

Manifesto or no
information

P3 PHI Retention
Kept no longer than

necessary for purposes of
collection

Stored in encrypted form
for further use

No retention time
expressed

P4 Use of PHI Used only for presented
purposes

Used for other named
purposes

Purposes defined by the
vendor

P5 User access to collected
PHI Direct access via network

Vendor made document of
collected PHI is available

on request

No access or no
information available

P6 Transparency Customer has access to
audit trail No user access to audit trail No audit trail or no

information

P7 Ownership of the PHI PHI belongs to DS (user) Shared ownership of PHI
Ownership of PHI

remains at vendor or no
information

P8 Support of SerU’s privacy
needs

SerU’s own privacy policy
supported

Informed consent
supported

No support of DS’
privacy policies or no

information

P9 Presence of organisation

Name, registered office
address, e-mail address
and contact address of

privacy officer available

Name, physical address,
e-mail address available

Only name and e-mail
address available

P10 Communication privacy End-to-end encryption for
collected PHI HTTPS is supported Raw data collected or no

information

Encryption is applied as proxy for communication privacy, and audit trails as proxy
for transparency. To support the privacy as property approach discussed earlier, the SerU
can present their own privacy needs (i.e., how PHI should be processed) by selecting one
of three possible values shown in Table 4.
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Table 4. Selected trust attributes for FAR calculation.

Name Attribute Meaning Sources

T1 Perceived Credibility
How SerP keeps promises, type of

organisation, external seals, ownership of
organisation

Previous experiences, website
information

T2 Reputation General attitude of society Websites, other sources

T3
Perceived competence and

professionalism of the service
provider

Type of organisation, qualification of
employees/experts, similarity with other

organisations

Website information, external
information

T4
Perceived quality and

professionalism of health
information

General information quality and level of
professionalism, quality of links and scientific

references

Own experience, third party
ratings, other’s proposals,

website information,

T5 Past experiences Overall quality of past experiences Personal past experiences

T6 Regulatory compliance Type and ownership of organisation.
Experiences how the SerP keeps its promises

Websites, oral information,
social networks and media.

Previous experiences

T7 Website functionality and ease
of use

Easy to use, usability, understandability, look
of the website, functionality Direct experiences

T8 Perceived quality of the
information system

Functionality, helpfulness, structural assurance,
reliability (system operates properly)

Own experiences, others
recommendations

Researchers have proposed a huge amount of trust attributes for e-commerce, Internet
shopping and online services, such as personality-based, sociological, provider-specific,
technology- and IT-system-specific, institutional, structural, information, service type
and quality-based features. Pennanen presented 49 different antecedents in 3 categories:
interpersonal (22); institutional (8); and consumer-specific (19) [38]. Hussin et al. clas-
sified trust attributes in 7 groups: information-based (25 attributes); function-based (6);
merchant-based (15); content-based (4); product-based (4); process-based (4); and others
(36). He mentioned that a company’s information, such as address, e-mail address, privacy
policy, third-party seals for secure transactions for personal data protection, and third-
party recommendations were the most important factors [106]. For organizations, Söllner
found 53 attributes: 6 for institutions and 11 for IT [107]. Beldad et al. classified trust
attributes in online services into 10 categories (e.g., customer-/client-based, website-based,
and company-/organization-based) [39]. Rocs et al. found that perceived ease of use,
perceived usefulness, and perceived security are important determinants for trust in online
systems [108]. In a review made by Arifim et al., 34 trust antecedents were identified.
Most commonly cited were expertise, reputation, experience, frequency of interactions,
confidential communication, similarity, integrity, dependability, length of relationship, and
firm size [109]. Tamini et al. found that factors such as reliability, assurance, credibility,
product type, experience, reputation, personality type, and cultural background were main
drivers for e-trust [110]. In a literature analysis, Ruotsalainen et al. found 58 trust attributes
classified into the following groups: customer perception and experiences, characteristic of
the service provider, service features, and information-based features and infrastructural
factors [111]. McKnight el. al. proposed structural assurance and situational normality of
an organization as trust attributes [80].

The authors’ literature analysis of eHealth publications found 38 different trust at-
tributes in 5 categories: personal elements and individual antecedents (5); website-related
antecedents (9); service provider-related elements (20); informational elements, i.e., design
and content factors (9); and information sources (5) (Appendix B). A meaningful finding
was that informational elements were the most meaningful attributes in eHealth [112].
According to Liu et al., direct experience is the most reliable information factor for trust
measurement [18]. In the case of unavailability of that information, second-hand knowl-
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edge and perceptions [113], as well as existing knowledge and evidence [114], can be used.
Chen et al. noted that customer’s expectations of a seller’s future behavior are determined
by an evaluation of the seller’s past behavior, intentions, capabilities, and values [36].

As discussed in Chapter 5.3, a computational trust approach was used in this research.
Considered trust attributes included direct measurements, past personal experiences, ob-
served information, transaction ratings, public knowledge (reputation), experts’ recommen-
dations and reports, and users’ perceptions [9,17,88,97,115–117]. In real life, perceptions
describing the relationship between a trustor and a trustee are widely used as a proxy for
trust [43]. A challenge with perceptions is that their sources can remain unclear, and it can
be difficult for a person to separate perceptions from beliefs. Furthermore, perceptions do
not fully guarantee the service provider’s actual trust features and trust behaviors. In spite
of these limitations, according to Li et al., perceptions and second-hand knowledge (e.g.,
reputation and expert opinions) can be used as proxy for trust in situations where direct
and previous information are not available [113].

A heuristic method using the content of Appendix B and the findings discussed above
were deployed in the selection of five trust attributes for FAR calculation (Table 4).

The third variable used in FAR calculation, i.e., the expected health impact of services
(EXPHI), can be understood as an estimate of expected quality of service (QoS).

5.6. Case Study

In a case study, a SerU found an interesting website of a health service that seemed
to offer personal health benefits. For the calculation of trust and EXPHI, the following
linguistic labels and triangular membership functions (set S) were used (Figure 4).
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Figure 4. Used membership function and labels.

For the Set S, the following values were selected: Very low (VL) (0, 0, 0.17); Low (L)
(0, 0.17, 0.33); Lower than average (ML) (0.7, 0.33, 0.5); Average (M)(033, 0.5, 0.67); Higher
than average (MH) (0.5, 0.67, 0.83); High (H) (0.67, 0.83, 1); Very High (VH) (0.83, 1, 1). For
personal weights (W) for privacy, trust and EXPHI, the following labels were selected: Very
Low (VL) (0, 0, 0.4); Low (L) (0, 0.4, 0.6); Average (M) (0.4, 0.6, 0.8); High (0.6, 0.8, 1); and
Very High (VH) (0.8, 1, 1).

In this case, the user selected the following privacy (“P”) and trust (“T”) ratings for
the eHealth website studied (Pi is i privacy rating and Tj is j trust value). Furthermore, the
linguistic value “M” was selected for the expected health impact (EXPHI) (Table 5).

Table 5. Privacy and trust ratings and EXPHI value example.

P1 = 0. P2 = 0 P3 = 0 P4 = 1 P5 = 0 P6 = 0 P7 = 0 P8 = 0 P9 = 1 P10 = 1

T1 = M T2 = MH T3 = ML T4 = M T5 = H T6 = L T7 = H T8 = M EXPHI = M
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The average of the privacy attributes had the value 0.15. This crisp number was
transformed into a Fuzzy number using the method presented by Herrera et al. [79]. The
two tuples that represent the information of 0.15 are shown in set S→(L,−12). This indicates
that linguistic level L (Low) in set S is an acceptable approach for the number 0.15. In this
use case, the user selected the following linguistic weights: privacy = VH; Trust = H; and
EXPHI = M. The calculated Fuzzy numbers and their corresponding weights used in the
FAR calculation are shown in Table 6. Using Equation (1) for FAR calculation (Chapter
5.4.1), the Fuzzy value for FAR was (0.198, 0.376, 0.56) (Table 6).

Table 6. Linguistic values for calculation of FAR.

Factor Fuzzy Value Fuzzy Weight

Privacy L (0.0, 0.17, 0.33) VH (0.8, 1, 1)

Trust (0.375, 0.54, 0.71) H (0.6, 0.8, 1)

EXPHI M (0.33, 0.5, 0.67) M (0.4, 0.6, 0.8)

FAR (0.198, 0.376, 0.562)

To present FAR in set S, a similarity calculation using the center-of-gravity method
(i.e., similarity of two Fuzzy numbers) was performed [86]. It produced the following
similarities: SCOG (FAR, L) = 0.70, SCOG (FAR, ML) = 0.92 and SCOG (FAR,M) = 0.77.
Therefore, the Fuzzy label “ML” is a good linguistic estimate for the Merit of Service (see
Figure 4).

6. Discussions

Millions of people use the Internet and mobile eHealth services and applications.
Furthermore, an increasing number of regulated healthcare organizations are moving part
of their services to digital networks and ecosystems. To be effective, these services require
the availability of an extensive amount of PHI. These, and situations where eHealth services
are part of an ecosystem, raise many security and trust concerns. The disclosure of sensitive
PHI requires that the SerU knows in advance the level of privacy in the ecosystem, and why
and how much she or he can trust the SerP and the other stakeholders in the ecosystem.
Trust requires data about the other partners [118] and knowledge of the ecosystem’s privacy
features. In real life, it is difficult for the SerU to know the actual level of privacy and trust
offered by the ecosystem, and to make informed decisions. There is often a lack of reliable
and directly measurable privacy and trust information. In this situation, humans are subject
to psychological deviations from rationality, and individuals often mispredict their own
preferences, derive inaccurate conclusions, or make inappropriate decisions [119].

To help SerUs in making information-based decisions regarding whether or not to use
eHealth services, the authors developed a solution that calculates the Merit of Service value
for the eHealth service and the surrounding ecosystem. The solution uses available informa-
tion and perceptions concerning the SerP’s and ecosystem’s privacy and trust features and
behaviors. For calculation, a Fuzzy linguistic method that used available or measurable at-
tributes was deployed. Privacy attributes were derived from the service provider’s privacy
policy documents, and trust was estimated from the available trust-related information and
from user’s trust perceptions. Personal weights were also supported. The solution was user
friendly, as linguistic labels were applied for trust attributes and for the value of Merit. The
solution was automated, i.e., it can be given by a computer application that autonomously
collects most/all data needed for the calculation. The solution was also flexible, so different
privacy and trust models and context-specific attributes can be used. The service user
can use the FAR value as an input to the final decision-making process to use or not to
use the offered eHealth service. In this way, the FAR is—from the service user’s point of
view—a step forward from the current unsatisfactory situation. Considering the possible
dissemination of the developed method, the next step might be the development of an
open-source application, made freely available for testing in real-life situations.
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The solution has also weaknesses. Caused by the lack of reliable information of
actual privacy and trust, proxies were used. The availability of the service provider’s
privacy documents and trust promises does not fully guarantee that the provider keeps
their promises. Furthermore, privacy documents are often high-level documents which do
not explain the level of situational normality (i.e., which privacy safeguards are in place).
E-commerce research has shown that a user’s trust in service providers can be manipulated
in many ways. For example, the appearance of a website impacts a user’s trust, and the
recommendations of others can be manipulated [120]. A weakness of the current solution
is also that, currently, a SerU has to analyze the SerP’s privacy documents manually, which
can be time consuming, difficult and frustrating. Policy analysis using artificial intelligence
(AI) and machine learning is a promising solution to this problem [102–104].

Two remaining barriers to this solution are: firstly, the lack of reliable and accurate
privacy and trust information available; secondly, regulators’ low willingness to force
service providers and other stakeholders of the ecosystem to make reliable and detailed
information concerning their privacy and trust features freely available. This unsatisfactory
situation will continue as long as service providers do not have incentives to publish this
information to enable the measurement of actual levels of privacy and trust.

The question as to whether there are risks when using FAR values (i.e., the possibility
that physical, social or economic harm can be caused) also needs attention. The FAR value
is generated by a computational algorithm that can be voluntarily used in decision-making.
It differs from machine learning algorithms because, in the FAR method, the user defines
personal weights. Based on these features, the authors consider it unlikely to cause harm to
the service user.

The authors’ solution is a step towards the trustworthy and privacy-enabled use of
eHealth services. It highlights the development of new intelligent tools for the SerU in
managing information privacy and creating trust in eHealth and in other digital services
offered in ecosystems. Political will is needed to change the current regime that enables the
collection and use of PHI against a user’s personal preferences and privacy laws [11].
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Appendix A

Table A1. Privacy Needs and Requirements In Policy Documents and Law from [95,102–105,121].

Privacy Needs/Questions Meaning in a Privacy
Policy Document

Requirements Exressed by Law
(General Data Protection Regulation,
EU GDPR) 1

PHI used only for purposes defined
by the service provider

How and why a service provider
collects and uses PHI

Limited by what is necessary in
relation to purpose. Explicit purpose

PHI not disclosed to third parties What data and how PHI is shared
with third party Personal policiesTransparency

Regulatory compliance Level Regulatory compliance Lawfully processing Demonstrate
regulatory compliance

What is the content of a personal
privacy policy? Edit and deletion Erase, right to become forgotten, right

to object processing, explicit purpose
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Table A1. Cont.

Privacy Needs/Questions Meaning in a Privacy
Policy Document

Requirements Exressed by Law
(General Data Protection Regulation,
EU GDPR) 1

What are the service provider’s
characteristics? Type of organisation address

Encryption Communication privacy Encryption

How PHI is stored for future use
Data retention (stored as long as
needed to perform the requested
service/indefinitely)

Retention no longer than necessary for
purpose

User access to audit trail What data is shared/transparency Lawfully processing and transparency

User access to own PHI User access, rights to view records Access to collected PHI. Right to erase
and object processing

How personal privacy needs are
supported

User choice/control
(consent, Opt in/opt out, purpose)

Accept personal privacy
policies/explicit consent

Does PHI belongs
to the customer? Ownership of data The individual owns the rights to their

data

Does a registered office
and address exist? Contact information

Privacy guarantees Third-party seals or certificates

Transparency Transparency Right to become informed
1 The General Data Protection Regulation (GDPR) is an EU-wide privacy and security law put into effect on 25
May 2018.

Appendix B. Trust Attributes for eHealth

Personal elements and individual antecedents from [32,49,112,122]

• General trust of the health website;
• Personality;
• Privacy concerns;
• Subjective belief of suffering a loss;
• Beliefs in ability, integrity and benevolence.

Website-related antecedents from [32,49,112,122–124]

• Website design and presence, website design for easy access and enjoyment;
• System usability, perceived as easy to use;
• Technical functionality;
• Website quality (being able to fulfil the seekers’ needs);
• Perceived information quality and usefulness;
• Quality (familiarity) that allows better understanding;
• Simple language used;
• Professional appearance of the health website;
• Integrity of the health portal policies with respect to privacy, security, editorial, and

advertising.

Service provider (institution, non-profit organisation, private business)-related elements
from [32,49,112,122–126]

• Credibility and impartiality;
• Reputation;
• Ability to perform promises made;
• Accountability of misuse;
• Familiarity;
• Branding, brand name and ownership;
• System quality (functionality flexibility), quality of systems, stability;
• Professional expertise;
• Similarity with other systems, ability, benevolence, integrity of the health portal with

the same brand;
• Transparency, oversight;
• Privacy, security;
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• Privacy and security policies, strategies implemented;
• Regulatory compliance.

Informational elements (design and content factors) from [49,112,122,124]

• Quality of links;
• Information quality and content (accuracy of content, completeness, relevance, under-

standable, professional, unbiased, reliable, adequacy and up-to-date), source expertise,
scientific references;

• Information source credibility, relevant and good information, usefulness, accuracy,
professional appearance of a health website;

• Information credibility;
• Information impartiality.

Information sources from [49,67,112,122,127]

• Personal interactions;
• Personal experiences;
• Past (prior) experiences;
• Presence of third-party seals (e.g., HONcode, Doctor Trusted™, TrustE).
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