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Abstract: Purpose: This study aimed to develop and validate an automatic segmentation algorithm
for the boundary delineation of ten wrist bones, consisting of eight carpal and two distal forearm
bones, using a convolutional neural network (CNN). Methods: We performed a retrospective study
using adult wrist radiographs. We labeled the ground truth masking of wrist bones, and propose
that the Fine Mask R-CNN consisted of wrist regions of interest (ROI) using a Single-Shot Multibox
Detector (SSD) and segmentation via Mask R-CNN, plus the extended mask head. The primary
outcome was an improvement in the prediction of delineation via the network combined with ground
truth masking, and this was compared between two networks through five-fold validations. Results:
In total, 702 images were labeled for the segmentation of ten wrist bones. The overall performance
(mean (SD] of Dice coefficient) of the auto-segmentation of the ten wrist bones improved from 0.93
(0.01) using Mask R-CNN to 0.95 (0.01) using Fine Mask R-CNN (p < 0.001). The values of each wrist
bone were higher when using the Fine Mask R-CNN than when using the alternative (all p < 0.001).
The value derived for the distal radius was the highest, and that for the trapezoid was the lowest in
both networks. Conclusion: Our proposed Fine Mask R-CNN model achieved good performance in
the automatic segmentation of ten overlapping wrist bones derived from adult wrist radiographs.

Keywords: wrist; carpal bone; segmentation; deep learning; CNN

1. Introduction

Acute wrist pain related to trauma or non-trauma causes is a common complaint
presented in primary care and emergency rooms [1,2]. Imaging is often necessary to make a
definitive diagnosis of wrist pain, along with access to a clear history and physical examina-
tion, because no predetermined decision is possible. Standard plain radiographs are used
as the initial diagnostic radiologic evaluation for most patients with wrist pain [3–5]. How-
ever, it is difficult for physicians—even an experienced radiologist—to accurately identify
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each bone contour, and to interpret subtle changes, because the wrist is composed of ten
bones—eight carpal bones (trapezium, trapezoid, capitate, hamate, pisiform, triquetrum,
lunate, and scaphoid) and two long bones (distal radius and distal ulna)—that overlap each
other [4,5] (Figure 1a). Although wrist radiographs provide limited information, due to the
limitations of projection views and clinical observations, they still offer crucial support for
diagnostic and therapeutic determination in clinical practice [3–6].
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Recently, the segmentation of bones using computer-aided algorithms has been stud-
ied for use in clinical diagnosis and treatment planning [7–10]. Wrist bone segmentation 
also has been studied as a predecessor to wrist fracture classification [11], bone age assess-
ment [12,13], and the diagnosis of rheumatoid arthritis [14–16]. However, most wrist bone 
segmentation methods use conventional mathematical methods. Gou et al. conducted au-
tomatic segmentation through a dynamic programming algorithm [17], and Manos et al. 

Figure 1. Anatomy and labeling of ten wrist bones on a wrist radiograph. (a) The anatomy of ten
wrist bones, consisting of eight carpal bones and two distal forearm bones, on an anteroposterior
radiograph. (b) Labeling process for the ground truth masking of wrist bones using a self-made
customized tool. (1) The classification as one of ten wrist bones and the delineation of each bone’s
boundary; (2) Labeling and extraction of each bone.

Recently, the segmentation of bones using computer-aided algorithms has been stud-
ied for use in clinical diagnosis and treatment planning [7–10]. Wrist bone segmentation
also has been studied as a predecessor to wrist fracture classification [11], bone age assess-
ment [12,13], and the diagnosis of rheumatoid arthritis [14–16]. However, most wrist bone
segmentation methods use conventional mathematical methods. Gou et al. conducted
automatic segmentation through a dynamic programming algorithm [17], and Manos
et al. employed the region growing [18] and region merging algorithms sequentially after
pre-processing, using a Canny edge detector [19]. In addition, some advanced algorithms
have been applied to overcome the disadvantages related to each medical image domain
by combining these conventional methods [20,21].
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Few studies of wrist bone segmentation via wrist radiograph, using deep learning,
have been reported for reasons such as the low contrast between bone and tissue, the
distances between the carpal bones, and the bones’ irregular shapes. Moreover, there were
fewer than ten wrist bones being segmented in these studies, because they were focused on
bone age assessment in young children, whose wrist bones have not yet matured [22,23].

This study aimed to develop and validate an automatic segmentation algorithm for
the prediction of the boundaries of ten wrist bones overlapping each other on an adult
wrist radiograph, using a convolutional neural network.

2. Methods
2.1. Study Design

This was a retrospective study using wrist posteroanterior (PA) or anteroposterior (AP)
radiographs, which were performed at one tertiary hospital (Seoul, Korea) between April
2020 and September 2021. This study was approved by the Institutional Review Board of
Hanyang University Hospital, and the requirement for informed consent was waived by
the IRBs of our hospital. All methods and procedures were carried out in accordance with
the Declaration of Helsinki.

2.2. Dataset of Participants

We sorted and gathered wrist PA or AP radiographs from adult patients with wrist
pain who visited the emergency room at the Hanyang University Hospital between Jan-
uary 2011 and December 2019. Their radiology reports stated “unremarkable study”,
“non-specific finding”, or “no definite acute lesion”. Radiographs were excluded when
accurate delineation was impossible as a result of screws or other implants, the severe
deformation of anatomical structures caused by acute fractures in another area, or past
damage, malformation, or casts. Labeling for the ground truth masking of wrist bones
was conducted with a program that was self-made and customized using a tool imple-
mented in Matlab R2018b (MatLab, MathWorks, Natick, MA, USA), as shown in Figure 1b.
The process was as follows: (1) classification as one of ten wrist bones; (2) delineation of
each bone’s boundary by two emergency physicians for segmentation, and (3) review and
revision by a radiologist. Radiograph images were extracted using the picture archiving
and communication system (PACS, PiView, INFINITT Healthcare, Seoul, Korea) as digital
imaging and communication and medicine (DICOM)-format images, and stored in the
Joint Photographic Experts Group (JPEG) format. No personal information was included in
the images used for data collection, with personally identifying data excluded. In addition,
arbitrary numbers were assigned to the images, which were then coded and managed.

2.3. Data Pre-Processing

We pre-processed our dataset via three methods in order to train our network sta-
bly. First, the wrist directions in all the training images were corrected to leftwards, as
all right-hand wrist images were horizontally mirrored. This strategy eliminated wrist
direction variations and unnecessary computations. Secondly, the sizes of the wrist radio-
graphy images were fixed, since the image size was different for every person. Finally,
the input images were normalized, which is essential in order to effectively fine-tune the
pre-trained Mask R-CNN (an object detection and segmentation simultaneously based on
deep CNN) [24].

2.4. Network Architecture

The overall workflow of our method (Fine Mask R-CNN) for the automatic segmenta-
tion of wrist bones is illustrated in Figure 2a. It consists of two main steps—wrist region of
interest (ROI) detection and segmentation.
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Figure 2. The Fine Mask R-CNN architecture. Our proposed network operates on a 2-stage method.
(a) Detection of the regions of interest in the input wrist radiographs using SSD (blue) in the first
stage and the delineation of 10 wrist bones using Mask R-CNN with the extended mask head in the
second stage (yellow). (b) The structure of the extended mask head. This is an encoder–decoder
structure, which can use previous information for the prediction of a specific part. ROI, region of
interest; CNN, convolutional neural networks; SSD, Single-Shot Multibox Detector.

2.4.1. Wrist ROI Detection Model Using Single-Shot Multibox Detector (SSD)

In this paper, a specific region whose X-ray image only includes our target wrist bones
is called the wrist ROI. The first stage is to detect the wrist ROI, then the segmentation
model uses this detected wrist ROI as the input image. This cascade system can focus on
this ROI and segment ten wrist bones more precisely, which could be helpful for our study,
wherein the ROI is a small section of the overall image [25,26].

Here, we trained the Single-Shot Multibox Detector (SSD) [27], which is a network
that performs object detection on all the feature maps of different sizes through multiple
convolutional layers. Using these variously sized feature maps, SSD can detect small to
large objects effectively. Training this detection network requires the ground truth bounding
box of ROI, which we manually labeled according to the rule [23]. The size of the ROI is the
average of 620 × 470 pixels, which is about one-third the size of the original image. This
extracted ROI was re-scaled to 1820 × 1450 pixels, and then used as an input for the wrist
segmentation model.

2.4.2. Wrist Segmentation Model Using Mask R-CNN with the Extended Mask Head

Most segmentation studies based on deep learning [7,28–30] have used the U-Net [31]
architecture, which is the most popular algorithm for biomedical image segmentation.
However, our proposed segmentation model was based on the Mask R-CNN [24], which is
widely used for instance segmentation because most adult wrist bones overlap each other,
especially the eight carpal bones. Therefore, some of the pixels could include two or more
types of wrist bones.

In this paper, a finer segmentation network was proposed, which modified the mask
head of the Mask R-CNN in two ways. Our first contribution to network design was a
larger input size of the mask head. We used the 28 × 28 input feature, which is larger
than the original, in the Mask R-CNN, as shown in Figure 2b. This advancement was
motivated by the blurry contour problem mentioned in [32], which pointed out that the
blurry contour appears as a result of a low-resolution regular grid of segmentation method.
In other words, in the process of resizing the size of this coarse output to the original
ROI size, the details nearby object boundaries were over-smoothing. We expect that a
larger input size achieves better performance, but this will depend on the limitation of
the hardware resource. Since we used the 28 × 28 input feature, the output probability
map used for the segmentation model is 28 × 28 × 11, wherein 11 is the number of classes
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(ten wrist bones and background). We can prevent over-smoothing when interpolating
the output probability map to the original image size by using this larger possibility map.
This approach could be effective for use on the distal radius and distal ulna, because the
resolution of these bones is greater than eight carpal bones. Additionally, we changed a
mask head architecture from the original to an encoder–decoder structure, motivated by the
U-Net, shown in Figure 2b. The structure of the U-Net connects multiple feature maps of
different scales in an encoder–decoder architecture. With this architecture, high-resolution
features can be combined with the upsampled features and more precise segmentation
performance can be achieved than our baseline network, Mask R-CNN.

The weights of our proposed mask branch are updated similarly to those of the Mask
R-CNN. A mask probability map ŷ is computed using a per-pixel sigmoid function at each
output pixel value. Then, the binary cross-entropy loss of each mask probability map ŷ for
N ROIs is computed. The final mask loss Lmask(ŷ) is computed as

BCE(y, ŷ) = −
2

∑
i=1

[yilogŷi + (1 − yi)loglog (1 − ŷi) ], (1)

Lmask(ŷ) =
1
N

N

∑
k=1

BCE(yck, ˆyck), (2)

where yi is the ground truth class of either the bone or the background, and yck and ˆyck are
the ground truth and probability map corresponding to the predicted class of the kth ROI,
respectively. Since the bone boundary is a very difficult region to correctly segment, the
improvement of segmentation quality in the boundary region is a significant achievement,
and offers much better results than visual observation.

2.4.3. Training and Validation of Automatic Segmentation Using Fine Mask R-CNN and
Mask R-CNN

To ensure the consistency of our model, a five-fold cross-validation was employed
in our experiments. With randomly divided wrist X-ray images into five parts, we used
four out of five of which are used for training and the other for testing. Depending on
which part we choose as the test dataset, we can have five different train/test dataset
combinations. Therefore, we can train the five models with five different train and test
datasets and analyze their outputs to ensure our model’s robustness. In addition, this
evaluation process can perform subject-based cross-validation by using all bones of one
person used only for training or testing in one training phase.

Two networks were trained using a stochastic gradient descent (SGD) optimizer with
a momentum equal to 0.9, and the initial learning rates were 0.001 and 0.0075, with weight
decay factors of 0.0005 and 0.0001, respectively. The overall system employed the Pytorch
library, and all the training and testing phases were performed on a GeForce GTX 1080 Ti
GPU (NVIDIA, Santa Clara, CA, USA).

The baseline network and our proposed network were pre-trained by the ImageNet
dataset and were fine-tuned with our collected wrist X-ray dataset. The fine-tuning al-
gorithm transfers network parameters learned from a large common dataset to a specific
task. Various studies have used a fine-tuning algorithm to analyze medical images, and its
effectiveness has also been proven in the detection of other wrist fractures [33,34].

2.5. Primary Outcomes and Quantitative Evaluation

Our primary outcome was an improvement in the delineation predicted by networks
in compliance with each wrist bone’s ground truth masking. For the quantitative evaluation
of performance, we used the Dice coefficient (Dice), a well-known area-based metric for
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evaluating segmentation algorithms. It estimates the degree of overlap between the ground
truth area and the predicted area. The Dice coefficient is calculated as follows:

Dice =
2TP

2TP + FP + FN
(3)

TP, FP and FN are the numbers of true positive, false positive, and false negative pixels,
respectively. We measured the Dice coefficient for each bone, and calculated the average
of 8 carpal bones, as well as the average Dice of 2 forearm bones and the total Dice of 10
bones to assess the overall performance of the model. This metric holds a value between 0
and 1, and higher values mean better predictions.

Additionally, we performed Turing tests on the ground truth masking performed
by clinicians and the masking predicted by our network for the segmentation of ten
wrist bones. The Turing test examines a machine’s ability to exhibit intelligent behavior
indistinguishable from, or equivalent to, that of a human. One professor and two residents
at the department of radiology, who were not authors, were blinded as to the subject vis
a vis masking; they scored between 1 (worst) and 5 (best) in terms of the quality of the
delineation of the segmentation boundaries on the ground truth mask and the predicted
mask of 140 images.

2.6. Visualization of Predicted Masking of Wrist Bones through Automatic Segmentation
by Networks

The Dice coefficient used for quantitative evaluation in this paper is frequently used
for segmentation model evaluations; however, it is an area-based metric, so it has a disad-
vantage in that it cannot evaluate the accuracy of boundaries. Therefore, we visualized
the wrist bone segmentation results using networks in order to yield explainable and
insightful analyses.

2.7. Statistical Analysis

The data were compiled using a standard spreadsheet application (Excel 2016; Mi-
crosoft, Redmond, WA, USA) and analyzed using NCSS 12 (Statistical Software 2018, NCSS,
LLC. Kaysville, UT, USA, ncss.com/software/ncss). Kolmogorov–Smirnov tests were per-
formed to demonstrate the normal distribution of all the datasets. We generated descriptive
statistics, and here present them as frequency and percentage values in the categorical data,
and as either median and interquartile range (IQR) (non-normal distribution) or mean
and standard deviation (SD) (normal distribution). Paired t-tests or Wilcoxon signed rank
tests were used to compare the performance between the Mask R-CNN as the baseline
network and the Fine Mask R-CNN as the proposed network, and the Turing test was
used to compare between the ground truth and the predicted mask. p-values < 0.05 were
considered statistically significant. The intraclass correlation coefficient (ICC) was used
to determine the agreement between three evaluators used in the Turing test. Values of
ICC less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 were
indicative of poor, moderate, good, and excellent reliability, respectively [35].

3. Results

In total, 702 images were collected from 702 patients and all images were labeled
for the annotation and segmentation of ten wrist bones. The baseline characteristics of
participants who provided labeled images were 45.74 (16.66) years old, 53.30% female, and
69.42% images of the left wrist. 702 labeled images split 140 of set A, 140 of set B, 140 of Set
C, 141 of set D, and 141 of set E. All images used for training both wrist ROI detection and
segmentation model were through five-fold validation, and we obtained the test results of
702 images for our proposed models.
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3.1. The Performance Test between the Fine Mask R-CNN and the Mask R-CNN for the Automatic
Segmentation of Wrist Bones

The overall performance (mean [SD] of Dice) in the auto-segmentation of 10 wrist
bones after training increased from 0.93 (0.01) via the Mask R-CNN to 0.95 (0.01) via the
Fine Mask R-CNN (p < 0.001). All values for each bone were higher in the Fine Mask
R-CNN than in the Mask R-CNN (all p < 0.001). The Dice value of the distal radius was
the highest (0.96 (0.01)), and that of the trapezoid bone was the lowest (0.91 (0.05)) after
training with the Fine Mask R-CNN, whereas the Dice value of the distal radius was the
highest (0.94 (0.02)), and that of the trapezoid bone was the lowest value (0.90 (0.05)) after
training with Mask R-CNN (Table 1).

3.2. The Turing Test between Ground Truth Masking by Clinicians and Masking Predicted by Fine
Mask R-CNN for the Automatic Segmentation of Wrist Bones

The total scores (median [IQR]) of all ten wrist bones were 47 (38–50) via predicted
masking and 48 (38–50) via predicted masking and 48 (41–50) via ground truth masking
(p < 0.001). The evaluators estimated that the delineation of ground truth masking was
better than that of predicted masking in each carpal bone (all p < 0.001), except for the
trapezoid and scaphoid (p = 0.25, and p = 0.39 respectively). The scores of the distal radius
and ulnar bones were also significantly different between the two masking methods (all
p < 0.001). The ICC values amongst the evaluators were poor to moderate, in terms of both
the ground truth and the predicted masking (Table 2).

3.3. Visualization of Predicted Masking for Wrist Bone Segmentation by Two Networks

The visualizations used for the delineation of eight carpal bones and two distal forearm
segments, created by two different networks, are shown in Figure 3. Our proposed Fine
Mask R-CNN achieves closer and more accurate delineation with ground truth masking
than the other approach.
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bone by physicians manually, (c) Delineation of segmented bone by Mask R-CNN, (d) Delineation of
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by CNN. CNN; convolutional neural networks.
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Table 1. Comparison of the performance outcomes between the Mask R-CNN and the Fine Mask R-CNN for the automatic segmentation of ten wrist bones.

Tm Td C H P Tr L S Carpal R U Forearm Total

Mask R-CNN Dice, mean [SD] 0.92 (0.03) 0.90 (0.05) 0.93 (0.04) 0.93 (0.02) 0.91 (0.05) 0.93 (0.02) 0.93 (0.02) 0.93 (0.02) 0.92 (0.01) 0.94 (0.02) 0.93 (0.02) 0.94 (0.01) 0.93 (0.01)
Fine Mask R-CNN Dice, mean [SD] 0.93 (0.03) 0.91 (0.05) 0.95 (0.04) 0.95 (0.02) 0.93 (0.04) 0.95 (0.02) 0.95 (0.02) 0.96 (0.02) 0.94 (0.01) 0.96 (0.01) 0.96 (0.02) 0.96 (0.01) 0.95 (0.01)
Comparison between two networks’

p-values <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * <0.001 *

Dice, Dice coefficient; SD, standard deviation; Tm, trapezium; Td, trapezoid; C, capitate; H, hamate; P, pisiform; Tr, triquetrum; L, lunate; S, scaphoid; R, distal radius; U, distal ulna.
Paired t-tests were used to compare the performance between two networks according to normality. * p-values < 0.05 were considered statistically significant.

Table 2. Result of the Turing test between the ground truth masking segmented by clinicians and the predicted masking segmented by Fine Mask R-CNN for the
automatic segmentation of ten wrist bones.

Tm Td C H P Tr L S Carpal R U Forearm Total

Prediction
Score

Median 4 5 4 5 5 5 5 5 37 5 5 10 47
IQR 4, 5 5, 5 4, 5 4, 5 4, 5 4, 5 5, 5 5, 5 36, 38 5, 5 5, 5 9, 10 45, 48

ICC
Mean 0.58 0.59 0.60 0.60 0.54 0.77 0.71 0.31 0.51 0.61 0.51 0.56 0.54

95% CI 0.45, 0.69 0.46, 0.70 0.47, 0.70 0.46, 0.70 0.39, 0.65 0.70, 0.83 0.62, 0.78 0.10, 0.48 0.35, 0.64 0.48, 0.71 0.36, 0.63 0.42, 0.67 0.36, 0.66

Ground Truth
Score

Median 5 5 5 5 5 5 5 5 39 5 5 10 48
IQR 4, 5 5, 5 4, 5 5, 5 5, 5 5, 5 5, 5 5, 5 37, 39 5, 5 5, 5 10, 10 47, 49

ICC
Mean 0.57 0.04 0.39 0.56 0.42 0.61 0.55 0.52 0.48 0.65 0.40 0.57 0.54

95% CI 0.36, 0.70 0.25, 0.27 0.21, 0.54 0.42, 0.67 0.24, 0.56 0.49, 0.71 0.41, 0.66 0.36, 0.64 0.27, 0.63 0.54, 0.74 0.22, 0.55 0.44, 0.68 0.34, 0.67

Score between
two maskings p-value <0.001 * 0.25 <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * 0.39 <0.001 * <0.001 * <0.001 * <0.001 * <0.001 *

IQR, interquartile range; ICC, intraclass correlation coefficient; Tm, trapezium; Td, trapezoid; C, capitate; H, hamate; P, pisiform; Tr, triquetrum; L, lunate; S, scaphoid; R, distal radius; U,
distal ulna. The Wilcoxon signed rank test was used to compare the Turing test results between the prediction and the ground truth masking. * p-values < 0.05 were considered statistically
significant. Values of ICC less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 were indicative of poor, moderate, good, and excellent reliability, respectively.
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4. Discussion

In this study, we have proposed a Fine Mask R-CNN, and this model performed better,
with a 0.95 (0.01) Dice coefficient for the segmentation of ten wrist bones, including eight
carpal bones and two distal forearm bones, from wrist radiographs of people between 18
and 80 years old. Currently, there are two established neural network models specifically
used for image segmentation in the computer imaging field: the fully convolutional neural
network (FCN) and Mask R-CNN. Meng et al. reported that FCN could segment the carpal
site with a Dice coefficient of 0.78 (0.06), using hand and wrist radiographs of people
between 0 and 18 years old [36]. Su et al. reported that carpal bones were successfully
detected with a high Dice coefficient of 0.976 using threshold processing and boundary
detection on hand radiograph images. However, this was only tested on 30 representative
images of non-overlapping carpal bones [37].

We have assessed the performance of two approaches to the segmentation of ten wrist
bones. Faisal et al. found that the range of Dice coefficients for the segmentation of eight
carpal bones was 0.83~0.94 when the locally weighted K-means variational level set was
applied, whereas the range was 0.91~0.96 when Fine Mask R-CNN was employed in our
study [22]. Goo et al. showed that the mean Dice coefficient of the automatic segmentation
of the distal ulna and radius with dynamic programing was about 0.90, when using forearm
radiographs [17], while we achieved a mean [SD] Dice of 0.96 (0.01) with Fine Mask R-CNN.
The use of a fracture detection CNN without segmentation, based on a Dense-161, for distal
radio-ulnar fractures on plain radiographs showed a sensitivity of 90.3%, with a specificity
of 90.3% [38]. The sensitivity and specificity of the CNN without segmentation in terms
of detecting distal radial fractures (using EfcientNet-B2 in frontal view and EfcientNet-B4
in lateral view wrist radiographs) were 98.7% and 100%, respectively [39]. The use of a
segmentation and fracture detection CNN, based on a DenseNet-121, for the automated
detection of scaphoid fractures on plain radiographs achieved a Dice coefficient of 0.974
(0.014) and a sensitivity of 78%, with a specificity of 84%. This network could achieve
performance levels comparable to human observation in detecting scaphoid fractures on
radiographs [11]. Our proposed network for the segmentation of ten wrist bones could
assist in the automatic detection of various wrist bone fractures on wrist radiographs.

Most studies on wrist bone segmentation have used the wrist radiographs of young
children. Wrist bones are formed during infancy, and increasingly overlap as their size
increases [13,37,40]. In our study using Fine Mask R-CNN on adults’ wrist radiographs, the
performance for scaphoid, capitate, hamate, and lunate bones achieved Dice coefficients of
over 0.95, because these bones are relatively large, and the overlap area with other bones
is relatively small. However, the Dice values of some were lower, such as 0.93 for the
trapezium, 0.91 for the trapezoid, and 0.93 for the pisiform. This is because the trapezium
and trapezoid overlap in almost all areas in men over 7 years of age and women over
5 years of age [13], and the trapezium, trapezoid, and pisiform wrist bones overlap on the
wrist PA radiographs of adults [41]. We have proposed a two-stage method that extracts
the ROI from a wrist X-ray image first, and then segments the 10 bones within to solve
this problem. Additionally, in the segmentation module based on Mask R-CNN, using
an encoder–decoder-type network, spatial information can be preserved. This helped us
to improve the segmentation performance by using the preserved spatial information.
However, the capacity for the delineation of overlapping bones, such as the trapezium,
trapezoid, and pisiform, was still worse than the others.

The Turing test is an important measure of how “intelligent” a deep learning model
is. In a study on the automatic segmentation of a clinical target volume in rectal cancer
patients, at least three out of ten clinicians thought that the predicted masking in this
region was better than the ground truth masking [42]. This is the first study to carry out a
Turing test on the automatic segmentation of ten wrist bones using wrist radiographs. The
evaluators could not assign superiority between the masking predicted by our network and
the ground truth masking performed by clinicians for the segmentation of two (trapezoid
and scaphoid) wrist bones
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Several limitations of this study should be considered. First, the data on the wrist
radiographs and the patients originated from a single center, and our proposed model
might not be suitable for other hospitals. Second, our proposed method was not an end-to-
end network. Since Fine Mask R-CNN consists of two different neural networks—wrist
ROI detection and wrist segmentation networks, the gradient cannot be shared directly
between them. Therefore, our work needs to be extended to assess end-to-end networks
that will establish a trainable attention module for future work. Finally, bias could not be
eliminated from the Turing test because the test was performed by three radiologists from
one center, without double blindness or randomization.

5. Conclusions

Our proposed CNN model exhibited a highly favorable performance in the automatic
segmentation of ten overlapping wrist bones, consisting of eight carpal bones and the distal
ulna and radius carpal bones, on plain wrist radiographs.
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ROI region of interest
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