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Abstract: Multiomics data of cancer patients and cell lines, in synergy with deep learning techniques,
have aided in unravelling predictive problems related to cancer research and treatment. However,
there is still room for improvement in the performance of the existing models based on the afore-
mentioned combination. In this work, we propose two models that complement the treatment of
breast cancer patients. First, we discuss our deep learning-based model for breast cancer subtype
classification. Second, we propose DCNN-DR, a deep convolute.ion neural network-drug response
method for predicting the effectiveness of drugs on in vitro and in vivo breast cancer datasets. Finally,
we applied DCNN-DR for predicting effective drugs for the basal-like breast cancer subtype and
validated the results with the information available in the literature. The models proposed use
late integration methods and have fairly better predictive performance compared to the existing
methods. We use the Pearson correlation coefficient and accuracy as the performance measures for
the regression and classification models, respectively.

Keywords: breast cancer subtype; deep learning; multi-omics data; drug response; basal-like
breast cancer

1. Introduction

Of the many types of cancer, breast cancer (BC) is the most prevalent cancer among
women across the globe. It is increasing at the alarming rate of 14% each year in India.
Fifty-seven percent of the total cancers reported were BC, making it the leading [1,2] type
of cancer. Globocan’s 2020 [3] data suggest that “female breast cancer is the second most
commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%) and a death
rate of 6%”. These global data also reveal that one in 28 women is likely to be affected by
BC during her lifetime. This statistic suggests a need to conduct research related to the
diagnosis and treatment of BC. Although terminal diseases such as cancer have been the
leading cause of death, intensive research leading to timely interventions and personalized
therapies has improved the prognosis [4,5]. The main factors that influence personalized
treatment are the genotype of the patient and the patient’s history and sensitivity to the
therapy administered. Only 15% of genomic-based studies have regulatory consent [6].
Although many knowledge-based systems have aided in improved therapies, there is still
room for improvement in these intelligent systems for better prognosis of BC patients. The
systems can leverage the patterns from varied omics along with phenotypic information to
address the gaps in the effective application of personalized treatment.

To profile heterogeneous genotype data related to BC, high-throughput technologies
may be exploited. Genotype data, precisely known as genomics data comprising the gene
profiles of patients or cell lines, are hosted by popular websites such as The Cancer Genome
Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE) [7,8]. The genomic data at
their disposal are in the form of miRNA gene expression, mRNA gene expression, somatic
mutation, copy number variation, methylation, etc. Early studies were based on the analysis
of single omics data, such as mRNA-based gene expression or DNA methylation. This
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single-omics analysis is limited to exploring the underlying biological mechanisms [9] and
capturing the intricacy for various complex diseases that can explain its molecular property.
Recent studies have shown that integrating omics data gives a better understanding of
the overall impact that can influence cancer profiling, diagnosis, and treatment. This
integration has helped in identifying biomarkers and predicting clinical outcomes for
various genetic diseases, such as cancer and Alzheimer’s disease. Modelling integrated
omics data for predicting cancer subtypes and predicting the drug responses of any cancer
can be a game changer for personalized medicine. Highly available multiomics data along
with high-performance computational methods and machine learning algorithms can be
effectively leveraged in addressing challenges related to personalized medicine.

In this paper, we propose methods to model multiomics data for classifying BC
into subtypes and DCNN-DR for predicting the drug response of cancer drugs on BC in
particular. Deep learning techniques such as DNNs, CNNs and autoencoders are exploited.
The performance of the models is compared with the existing methods for similar purposes.
Furthermore, we also used DCNN-DR to predict effective drugs for BLBC, a subtype of BC.

1.1. BC Subtypes

The classification of BC patients into proper subtypes is important for selecting an
appropriate line of treatment. Moreover, having prior knowledge of how each subtype is
distinguished is vital for research into new treatments. The molecular classification of BC
was introduced in 1999 by the National Cancer Institute (NCI). Initially, Perou et al. [10]
proposed four BC subtypes: the luminal subtype, the basal-like subtype, the human
epidermal growth subtype and the normal breast-like subtype. The luminal subtype was
further classified by Sorlie et al. [11] as luminal A and luminal B. Waks et al. [12] classified
BC into three major subtypes based on hormone bimolecular markers, oestrogen receptor
(ER), progesterone receptor (PR) and HER2 (hormone receptor 2): ER+/PR+/HER2−,
HER2+ and TNBC. Tao et al. [13] proposed five subtypes based on histological markers
along with ER, PR and HER2. These subtypes are luminal A, luminal B, HER2+ and unclear
type. In our work, we consider five subtypes based on PAM and TCGA [14,15]. The
summarized information of the five subtypes considered is found in Table 1.

Table 1. PAM50 BC subtype classification.

BC Subtypes Suggested Therapies and Other Information

Luminal A Endocrine Targeted Therapy; Low grade cancers with better survival rate

Luminal B Targeted Endocrine Therapy; Elderly patients are affected with prognosis
slightly worse than Luminal A subtype

Basal-like Chemotherapy. No targeted therapy; Poor prognosis
Is further classified as Basal-like type 1 and 2 etc.,

Her2-enriched Her2 Targeted therapy; Poor prognosis
Normal-like Targeted therapy that targets Ki-67; Good prognosis

Luminal A accounts for 60% of all BC types and has the highest survival rate [16].
Elderly patients are at risk of luminal B. The HER2+ subtype accounts for 25% of total BC
with a poor survival rate. Classification is essential to decide the line of treatment and
therapies used. For example, luminal A and B patients are sensitive to endocrine therapy.
Patients with Her2-enriched and normal-like subtypes benefit from Her2 and Ki-67 targeted
therapy, respectively. Basal-like subtypes pose challenges to clinicians as there is no targeted
therapy yet, due to its heterogeneity [17]. The treatments are usually in conjunction with
radiation, chemotherapy and surgery, depending on each case. Early subtype classifications
were based on immune-histological analysis, mammography and radiology. With the
high availability of omics data, models have been proposed for classification based on
molecular data. This approach can complement immunohistochemistry techniques for
better diagnosis. The earlier models are based on single omics data analysis, such as
gene expression or DNA methylation. Both supervised and unsupervised methods were
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proposed. Recently, models have been developed by integrating omics data and using
machine learning techniques such as SVM and deep learning [13,18]. In our study, we
used omics data to represent different characteristics of gene profiles, integrate them and
subsequently analyze them. The subset of features from each omics dataset is combined to
form the input for the autoencoder that forms the basis of classification.

The multiomics data used in our study are copy number variation, mutation, methy-
lation, miRNA, RNA, and protein-expression [19]. Clinical data were also integrated for
training the model. The output is the BC subtype that can further help clinicians confirm the
diagnosis and decide the line of treatment. The framework for subtype classification is illus-
trated in Figure 1a. The performance of the proposed model is compared with classification
based on single omics data and other state-of-the-art subtype classification methods.
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1.2. Drug Response

One of the important aspects of personalized medicine is predicting drug response.
Multiomics data have provided a better insight into cancer phenotypes [20] by highlighting
the complexity of biomolecular data. Drug response is mainly influenced by genetic
makeup. Predicting the sensitivity of a particular drug to BC cases is a crucial problem,
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as it is a baseline for the design of drugs. Clinicians are widely adopting it for treating
cancer patients. The success of targeted therapy lies in identifying the target that may be
a mutation or highly expressed gene. Based on the target, patients may be administered
the right drug quantity to inhibit tumor growth. Identifying the drug and quantity is a
problem that can be addressed by developing drug response prediction models for targeted
therapy. Cancer cell-lines play an important role in such research, as insufficient data
are available on patients with drug responses. Databases such as the Cancer Cell Line
Encyclopedia(CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) provide omics
data such as gene expression, mutation, and the methylation of cell lines and drug response
matrix for cancer drugs. The drug response matrix indicates each drug versus the cancer
cell line. The indicator may be a measure like Max IC50. These datasets can be integrated
to investigate the drug response of various drugs on BC cell lines. Knowledge discovery of
profiles linked to cancer and their interactions help in the identification of gene signatures
with therapeutic impact [21].

Zhang et al. [22] built a similarity network to predict drug sensitivity. Their computa-
tional model was driven by gene expression of the cell lines and the molecular structure of
drugs. Turki et al. [23] proposed a link prediction approach for predicting sensitivity to
drugs. Their method first selects a subset of features using a matrix decomposition tech-
nique that is later trained using a supervised link prediction algorithm. Sharifi et al. [24]
proposed a late integration multiomics drug prediction model based on deep neural net-
works. They validated their model for seven drugs that included two targeted and five
chemotherapy drugs. The synergy of integrated omics-profiles along with drug features
has not been exploited to the fullest for BC subtypes. Hence, we propose a late integration-
based deep learning model: DCNN-DR, the Deep Convolution Neural Network-Drug
Response model. The proposed model integrates omics data and leverages convolution neu-
ral networks to predict the response of up to 108 drugs on cancer cell lines using a threshold.
We performed further analysis to predict the effective drugs for the BLBC subtype using
the proposed model. The DCNN-DR model exhibits better performance than models based
on single omics data. The model also fairs well compared to other state-of-the-art methods
for certain drugs. The framework used for the problem is depicted in Figure 1b. These
integrated omics-data-based predictions may help clinicians make reasonable decisions in
therapeutics and provide insight into the biomarkers that drive cancers.

2. Materials and Methods
2.1. BC Subtype Classification
2.1.1. Datasets

The multiomics data that is already preprocessed may be found on the FireBrowse
portal [25]. The source hosts omics-datasets of more than a thousand BC patients’ informa-
tion. The omics range includes GISTIC2 CNV, miRNA, mutation, RNA, protein expression
and methylation data of the patients. The number of features of each dataset is shown in
Table 2. Along with multiomics information, the clinical statistics of patients were also
included in the study. The final dataset with 20% missing values filtered and imputed
can be found in [26]. Two hundred and seventy-nine of the total patients had overlapping
information of all the aforementioned six omics data along with clinical information. The
number of samples of each subtype i.e., luminal A, luminal B, Basal-like, Her2+ and Un-
known are 140, 68, 47, 15 and nine, respectively. The synthetic minority oversampling
technique (SMOTE) [27] was used to handle the class imbalance problem. SMOTE is an
oversampling technique that synthesizes samples for minority classes. In our case Luminal
A and Luminal B samples outnumbered other subtype samples. This number was balanced
by synthesized samples produced by SMOTE. The sampling process increased the number
of observations from 279 to 600.
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Table 2. Summarized information of omics data used to train the model.

Omics/Phenotype Data Total Number of
Observations

Number of Features
Originally Description

RNA 1093 17,814 z-scaled RSEM values
miRNA 1078 1046 log2-RPM value

Mutation 977 977 Binary data for gene mutation
CNV 1089 15,186 Values computed from patient’s GISTIC2

Methylation 1097 27,578 DNA methylation Scaled β values
Protein 887 226 Scaled β values

Clinical Data 1097 19

Only clinical features like age, days to the last
follow-up, gender, lymph node metastasis, the

number of affected lymph nodes, pathologic stage,
tumour stage, histological type and metastatic stage

were considered.

2.1.2. Methods

In general, for a deep learning model, we need not choose features individually
because the weights of the neural network can do it. Nonetheless, the “big p small n”
paradigm in omics data [28], where p is the number of features and n is the number of
samples, distort the deep learning model. To overcome this issue, we performed feature
engineering before training the deep neural network [29]. We chose nearest component
analysis (NCA) for feature reduction. NCA is a supervised feature selection technique that
considers the effect of labels corresponding to the samples, making it a reasonable choice
for the classifiers [30]. This is contrary to popular unsupervised methods like principal
component analysis or t-Stochastic neighbor embedding which are blind towards observa-
tion labels. This feature engineering step helps in representing data in low dimension space
without losing the data integrity in biological processes [31]. Given each omics profile of
m instances, X = x1, x2, . . . , xm ∈ Rf and label for each instance is c1, c2 . . . cm, the data
are represented by m x f matrix with n instances and f features. In our case each instance
is patient information with f genes and each class label is BC subtype of the patient. The
genes represent measurements of methylation, mRNA and other omics data. The core
distance metric [32] used by NCA is as given below in Equation (1):

d(x,y) = (x − y)T (z − y) = (Ax − Ay)T (Ax − Ay) (1)

The resulting feature number generated for each omics dataset was 75 for CNV data,
100 for mRNA data, 23 for methylation data, 4 for mutation data, 30 for miRNA data and
14 for protein data. The feature engineered data is available on [26]. Similar to the method
discussed by Sharifi et al. [24], our deep neural network model consisted of seven encoding
subnetworks, one for each dataset and a classification layer. The encoding subnets were
employed using the encoding layer of the autoencoder framework. Each omics type has its
feed-forward encoding subnetwork that is fully connected with rectified linear activation
function. To regularize the model, dropout was used. Batch normalization enhanced the
training process. After learning from the encoding subnetwork, the learned features were
concatenated and formed the input to the classification layer. Suppose each omics set is
of dimension m × fi (m instances and fi features each for ith omics dataset). Then, the
resulting integrated input for the classification layer is of dimension m × F and represented
by Equation (2) where ⊕ is concatenation operator.

m × F = m × f1 ⊕m × f2 ⊕m × f3 ⊕m × f4 ⊕m × f5 ⊕m × f6 ⊕m × f7 (2)

The classification layer was used to predict subtypes of breast cancer using the con-
catenated input. This layer was used with dropout and weight decay for regulariza-
tion. Softmax regression and cross-entropy were used for multiclass classification and
loss, respectively.
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2.1.3. Performance Measurement

The accuracy of the model is evaluated using performance measures such as accuracy,
F-measure etc. The model’s performance was compared with single omics data model and
other state-of-the-art methods that used multi-omics data.

2.2. Drug Response Prediction
2.2.1. Dataset

The GDSC website [32] hosts the information of both chemotherapy and targeted
drugs. The IC50 values of cell line and drug pair <Ci, Dj> were chosen for our experi-
ment. Ci here represents a single sample with features from integrated-omics profiles. Dj
represents a single drug. The IC50 values of the drugs form the label for each <cell-line,
drug> pair. The processed and imputed IC50 values of 42 BC cell lines and 100 drugs are
available at [26]. The remaining eight drugs (from GDSC2) that were considered for the
experiment had relevance to BC as suggested in the literature [33] and hence were included
as part of the study. IC50 values are log-transformed. The omics data and corresponding
features of 42 cell-lines are summarized in Table 3. For external validation, omics data
of the BC patients available on TCGA were used. The four omics profiles, namely CNV,
methylation, gene expression and mutation binary data used to train the model were used
to predict drug response and IC50 values for TCGA-BC patients. The omics data of 607
BC patients with all the relevant omics profile and NCA features (used for training) and
PAM50 subtype classification were filtered. The processed TCGA omics data for BC is
available on the GDAC portal [25] and linked-omics [34].

Table 3. Number of features for each omics dataset for 42 cell-line samples.

Omics Data Total Number of Features for Each Omics

mRNA 697
Mutation 34,673

CNV 710
Methylation 808

2.2.2. Methods

Feature selection was performed similarly to the steps mentioned in Section 3.1. The
final feature numbers used for training the model were 15, 26, 26 and 108 for the mRNA,
mutation, CNV and methylation datasets, respectively. Omics-specific subnetworks were
tailored to handle the information of each omics profiles separately. Subsequently late-
integration was implemented, where each subnetwork first learns a representation of
itself and all the learned representations are later concatenated. The four concatenated
subnetworks can be represented by Equation (3) where Sr, Sc, Sm, Sd are subnets to handle
mRNA, CNV, mutation, and methylation data, respectively.

N = Sr ⊕ Sc ⊕ Sm ⊕ Sd (3)

The network N of combined features forms the basis of the CNN layer of the proposed
regression model. The model predicts the IC50 value for each cell/patient-drug pair <Ci,
Dj>. Repeated five-fold cross-validation was used to improve the estimated performance
of the model. The optimized hyper parameters that helped tune the model were learned
using hyperas, a Bayes-optimization variant supported my sklearn libraries in Python.
Optimizers such as Adam, SGD, and RMSprop were tested, of which RMsprop gave a good
prediction accuracy. The learning rates and batch normalization were tweaked to 0.002 and
128, respectively. Tanh activation was used on individual subnets and relu was used for
the CNN layer. Dropout was used to prevent overfitting. The loss function used was a
mean-squared error.

After predicting IC50 values for 108 drugs, the drugs with Pearson’s correlation
coefficient (PCC) values less than 0.7 were discarded. Consequently, each cell line and drug
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pair was classified as sensitive or resistant based on preset thresholds. The median IC50
value for each drug was set as a threshold. The next important step is binary classification
of the cell lines into two categories, sensitive or resistant, using the median IC50 for each
drug as the threshold. Each cell line and drug pair <Ci, Dj> is marked as sensitive if the
corresponding IC50 value of <Ci, Dj> is smaller than the threshold; otherwise, it is marked
as resistant. Sensitivity suggests that the jth drug is effective and is a probable therapeutic
candidate that can be considered for the treatment of the sample ith cell line, Ci.

2.2.3. Performance Measurement

The performance of the multiple-output regression model was evaluated using metrics
such as mean squared error and r2 score. PCC was calculated for real and predicted
IC50 values for each <Ci, Dj>. The state-of-the-art methods were compared to check the
effectiveness of popular cancer drugs on cell lines and BC patients. The performance in
terms of the AUC of certain drugs was compared with the AUC published in the literature.

3. Results
3.1. BC Subtypes

The performance of the proposed classifier was evaluated for both binary and multi-
class classification. Additionally, the performance was also compared with other similar
approaches. Figure 2a shows the confusion matrix reflecting the performance of the classi-
fier for each subtype.
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Figure 2. BC Subtype classification performance. (a) Confusion matrix for 140 test samples.
(b) Single vs. multi-omics data performance comparison (c) Binary classification with Luminal
A as common subtype in each case. (d) Comparison of existing methods; concatenated elastic net and
random forest are in-house methods. DeepMO and MKL are mentioned in the literature.
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The total number of test samples picked by the model were 140. Her2+ and unknown
predictions were 100% accurate. Out of 34 basal-like subtype samples, one was misclassified
as luminal B. The model incorrectly classified four instances of luminal A as luminal B.
Additionally, three instances of luminal B were misclassified as luminal A. The confusion
between luminal A and luminal B subtypes may be attributed to their molecular similarity;
both ER and PR are highly expressed in these cases. Figure 2b (Figure S1a,b) shows different
metrics for comparing the performance of the proposed models with single omics data such
as miRNA, methylation, mRNA and clinical data (Table S1). The accuracy of the proposed
multi-omics model with late integration was 0.94.

In Figure 2c (Figure S1c–e), performance of the model for luminal A vs. all other
subtypes is presented. The model’s performance deteriorates while classifying the luminal
A and luminal B subtypes. Figure 2d compares multiomics models based on machine
learning techniques such as random forest, elastic net and microkernel [13] learning. A
state-of-the-art deep learning model DeepMO [18] was also compared with our model. Our
integrative model performed fairly well compared to the existing methods.

Biological Relevance

The feature selection (FS) step can improve the accuracy of multiclass classification.
The accuracies with FS and without FS are 0.79 and 0.94, respectively. The features from
all of the omics datasets used in the training process were combined and ranked using
the NCA technique. A list of the 20 top-ranked genes with their p values is presented in
Table S2. Metascape [35] analysis of the top seven screened genes, TP53, CDH1, EGFR,
ANKS4B, B3GAT1, ESR1, and TMEM90A is shown in Figure 3a,b. Figure 3b is a network
of the protein–protein interaction network reflecting pathways responsible for BRCA.
Figure 3a,c,d present GO analysis and DisGeNET. These analyses show that genes that
have an impact on the proposed model also have biological relevance.
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protein interactions of the shortlisted genes. (c) DisGeNET analysis reflecting the top ranked gene
contributions to BC. (d) Wiki and Go pathway results.
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3.2. Drug Response

Drug-response prediction is a multiple-output regression problem developed to pre-
dict IC50 values for a sample and drug pair. We trained the model using the omics data of
42 BC cell-line samples from CCLE. The NCA feature selection method aided in optimal
feature selection for omics data, including information on 108 drugs from GDSC1 and
GDSC2 and omics data for 42 BC cell-line samples. Both chemotherapy and targeted drugs
were used for training the model. The resulting DCNN-DR model backed by hyperas
optimization and five-fold cross-validation resulted in a regression value of 0.95 (Figure S1)
and an average mean squared error of 0.63, which reflects the linear relation between the
predicted and actual IC50 values. Predicted IC50 values for the drug, including omipalisib,
gemcitabine, epothilone B, mitomycin C, luminespib, etc., exhibited a high correlation with
real IC50 values, while the drug response of tamoxifen, niraparib, and JQ1 had the least
correlation with their real counterparts. Tables S3 and S4 list the performance measures of
all drugs considered in the experiment. The overall classification accuracy after applying
the median threshold is 0.80.

The proposed DCNN-DR model performed fairly well for many drugs compared to
similar machine learning and deep learning (DL) models. Figure 4 indicates the values
of different metrics used in evaluating the model’s performance. The values reflect that
even with few samples and for a large group of compounds, the model’s performance did
not degrade. Figure 4a,b captures the PCC and MSE of the regression model (Table S3).
Figure 4c shows the r-squared value of six cancer drugs. Of these six drugs, four are
targeted drugs and are usually preferred over chemotherapy molecules mainly because
they target only cancer cells. The classifier’s accuracy, sensitivity, and specificity are shown
in Figure 4d (Table S4). A comparison of the AUC of the drugs docetaxel and gemcitabine
using the existing methods of Malik et al. [26] and MOLI [24] is shown in Figure 4e,f (with
Figures S5 and S6). Additionally, the SVM-based model was implemented in-house, and its
performance was compared with that of the proposed method. Figure 4g represents the
sensitivity and resistance of cell lines to 15 drugs.
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Figure S2a,b shows the effectiveness of each drug over each cell line and the sensitivity
of the cell line for each drug. Experiments show that the drugs with outliers had a negative
impact on the model’s behavior (Figure S3). Alternatively, drugs with high correlations,
such as Epothilone_B, Luminespib, XL_880, and PI_103, positively affected the model’s
performance. The robustness of the DCNN-DR model is captured for a small subset of
drugs with a high correlation. Almost 99 drugs showed a high correlation (Table S3).

Clinical Significance

The model was successful in predicting effective targeted drugs for the Her2+ and
luminal subtypes (Table S5). Here, we will delve deeper into the BLBC subtype to check
our model’s effectiveness. The BLBC subtype accounts for 15–20% of total BC cases [36].
This subtype exhibits high heterogeneity and the worst prognosis without any targeted
therapy. The conventional treatment for BLBC is chemotherapy. Additionally, BLBC
patients have poor survival because their tumours often have an incomplete pathological
response to treatment. Studies have also shown that the EGFR gene is highly expressed
in up to 78% of BLBC cases [37], but clinical trials have not shown great improvement
using EGFR targeted therapy [36], mainly because EGFR downstream signalling pathways
were still activated in most patients after EGFR-targeted treatment. This fact implies that
there might be other pathways involved in bypass activation. As a result, EGFR-targeted
treatment alone cannot achieve significant efficacy; instead, a combination of PI3K, MAPK,
and Scr inhibitors may benefit growth factor inhibitors. The BLBC subtype has abnormal
expression of MYC, PIK3CA, CDK6, AKT2, KRAS, FGFR1, IGF1R, CCNE1, CDKN2A/B,
BRCA2, BRAF, PTEN, MDM2, RB1, TP53, EGFR, MET, NGF and HDAC1. Possible drugs
for this subtype include growth factor inhibitors, DNA synthetic inhibitors, PARP inhibitors,
genotoxic agents, mTOR inhibitors, histone deacetylase inhibitors, CDK inhibitors and
other inhibitors depending on the target, as summarized in Table 4 [36–38]. The targeted
drug selection delivery strategies require more clinical trial results to validate studies.

The DCNN-DR model was used to predict the effective drugs for 93 BLBC patients
whose information is hosted in TCGA. The samples were organized as required by the
model; i.e., four omics datasets, namely, mRNA, CNV, mutation and methylation data,
and the same set of genes used to train the model were used for predicting IC50 values
for each drug. Subsequently, the patients were categorized as sensitive or resistant to
each drug. TCGA samples have PAM50 classification information of BC patients, as
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mentioned in Section 2. Ninety-three samples were of the BLBC type. The cell lines have
19 BLBC type samples that include basal-like A and B subtypes. Both subtype samples
were combined into single basal-like samples for further analysis. Figure 5a,b show the
top 35 and 26 effective drugs for cell lines and BC patients, respectively. Effective drugs
are those that have 65% or more sensitive cell lines/patients. Figure 5a shows the real and
predicted responses for the effective drugs. Effective drugs for TCGA samples are plotted
in Figure 5b.

Table 4. Summary of therapeutic strategies and target pathways for BLBC.

Therapeutic Target Strategies Target Pathways

Inhibit cell proliferation Mitosis
Inhibit DNA damage response DNA replication

PARP inhibitors PI3K/mTOR signalling
EGFR inhibitors Growth Factor inhibitors
MET inhibitors mTOR signalling
CDK inhibitors PI3K-Akt signalling pathway

BRAF, MEK1, MEK2 Inhibitors ERK/MAPK signalling
Histone deacetylase inhibitor Notch signalling pathway

Receptor tyrosine kinase inhibitor VEGF/IGF-1R pathways
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Table 5 shows the effective drugs predicted for cell lines and TCGA patients. Thirty-
three of the total drugs listed are targeted drugs. Most of the abnormal genes identified
for BLBC have targeted drugs. The predicted drugs are consistent with the literature for
treating the BLBC subtype [38]. The proposed model may be clinically significant with
more clinical trials.

Table 5. Summary of effective drugs predicted by DCNN-DR.

Sl No. Top Effective DRUGS as Predicted
by Proposed Model Targets Target Pathway

1 Bleomycin(ct) dsDNA break induction, DNA DNA replication
2 Gemcitabine Pyrimidine antimetabolite DNA replication
3 Mitomycin-C DNA crosslinker DNA replication
4 SN-38 TOP1 DNA replication

5 Afatinib ERBB2, ERBB4, EGFR
EGFR signaling

MAPK signaling pathway, ErbB
signaling pathway,

6 Dabrafenib BRAF
ERK MAPK signaling, MAPK

signaling pathway
ErbB signaling pathway

7 HG6-64-1 BRAF, ERBB4, FGR, MAP3K9,
AURKC ERK MAPK signaling

8 PLX-4720 BRAF ERK MAPK signaling
9 Refametinib MEK1, MEK2 ERK MAPK signaling

10 Trametinib MEK1, MEK2 ERK MAPK signaling,
ErbB signaling pathway

11 Omipalisib PI3K (class 1), MTORC1, MTORC2 PI3K/MTOR signaling
12 OSI-027 MTORC1, MTORC2 PI3K/MTOR signaling
13 Daporinad NAMPT Metabolism
14 Docetaxel Microtubule stabiliser Mitosis
15 Epothilone B Microtubule stabiliser Mitosis
16 GSK1070916 AURKA, AURKC Mitosis
17 Ispinesib Mesylate KSP Mitosis
18 Vinblastine Microtubule destabiliser Mitosis

19 Olaparib PARP1, PARP2, BRCA Base excision repair, NF-kappa B
signaling pathway

20 Navitoclax BCL2, BCL-XL, BCL-W Apoptosis regulation
21 AZD7762 CHEK1, CHEK2 Cell cycle

22 Belinostat HDAC1 Chromatin histone acetylation,
Cell cycle, Notch signaling pathway,

23 Dacinostat HDAC1 Chromatin histone acetylation
24 JW-7-24-1 LCK MAPK signaling pathway
25 CX-5461 RNA Polymerase 1 ATM/ATR pathway

26 Midostaurin PKC, PPK, FLT1, c-FGR, others

MAPK signaling pathway,
PI3K-Akt signaling pathway,

VEGF signaling pathway,
Leukocyte transendothelial migration

27 Tipifarnib Farnesyl-transferase (FNTA) Terpenoid backbone biosynthesis

28 WZ3105 SRC, ROCK2, NTRK2, FLT3, IRAK1,
others NF-kappa B signaling pathway

29 BX795 TBK1, PDK1 (PDPK1), IKK, AURKB,
AURKC NOD-like receptor signaling pathway

30 Lestaurtinib FLT3, JAK2, NTRK1, NTRK2, NTRK3 MAPK signaling pathway,
PI3K-Akt signaling pathway

31 QL-X-138 BTK Tyrosine kinase pathway

32 Ruxolitinib JAK1, JAK2, JAK3, TYK2 Chemokine signaling pathway,
JAK-STAT signaling pathway,

33 Luminespib HSP90
PI3K-Akt signaling pathway,
Estrogen signaling pathway,

Protein stability and degradation
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Table 5. Cont.

Sl No. Top Effective DRUGS as Predicted
by Proposed Model Targets Target Pathway

34 Foretinib MET, KDR, TIE2, VEGFR3/FLT4,
RON, PDGFR, FGFR1, EGFR

RTK signaling,
VEGF signaling pathway,

Focal adhesion

35 Lapatinib CYP3A5, EGFR, ERBB2
MAPK signaling pathway,
ErbB signaling pathway,

Breast cancer

36 Tivozanib VEGFR1, VEGFR2, VEGFR3, FLT1,
FLT4, KDR, KIT, PDGFRA, PDGFRB

MAPK signaling pathway,
Ras signaling pathway,

Rap1 signaling pathway,
PI3K-Akt signaling pathway,

VEGF signaling pathway,
Focal adhesion

37 PD173074 FGFR1, FGFR2, FGFR3 MAPK pathway
38 NU7441 DNAPK DNA repair pathway

4. Discussion

The classification of BC patients into proper subtypes is important in selecting the line
of treatment. Moreover, having prior knowledge of how each subtype is distinguished is
vital for research into new treatments. Although the existing IHC approach is useful, it
is too broad [39]. Individuals with the same IHC subtype, for example, may not benefit
from the same treatment regimens. Several studies have used omics data to find more
specific subtypes of breast cancer. The use of omics data to create subtypes could lead
to personalized treatment by identifying molecular profiles that are specific to certain
subtypes. As a result, rather than relying only on IHC status, specialized treatments might
be customized to these profiles in a more precise way.

In this work, we demonstrated that high classification accuracy can be achieved with
the combination of feature selection and deep learning techniques. The model identifies
Her2+, basal-like and unknown subtypes with great success, while luminal A and luminal
B subtypes were misclassified in a few cases. Further analysis of the top-ranked genes
identified by NCA showed their previously established role in cancers.

The drug response model developed for predicting effective drugs for cancer is vig-
orous enough to handle more than 100 drugs. DCNN-DR captured the association be-
tween the integrated omics profile and onco-drugs such as foretinib (r2 = 0.75), bleomycin
(r2 = 0.77) and omipalisib (r2 = 0.87) (Figure 3c), among others, with a high degree of
confidence. The R2 scores for some drugs were low due to outliers (Figure S3). Apart from
predicting drug response for BC, the model can be extended conceptually for pancancer
drug response prediction. These models may be incorporated into AI systems to comple-
ment the existing methods in health care. However, more clinical trials are needed for the
models to be confidently accepted by clinicians.

We used our DCNN-DR model to predict effective drugs for BLBC cancer cell-lines
and TCGA patients. The obvious reason for choosing this subtype for analysis is the
complexity underlying this subtype. Since BLBC is a heterogeneous-target subtype, a
combination treatment is suggested that includes a class of chemotherapy drugs along with
targeted therapies based on the abnormal expression of specific genes or mutations. For
the effective drugs predicted by the model for BLBC (Table 5), KEGG [40] and CMap [41]
were used for further analysis. Target pathways and genes, especially small molecules,
were identified using the above tools. The class of drugs identified for BLBC includes
CDK inhibitors, histone deacetylase inhibitors, receptor tyrosine kinase inhibitors, BRAF
inhibitors, mitosis inhibitors, DNA synthetic inhibitors, PARP inhibitors, growth factor
inhibitors, mTOR inhibitors, etc. Recent investigations have also suggested the afore-
mentioned inhibitors [37,42]. Whether a response to therapy is beneficial to the patient’s
ultimate treatment routine is still a matter of debate. Exploratory analysis of BC sub-



J. Pers. Med. 2022, 12, 674 15 of 17

types and sensitivity analysis (Figure S4) to cancer drugs could open doors for practical
solutions in improving therapies for cancer. Genomic profiling of cancer cell line panels
and patient-derived samples has contributed greatly to building classification models and
recommending novel remedies. Nevertheless, a pool of compounds has yet to be evaluated
against available genomics data.

With highly available biological resources that capture disease characteristics such as
phenotype, genotype and their relationships, novel approaches are indispensable. They
will help in processing this information and discovering critical knowledge pertaining
to the disease. We proposed late integrative deep learning frameworks for BC subtype
classification and drug-response prediction models. Their performance is on par with
existing individual solutions. We conclude that an artificial deep neural network, which is
trained on the multiomics signature of an individual, in conjunction with its phenotypic
factors, not only segregates BC patients to their subtypes but also assists in screening a pool
of drugs based on the sensitivity values corresponding to the patient under observation.
The results reinforce the idea that an integrative approach can make more accurate and
personalized decisions for drug administration and general treatment strategies.

The proposed drug-response problem requires multiple outputs for each input sample, i.e.,
for each cell line/patient who the model predicts the response for more than one hundred
drugs simultaneously. This is a multioutput regression problem that is inherently supported
by deep learning neural networks such as CNNs. Although multioutput regression is built-
in to machine learning methods such as the random forest, the links between inputs and
outputs can be highly organized based on the training. This is a drawback of decision
trees, especially for multioutput regression. Neural network models, on the other hand,
have the advantage of learning from a continuous function that can model a more elegant
relationship between input and output changes [43]. Another reason for choosing deep
learning is to exploit the processing power of accelerators such as graphics processing units
along with the readily available libraries to support their use. The proposed model can be
extended for pancancer drug responses that require high processing power, making deep
learning a good choice.

5. Conclusions

In this paper, we proposed two predictive models based on DL techniques and mul-
tiomics data to endorse personalized treatment: a model to predict the BC subtype of a
patient and a model for drug response prediction, DCNN-DR. We trained the first model
using BC patient omics and clinical data. The second model was trained using BC cell
line omics data. We used the DCNN-DR model to predict the possible drugs for BLBC
subtype patients. The performance of our models is similar to that of existing methods
(Figures 2 and 3), and they are clinically relevant. Nevertheless, more clinical trials are
needed to attest the use of the proposed model. Approximately 5% of current treatments
benefit from personalized treatment [24], and our work and other types of research are
paving the way for more accurate therapeutics.
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