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Abstract: To improve patient outcomes after trauma, the need to decrypt the post-traumatic immune
response has been identified. One prerequisite to drive advancement in understanding that domain
is the implementation of surgical biobanks. This paper focuses on the outcomes of patients with one
of two diagnoses: post-traumatic arthritis and osteomyelitis. In creating surgical biobanks, currently,
many obstacles must be overcome. Roadblocks exist around scoping of data that is to be collected,
and the semantic integration of these data. In this paper, the generic component model and the
Semantic Web technology stack are used to solve issues related to data integration. The results are
twofold: (a) a scoping analysis of data and the ontologies required to harmonize and integrate it, and
(b) resolution of common data integration issues in integrating data relevant to trauma surgery.

Keywords: surgical biobank; post-traumatic arthritis; osteomyelitis; semantic data integration;
system theory; biomedical ontologies; knowledge representation

1. Introduction

Trauma is the leading cause of death and disability for patients less than 45 years
old [1]. Recently, the need to decrypt the post-traumatic immune response to improve
patient outcomes has been identified [2–5]. One strategy proposed to achieve this is large
fluidics biobanks [6]. Along with other researchers [7], we advocate for more expansive
surgical biobanks, including tissue. One of the core issues when building a trauma-oriented
surgical biobank is integrating patient data from other healthcare providers. This is a
generic data management problem regarding biobanking [8].

Implementation, maintenance, and use of a surgical biobank are mandatory, among
other things, for a better understanding of the post-traumatic immune response, for in-
stance, in patients with multiple injuries. We aim at improving secondary data analysis to
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assess factors contributing to complications. Since patients with numerous injuries are fre-
quently transferred from lower acuity facilities to a more specialized or higher-level trauma
center, the data management activities of a surgical biobank need to include collecting
and harmonizing data from all trauma care providers of the specimen donors. Collecting
data from lower acuity facilities to trauma centers is crucial to identify potentially specific
pathophysiological or new prognostic factors.

In this paper, we aim to achieve two goals:
Propose system architecture considerations for a surgical biobank against the back-

ground of crucial data needs to address post-surgical arthritis and osteomyelitis.
Demonstrate how semantic analysis guided by the generic component model (GCM)

informs harmonization of clinical and clinically relevant data regarding post-traumatic
arthritis and osteomyelitis in a surgical biobank. Thereby, we highlight the importance
of definition, representation, and integration of the underlying concept spaces (ontolo-
gies) of the different domains involved, from which the data can be derived, represented,
and implemented, but also the current context [9].

In the first step of our analysis, we will assess the patterns of complex collaborations in
trauma patient triage and care using a systems theory approach. This approach will assist
us in determining the scope of data collection and data harmonization across multiple
healthcare providers. This research can aid in the development of IT infrastructure to sup-
port the implementation, maintenance, and management of a surgical biobank. To provide
actionable information, we will suggest current domain ontologies that are applicable to
our use cases.

In the second step, we will illustrate how Semantic Web technologies can resolve com-
mon data collection challenges related to surgical trauma: (a) issues created by restrictions
specified in local information models, (b) issues created by the need to integrate data from
heterogeneous sources, and c) issues created in the process of data entry.

2. Data Needs of Surgical Biobanks

Our research focuses on musculoskeletal injuries, one of the most common injury
patterns leading to disability after trauma. These injuries are almost exclusively repaired
surgically, making this the ideal population for creating a surgical biobank. As part of the
fracture repair process, we can easily collect samples of bone, skin, subcutaneous tissue,
small veins, and muscle without impact on the patients’ recovery. Additionally, joint
replacement is a common procedure allowing for age-matched control sample collection
of similar tissues. Interestingly, the main indication for joint replacement is arthritis,
a known complication of orthopedic trauma, thus allowing us to collect samples across
the spectrum of life and investigate the mechanisms of post-traumatic arthritis. This is not
our only outcome of interest, however, as infection, such as osteomyelitis or soft tissue
infection, is the most common early complication of fracture repair. Diagnosis of both
post-traumatic arthritis or osteomyelitis occurs after initial treatment for a fracture, and the
reasons for the occurrences are not completely understood. Due to this, treatment for these
diagnoses frequently occurs at different trauma care facilities from the initial treatment.
In this context, it is desirable to establish predictive and prognostic factors for future
therapeutic strategies to avoid numerous repetitive surgical interventions or amputations
in complicated trauma patients. For this purpose, surgical biobanks collecting relevant
biomaterials and comprehensive clinical and laboratory data are needed. The complete
monitoring of laboratory, clinical, and imaging data as well as the historical information
of primary care, transportation times, and duration of treatments are relevant. To reach
this goal, data from different sources should be brought together with the biospecimens to
curate data-rich biobank specimens.

The lack of a unified coding schema and of structured data for information relevant
to address the pathogenesis of individual cases creates additional difficulty for data har-
monization in this domain. While there are emerging classification systems, no widely
accepted standard exists. In all likelihood, any standards set quickly, would continue
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to change and evolve as our understanding of precision medicine in trauma increases.
Thus, the problem of lack of comparable data for mid- and long-term studies would be
proliferated for years to come. Since the existence of a well-developed understanding is
a requirement for creating stable standards, it is obvious that we cannot use standards to
collect, curate, and maintain the data we are collecting with the goal of developing our
understanding of precision medicine in trauma. Challenges in harmonizing data are fre-
quently found regarding treatment and procedure information, demographic information,
problem lists, medication lists, and organizational structures of trauma centers [10–12] or
healthcare providers involved in the initial treatment.

3. Integration Challenges Created by Restrictions of Local Information Models

A common practice is that each trauma patient is admitted to the nearest hospital
that participates in the regional or state trauma program. However, complications such
as infections and prolonged or failed bone or wound healing due to complicated trauma
or to known, or even unrecognized, primary diseases, such as diabetes, hypertension,
or arteriosclerosis, make the transfer to a more specialized or higher-level trauma center
necessary [13]. In these centers, an interdisciplinary team will review previous laboratory
as well as clinical tests. Recent and earlier imaging data will be compared, and commonly,
a surgical revision is necessary. With respect to the management of specimens acquired
during that healthcare process, one data integration problem frequently occurs: The entry
number of a specimen is commonly used as the reference number. Over the course of
treatment, especially with complications, a patient may have several entries, each receiving
a new entry number. These samples are identified and documented in the so-called
sample history as follow-up samples for the initial injury. Typically, the sample history
assignment is performed using the patient identifier. Many systems enforce that there be
only one patient identifier for each patient. If the patient has all samples taken at the same
healthcare institution, this does not present a problem. However, if some of the samplings
are performed at another healthcare provider, tracing disease progression via the patient
identifier is no longer possible because the entry number cannot be matched with the
patient identifier at the location of the surgical biobank.

4. Integration Challenges Created by the Need to Integrate Data from Heterogeneous Sources

The University of Arkansas for Medical Sciences (UAMS) Medical Center is the only
adult Level 1 Trauma Center with verification by the American College of Surgeons in
Arkansas and sees over 3000 trauma-related patients annually, with admission exceeding
2000 trauma-related admissions. The medical center is the only tertiary care center in the
state and has 24 trauma and surgical intensive care unit beds. In collaboration with the
surgical services, the surgical critical care teams manage critically ill patients yearly across
trauma surgery, burn surgery, emergency general surgery, surgical oncology, pancreas-
biliary surgery, bariatric surgery, neurosurgery, orthopedics, obstetrics and gynecology,
vascular surgery, otolaryngology, urology, plastic surgery, and transplantation surgery.
Being the only Level 1 trauma center in the state of Arkansas, UAMS is an excellent
example of a trauma care facility, receiving 560 orthopedic trauma patients annually.
Additionally, they are a referral center for orthopedic patients with complications, in-
cluding post-traumatic arthritis and osteomyelitis. The UAMS Trauma Database strives to
collect, maintain, and store clinical data on patients in the acute care phase as well as read-
mission of their population within 30 days of discharge. For 2021, we had 18 readmissions
within 30 days in our ortho population. This excludes patients with acute care at another
hospital, who are subsequently referred for post-acute complications. Acute-phase trauma
information on this selected population of Arkansas trauma patients with complications
is limited to what is in the transferring records or the patient’s history and physical notes.
These patients are not included in the UAMS Trauma Database, thus restricting orthopedic
studies to those with initial acute trauma care at UAMS.
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The Arkansas Trauma Registry (ATR) might be a potential source for tying all Arkansas
trauma cases together. Challenges with using data from the ATR include variability in the
collection of National Trauma Data Bank (NTDB) data elements and access to the data.
In Arkansas, only Level 1 and Level 2 trauma center personnel receive annual training
as part of the Trauma Quality Improvement Program (TQIP) [14]. Level 3 and Level 4
programs are encouraged to use the NTDB data dictionary for applicable NTDB data
elements, but training is limited to a review of data dictionary changes at the Annual
ATR Conference.

Even with TQIP training, variability of data collection is suspected to be present among
Level 1 and Level 2 facilities due to different interpretation of definitions. To mitigate
variability, the National Trauma Data Bank (NTDB) Data Dictionary [15] work group vets
the dataset annually. This process includes refinement of data element terminology, plus
revision and/or additions to definitions. Additionally, TQIP provides annual education
update through their annual conference, and via web training modules/quizzes. This is
why the educational opportunities offered by TQIP annually are relevant to data quality.

Even with this, there remains some variation in data elements such as “unplanned
OR”, which has been refined from “unplanned return to the OR” to “unplanned visit to the
OR” (OR stands for operation room). Another refinement includes adding exclusions to
the definition. The current definition is as follows:

“Patients with an unplanned operative procedure OR patients returned to the operat-
ing room after initial operative management of a related previous procedure” [15].

This definition leaves much open to interpretation. Some users interpret this as a
surgery that is unexpected or due to some untoward event and not potentially expected
events such as visits to the OR due to a failed limb salvage and similar clinical situations.
This is an example of a clinical situation where the possibility that the patient may require
surgery is inherited. There is anecdotal evidence that there is a tendency to subsume limb
salvage failure and similar examples under the unplanned OR category. This highlights
the potential for different interpretations and the lack of shared understanding of the data
elements in the NTDS Data Dictionary.

5. Integration Challenges Created during Data Entry

Besides the accurate resolution of identifiers and the ability to semantically integrate
data, information about the organizational structure of trauma care providers give impor-
tant insight into potential effects on patient outcomes. Curating data about organizational
structures in trauma care, in particular with controlled vocabularies and ontologies, is a
relatively new area of research and development. The NIH-funded CAFÉ (Comparative
Assessment Framework for Environments of Trauma Care (R01GM111324)) provides a
controlled vocabulary to describe and assess organizational structures of trauma care
providers [11]. In addition, the project created a web-based architecture to collect, manage,
and store semantically rich information about trauma care organizations via a user-friendly
online questionnaire with the Ontology of Organizational Structures of Trauma centers
and Trauma systems (OOSTT) automatically representing the answers in a computer-
interpretable language [10,12].

For validation purposes, the CAFÉ project invited stakeholders to enter data about
trauma centers and trauma systems. In the first round of this activity, we collected data
on two Level 1 trauma centers and one Level 2 trauma center. Table 1 shows the extracted
results for two CAFÉ questions.

The answers from trauma centers A and C looked unlikely based on the CAFÉ team’s
experience. Our interpretation of the situation is that the persons who entered the data
for those two questions for those two centers were not certain of the difference between
these two categories or they did not have access to data that provided a differentiation
between board-eligible and board-certified emergency physicians. While OOSTT has a
representation of both “board-certified emergency physician role” and “board-eligible
emergency physician role”, only the first is formally fully defined, so that at the current
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state of semantic representation, a disambiguation was not possible. One factor contributing
to the lack of clarity is that all board-certified emergency physicians were at some point
(and remain to be) board-eligible. However, the intention behind this question is to find out
how many emergency physicians are board-eligible, but have not yet been board-certified,
as opposed to those who are already board-certified.

Table 1. Example answers to CAFÉ questionnaire.

CAFÉ Question Trauma Center A (Level 2) Trauma Center B (Level 1) Trauma Center C (Level 1)

Number of emergency physicians
who are board-certified in

emergency medicine.
21 29 23

Number of emergency physicians
who are board-eligible in

emergency medicine
21 2 23

6. Methods
6.1. System Architecture Methodology: The Generic Component Model

The GCM is a top-level architectural model for any multi-domain system, formally
representing the system’s components, their functions, and interrelations structurally and
behaviorally by a cube with three dimensions: (a) specific aspects/perspective (domains)
of/on the system forming domain-specific sub-systems; (b) generic granularity levels of
the system’s elements enabling the composition/decomposition of the system; (c) the view-
points within the system’s development process (Figure 1). It is described and specified
in ISO 23903 Interoperability and integration reference architecture—Model and frame-
work [16,17]. For each business case, the subsystem components and their functions and
interrelations are instantiated by naming and representing them using the specific termi-
nologies and ontologies of the domains involved in that business case. For this reason,
the GCM specifies a business view in addition to the five views defined by the ISO 10746
Open distributed processing—Reference model (RM-ODP) as starting point for a system
development process [17]. The views prescribed by the RM-ODP are enterprise view
(purpose, scope, and policies of the system), information view (information processing,
semantics of information), computational view (functionality of the system, functional
decomposition), engineering view (implementation, distribution of processing performed
by the system), and technology view (choice of technology for the system), all represented
using information and communication technology (ICT) ontologies [17,18]. Furthermore,
ISO 23903 [16] introduces generic granularity levels for correctly representing and interre-
lating compositions/decompositions of elements, that way enabling integration of, and
interoperability between, elements of different complexity. As only elements at the same
granularity level can be interrelated, elements at different granularity level first have to be
harmonized by composing or decomposing them. By adding the business view and granu-
larity levels, the GCM enables the correct representation and management of multi-domain
real-world systems, including supporting ICT solutions.

Applying the methods to the use case at hand first requires considering the role of
the information models and the database schemata according to the views of the GCM.
Both belong to the information view since their primary focus is to guide information
processing within the system. Hence, they do not provide real-world knowledge, such as
the fact that one person can have more than one patient ID and that sampling of tumor
progression is frequently performed by different healthcare providers. More generally,
due to the limitations of IT grammars, the correctness of representations of, and relations
between, elements cannot be justified within this viewpoint. Notably, those aspects lie
outside each electronic health record (EHR) system and are ill-fitted to be represented
within the information view. However, from our database example, not accounting for
those aspects of the business view may lead to errors in the system.
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Figure 1. The generic component model. From: [18].

6.2. Semantic Integration Methods

Our challenge is to provide a semantically rich representation of clinical and clinically
relevant data for a surgical biobank. This approach has been shown to be useful for integrat-
ing heterogeneous clinical data in an international cancer imaging repository, The Cancer
Imaging Archive [19–21]. To create a semantically rich representation for biomedical data,
we follow the recommendations outlined by Brochhausen et al. [22] The basic strategy is
to use the Semantic Web stack [23] along with realism-based ontology development [24]
as the general methodology to inform knowledge representation. Their approach is based
on experiences with multiple implementations in biomedical informatics, which have
influenced the evolution of their methodology from the beginning [25–28].

In our project, we are transforming clinical and clinically relevant data into the re-
source description framework (RDF) language before we load it into our RDF-based data
management system of the biobank. RDF [29] is a Semantic Web standard that allows the
representation of information in a machine-interpretable way. For each entity, RDF provides
a unique identifier. RDF data can be annotated and used along with domain descriptions
provided in the Web Ontology Language (OWL) [30]. We are using RDF representations
and OWL ontologies following the methodology described by Smith and Ceusters [24] and
the best-practice principles of the OBO Foundry [31,32].

In addition, we will use the GCM (Section 6.1) to assist knowledge representation.
The GCM proves to be a fitting tool to help with selecting optimal knowledge representation
for incoming data and guide the process of filling gaps in existing ontologies, based on the
medical information models used to curate the data at the initial healthcare providers. While
IT-oriented information models fulfil a crucial role in planning, defining, and describing
the operational behavior of an IT system, such as an EHR system or a biobank information
system, there is a lack of semantic capabilities of these models [21]. Due to the high
level of abstraction and expressivity of information models, so rarely being complete and
decidable, the resulting representation, especially regarding relationships, is frequently
focused on data in that system alone and not on what the data represents, in our case the
medical world, e.g., the patients, encounters, and prescriptions described in an EHR or
the specimens, donors, and storage properties in a biobank, thereby including context and
common-sense knowledge. Building an ontology or selecting from existing ontologies
can lead to a mismatch between the system data model and the more holistic ontologies.
In our approach, we use the GCM to overcome the implementation gap between healthcare-
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provider-specific information models and preexisting domain ontologies needed for the
semantically rich representation of surgical biobank data.

In this paper, we follow the approach of Uribe et al. [33] used to represent a GCM-
based generic model of a Type 2 diabetes mellitus care system. In parallel to their approach,
we analyze the following three domains of the system: medical domain, policy domain,
and resource domain.

• Resource Domain—represents all agents (humans, organizations, devices), means, and
equipment to carry out activities (in our example, trauma care activities) in the sys-
tem [33].

• Policy Domain—represents rules, regulations, and guidelines relevant to the system [33]
(e.g., clinical guidelines, trauma system regulations, EHR regulations).

• Medical Domain—represents the medical and biological entities relevant to the sys-
tem [33] (anatomical entities, treatments, diagnoses, etc.).

In this paper, we are not applying the GCM for a software development and implemen-
tation process, but restrict our considerations to the business view, following the approach
by Uribe et al. [33].

7. Results
7.1. System Architecture Results

Using the GCM and applying it to analyze a medical care system for orthopedic trauma
from the business view yields several interesting results. The findings we describe can
help to inform the development of better communication and data management methods
to close communication gaps that currently exist, particularly when it comes to the need
for additional therapy, for osteomyelitis and post-surgical arthritis. Regarding our goal of
establishing a surgical biobank to fill knowledge gaps regarding these two diagnoses, this
analysis provides a survey regarding the relevant agents (healthcare providers), facilities,
and guidelines. This enables a comprehensive assessment of the data needs of such
a biobank.

Figure 2 shows the domains relevant to orthopedic trauma care, in accordance with the
GCM. Table 2 provides a list of examples of entities relevant to the GCM business view of
orthopedic trauma care. These entities are sorted into the resource domain, policy domain,
and medical domain. In addition, we provide a list of OBO Foundry [31,32] ontologies
that provide a semantically rich representation of entities in those domains. This analysis
allows for correct modeling of the inter-domain relationships to ensure cross-domain
interoperability.

Figure 2. The GCM applied to analyze the business VP of orthopedic trauma care, following the
approach used by Uribe et al. [33] for diabetes mellitus. Adapted from [33].
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Table 2. Domains of orthopedic trauma care with examples of relevant entities and potential domain
ontologies.

Domain Types of Entities in Trauma Care Potential Ontologies

Resource Domain

Organization: Trauma center, trauma system, emergency medical services
(EMS), trauma team

OOSTT [10–12], OMRSE [34]
Human Individual: Trauma patient, trauma medical director, trauma

registrar, trauma surgeon, EMS personnel, plastic surgeon, infectiologist,
microbiologist, surgical pathologist, endocrinologist, radiologist

Facilities: EMS vehicle, emergency room, trauma biobank, trauma registry

Policy Domain
Resources for optimal care for injured patients; [35] EAST Practice
Management Guidelines, [36] trauma system policies; triage plans;

clinical guidelines

Medical Domain

Specimens: Bone specimen; skin specimen; subcutaneous tissue specimen;
small vein specimen, muscle specimen

OBIB [37], OBI [38],
OMRSE [34], SNOMED-CT

Diagnosis: Osteomyelitis, post-operative arthritis, pseudarthrosis,

Treatment: Resection, reconstruction, prosthesis, amputation, chronic
injection therapy, nerve blocks for chronic pain

Pathological process: Inflammation, systemic inflammatory response
syndrome, infection, necrosis, wound healing, bone regeneration,

stress-induced hyperglycemia,

7.2. Semantic Integration Results
7.2.1. Overcoming Issues Created by Local Information Models—Identifiers

Applying the methods to the use case of integration issues created by restrictions on
identifiers in local information models requires consideration of these information models
from the perspective of the GCM (see Section 6.1).

Figure 3 shows an RDF representation of specimen donor, specimen, patient role,
and the relevant identifiers. There is no restriction on the numbers of identifiers, and the
graph representation allows one to trace each identifier to what it identifies, and each
patient’s role and each specimen to the person who is the specimen donor. The different
classes and instances in our solution are modeled based on the best practice of realism-based
ontology as described in Smith and Ceusters [24].

Figure 3. Representation of RDF individuals and OWL classes representing a human being having
multiple patient roles, corresponding to multiple patient IDs and multiple specimens derived from
that human being corresponding to multiple entry numbers. From: [39].
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7.2.2. Integration of Heterogeneous Data Sources

This problem represents the classical use case for Standard Widget Toolkits (SWTs)
using the native graphical elements of the computer’s operating system: existing data
models, common data elements, or dictionaries are heterogeneous or ambiguous. Solving
this issue using SWTs rests on the idea of using computer systems to help disambiguate
the data from heterogeneous sources. Bona et al. pointed out that this rests on an agreed
understanding of what it means for a computer to understand the content [22]. Ultimately,
the level of understanding proposed by Bona et al. is the ability to sort data points into
data elements using SWTs [22].

The solution we propose here is to start with providing an RDF-style representation
of “unplanned visit to the OR” that formally defines whether or not ER visits such as OR
due to a failed limb salvage are an instance of an unplanned visit to the OR, or similar
surgical procedures, or not. The disagreement is whether or not OR visits that might not
have been initially planned, but that were always a final option, belong in this category.
We propose to create a new OWL class for “surgical encounter” as a subclass of “health care
encounter” (OGMS_0000097) from the Ontology for General Medical Science (OGMS) [40].
For the “surgical encounter” class, we propose the following textual definition: A healthcare
encounter, where the goal is to provide a patient with surgical treatment.

In addition to expanding a class from OGMS, we also propose to expand the class
“plan specification” (IAO_0000104) from the Information Artifact Ontology (IAO) [41] by
creating a subclass “treatment plan specification”. For this class we propose the following
textual definition: A plan specification that defines the objectives, actions, and healthcare
encounters to treat the medical condition of one patient.

Now we can create a subclass of “surgical encounter” named “unplanned surgical
encounter”, which we plan to represent “unplanned visit to the OR”, excluding visits such
as OR due to a failed limb salvage. For this new class, we propose the following definition:
A surgical encounter that does not realize the concretization of a plan specification which is
part of a treatment plan.

We propose the following equivalence axiom for “unplanned surgical encounter”:
“surgical encounter”
and not realizes some (‘realizable entity’ and concretizes some (‘plan specification’

and ‘part of’ some ‘treatment plan’))
This axiom would ensure that any surgical procedures that are performed during

healthcare encounters without being part of a treatment plan are not pulled into the class
“unplanned surgical encounter”. In the example of failed limb salvage, the amputation of
the limb under treatment is already a medical option in the treatment, although certainly
not the most desirable outcome. Hence, any case of failed limb salvage would not be
subsumed under an unplanned surgical encounter. This would disambiguate the current
situation and resolve the lack of clarity, using a computational method.

7.2.3. Resolving Problem Integration Issues Created during Data Entry

The solution to the lack of clarity between board-eligible emergency physicians and
board-certified physicians we detected during the data entry for the CAFÉ project begins
with OOSTT. The knowledge representation requirements of the CAFÉ project did not
force the previous development of a class representing the individual emergency physi-
cians, but the following classes were sufficient: “board-eligible emergency physician role”
(OOSTT_00000173) and “board-certified emergency physician role” (OOSTT_00000171).
To resolve the issue surrounding potential ambiguities during data entry, we created two
novel classes in a new branch of the OOSTT ontology: “board-certified emergency physi-
cian” (OOSTT_00010000) and “board-eligible emergency physician” (OOSTT_00010001).
These two classes have the following equivalence axioms:

“board certified emergency physician” (OOSTT_00010000):
“Homo sapiens”
and ‘bearer of” some “board-certified emergency physician role”
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“board-eligible emergency physician’ (OOSTT_00010001):
“Homo sapiens”

and (is_specified_output_of some “emergency medicine residency program”)
and (inverse (“is about”) some ‘compliance with state licensure requirement informa-

tion content entity’).
After making these changes to the class structure of OOSTT, we created 100 test in-

dividuals to represent emergency physicians in 28 virtual trauma centers, some being
board-eligible, some being board-certified. Figure 4 shows an example of the RDF repre-
sentation of a board-eligible emergency physician. We loaded the resulting ontology and
the individuals in a GraphDB triple store using ROBOT [42] to materialize class assertions.
We queried this triple store with the following SPARQL queries to query out the board-
certified individuals vs. the board-eligible individuals that are not (yet) board-certified.

Figure 4. Example individual representing a human being, Bernard, who is board-eligible, but not
yet board-certified.

8. Discussion

In applying a system architecture approach to orthopedic trauma care using the GCM,
we follow Uribe et al. [33] to order the involved domains in the following sequence: medical,
policy, and resource (Figure 2). This allows us to analyze and to represent the relationships
between orthopedic trauma care (e.g., procedures) and the policy domain (e.g., clinical
guidelines, state regulations). In placing the resource domain behind the policy domain,
the focus of our analysis demonstrates how the resources (e.g., trauma centers, trauma
personnel) relate to the policies, meaning which actions, requirements, and credentials the
policies specify for trauma care resources. This order of the domain prioritizes the role
of policy in the trauma care process, and the roles of the resources in those policies for
our initial approach. This order is consistent with the accreditation practices of American
College of Surgeons and state trauma systems. It is important to note that the ordering
of the domains when analyzing a system is arbitrary and can be chosen according to the
focus of the study. To analyze and represent how the trauma care personnel relates to the
procedures, we will reorder our domains to focus on the cross-domain interoperability
between the resource domain and the medical domain.

To resolve problems of data integration due to restrictions in local information models,
we have applied both the GCM and methods of a realism-based ontology development.
Notably, the successful deployment of ISO 23903 [17] for integrating different domains and
knowledge spaces, including their specific models, has been demonstrated for the integra-
tion of HL7 privacy and security specifications [43] in ISO 13606 EHR communication [44],
the harmonization of concepts from ISO 12967 [45] and ISO 13940 [46], or the mapping
of open EHR (ISO 13606) archetypes [47], ISO 13972 clinical models [48], and HL7 FHIR
resources [49].

The limitations of this study and the three use cases demonstrated lie in the fact
that the work presented addresses issues from a knowledge representation perspective.
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The solutions presented are readily available to be implemented in a data management
system, but they have not yet been implemented. Thus, in this study we do not assess effects
that are created by using our knowledge representation in a running medical information
system, such as a biobank system.

The next step from the knowledge representation perspective is to develop computa-
tional ways to leverage the GCM system analysis and its results to immediately develop
knowledge representation solutions such as OWL ontologies and RDF data. In addition,
we plan to explore the deployment of the GCM to transform medical data captured with
information models into computer-interpretable RDF data sources for secondary use in
medicine and vice versa.

From the clinical perspective, the next step is to build a small proof-of-concept surgi-
cal biobank data management system following the knowledge representation principles
demonstrated in this paper. This step, which we are currently working on, will allow valida-
tion of the functionality and usability of the proposed solutions in a clinical research setting.

9. Conclusions

From the results presented in this paper, we concluded that SWT is required to
disambiguate and integrate data for surgical biobanks. While surgical biobanks with
exclusively local data might not have the same level of need for semantic integration as
those aiming to integrate data from multiple trauma care providers, we hold that integrating
data from the entirety of the trauma care process is a necessity.

In addition, this paper demonstrates that the GCM is a useful tool to assess the data
scope of a surgical biobank and identify relevant domain ontologies. The GCM even assists
in resolving specific semantic integration problems, supplementing the SWTs.
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