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Abstract: Patients with hypertensive intracerebral hemorrhage (ICH) have a high hematoma expan-
sion (HE) incidence. Noninvasive prediction HE helps doctors take effective measures to prevent
accidents. This study retrospectively analyzed 253 cases of hypertensive intraparenchymal hematoma.
Baseline non-contrast-enhanced CT scans (NECTs) were collected at admission and compared with
subsequent CTs to determine the presence of HE. An end-to-end deep learning method based on
CT was proposed to automatically segment the hematoma region, region of interest (ROI) feature
extraction, and HE prediction. A variety of algorithms were employed for comparison. U-Net with
attention performs best in the task of segmenting hematomas, with the mean Intersection overUnion
(mIoU) of 0.9025. ResNet-34 achieves the most robust generalization capability in HE prediction,
with an area under the receiver operating characteristic curve (AUC) of 0.9267, an accuracy of 0.8827,
and an F1 score of 0.8644. The proposed method is superior to other mainstream models, which will
facilitate accurate, efficient, and automated HE prediction.

Keywords: hematoma expansion; hypertension; end-to-end; deep learning

1. Introduction

Studies showed that the incidence of ICH today is as high as 3 in 10,000, which already
accounts for 10–15% of all strokes [1–3]. In patients with hypertension, cerebral blood
vessels rupture due to a sudden increase in blood pressure, such as intracranial hemor-
rhage and subarachnoid hemorrhage. Patients present with severe headache, dizziness,
nausea, projectile vomiting, and sudden severe loss of consciousness [4,5]. Notably, HE
is a serious and typical complication of hypertensive ICH, with an incidence of approxi-
mately one-third [6–8]. HE also has an important impact on the prognosis of the patient’s
nervous system. Therefore, early detection of high-risk patients can help doctors to take
necessary measures in a timely manner, such as controlling hypertension, reducing in-
tracranial pressure, and administering hemostatic and coagulation drugs so as to prevent
accidents [9,10].

How to non-invasively predict HE has become a hot spot in clinical research. Tradi-
tionally, hypertension, CT scan images, and warfarin use [11,12] are independent clinical
factors predicting HE. Additionally, radiological indicators such as CT angiography point
sign [13,14], leakage sign [14], island sign [15], mixed sign [16,17], black hole sign [18], and
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whirlpool sign [19] are also helpful for doctors to detect HE. However, the above qualitative
criteria can only be roughly estimated and cannot be accurately predicted for individuals,
which confuses doctors in their decision-making.

With the development of artificial intelligence (AI) technology, scientists have com-
bined it with medical imaging to identify diseases better. CT images of patients with ICH
show that enlarged hematomas are more prone to heterogeneity in shape, texture, and
signal intensity. Based on this, patients’ CT images and corresponding clinical data were
collected to develop automatic AI models for the accurate prediction of HE.

This paper proposed a deep learning-based end-to-end method for predicting HE. For
CT data, we employed the U-net algorithm with attention to automatically segment the
hematoma area after preprocessing. After that, the convolutional neural networks (CNNs)
were applied to predict HE. By comparison, it is found that ResNet-34 performs the best in
the test set, which indicates that the algorithm has excellent generalization performance in
predicting HE. This is the first report using deep learning for end-to-end prediction of HE
(integrating automatic segmentation and classification) to the best of our knowledge.

2. Materials and Methods

The workflow for this study is shown in Figure 1.
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2.1. Patient’s Demographics and Data Acquisition

The Ethics Committee of Beijing Tiantan Hospital approved this study (ethical state-
ment number: KY2020-112-02). All participants obtained written informed consent. Pa-
tients with ICH who had baseline NECT scans within 6 h of onset of symptoms and follow-
up scans within 48 h of baseline scans from January 2015 to July 2018 were retrospectively
analyzed. The following patient exclusion criteria were set: secondary ICH (arteriovenous
malformation, aneurysm, head trauma, brain tumor); surgical treatment prior to follow-up
scan; hemorrhagic evolution of ischemic infarction; primary intraventricular hemorrhage;
artifacts present; cerebellum/brain stem hematoma; and anticoagulant/antiplatelet therapy
was administered. In this study, HE was defined as an absolute increase of more than
12.5 mL or a relative increase of more than 33% in the repeat results compared to the
original volume [7].
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2.2. CT Examination and Image Analysis

Baseline NECT images were collected by GE Healthcare within 6 h of symptom onset.
Follow-up NECTs were then obtained again with the same device within 48 h. The scan
energy of the device was 120 KVP, and smart mAs was selected. All slices were 5.0 mm
thick with a pixel pitch of 0.45 × 0.45 mm2.

CT scans ranged from −1000 to 400HU (normalized operation) in this work. Some
slices without ROI in the original CT increase the computational complexity and be ineffec-
tive for model training. We cropped out unmarked slices based on manually annotated data
(described below). The input channels of the segmentation and classification models used
in this paper are all two-dimensional, so the data are also converted into the corresponding
format. In addition, data augmentation operations, such as horizontal flipping, random
rotation, random blurring, etc., were performed on the divided training set before executing
the task, which can avoid the performance degradation of the model caused by the uneven
number of different types.

2.3. Manual Annotation

The segmentation of this study employed supervised learning, so four radiologists
with ten years or more of experience completed the manual labeling task. Among them,
three doctors delineated the bleeding location of each sample with the help of 3D Slicer
(Boston, MA, USA) software, and the other doctor reviewed the results of the former marking.

2.4. Segmentation Models Construction

In this study, supervised learning was employed to automatically segment the hematoma
region. After analyzing the image features, the U-Net deep learning architecture was chosen.
U-Net, U-Net++, and U-Net with attention were proposed for training and testing.

2.4.1. U-Net with Attention

Attention U-Net was published in 2018 [20]; it was verified to perform well in several
medical image segmentation tasks [21,22], but it has not yet been employed in brain
hematoma segmentation.

This model proposed an Attention Gate (AG) structure, which is connected at the end
of each skip connection to implement the attention mechanism for the extracted features.
Based on the basic U-Net, the attention mechanism was added, and the activation value
was adjusted by automatically learning parameters. The visualization effect of attention is
still the main part, and unlike the non-local method, each pixel must be compared with
other pixels. Therefore, it can be regarded as an implicit attention mechanism.

Attention U-net was set to two-dimensional input channels. The image size was
converted to 512 × 512 in this work; meanwhile, the initial model was pre-train to directly
adapt to the downstream hematoma region segmentation.

2.4.2. U-Net++

U-Net++ is a new segmentation structure based on nested dense skip connections to
solve the accuracy problem of medical image segmentation [23]. U-Net++ network is also
composed of an encoder and decoder. Unlike U-Net, U-Net++ consists of an encoder and
decoder connected by a series of nested dense convolution blocks. The main idea of this
architecture is to bridge the semantic gap between the feature maps of the encoder and
decoder before fusion. In this paper, the dimensions and sizes of the input images are the
same as those of the above model and were also pre-trained.

2.4.3. U-Net

As a classic medical image segmentation model, U-Net has been widely used in
various tasks [24,25]. The architecture is a classic fully convolutional network (i.e., no fully
connected operations in the network). This study compared it with the aforementioned
models, such as Attention U-Net and U-Net++.
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2.5. Prediction Models Construction

To automatically extract the features of the hematoma area and achieve accurate
classification, CNN models were applied. This study adopted two mainstream deep
learning architectures, ResNet and Visual Geometry Group (VGG), which perform well in
multiple medical image recognition tasks [26–28] but are less adopted in HE prediction.

A residual structure is proposed in ResNet, which effectively solves the degradation
problem of traditional CNNs as the network becomes deeper. The residual structure em-
ploys a shortcut connection method; that is, the feature matrix is added at intervals. In
addition, the proposal of batch normalization (BN) layer effectively avoids gradient vanish-
ing or gradient explosion. In this experiment, ResNet-18 and ResNet-34 were respectively
constructed and applied to the prediction of HE. Notably, the segmented slices (the size
was set to 512 × 512) were input to the model for training, while in the validation and test
sections, the results from all slices were aggregated to predict patient outcomes.

In VGG, 3 and 2 3 × 3 convolution kernels are used to replace AlexNet’s 7 × 7 and
5 × 5 convolution kernels, respectively. The primary purpose of this is to deepen the
depth of the network under the condition of ensuring the same perceptual field, thereby
improving the effectiveness of the neural network to a certain extent. For a given receptive
field, employing stacked small convolution kernels outperforms large convolution kernels.
Multiple non-linear layers can increase the depth of the network to ensure learning more
complex patterns with relatively few parameters. VGG-16 was built as a prediction model
for HE in the study. Likewise, we set the input size of the image to 512 × 512.

2.6. Statistics and Evaluation

For clinical indicators of patients, differences were calculated using a Student’s t-test
or Mann–Whitney U-test. By considering the distribution of continuous data (normal
distribution or not), the mean ± standard deviation or the median of the interquartile range
was calculated as a result. Differences in categorical variables were estimated employing
the chi-square test, and results were presented as a number of events followed by relative
frequencies (%). The criterion of significant difference was set as p < 0.05.

For deep learning evaluation, mIoU, accuracy (Acc), Kappa, and Dice coefficients
were selected as the computational metrics for the segmentation models. Meanwhile, the
prediction models introduced Acc, recall, precision (Prec), F1 score, receiver operating
characteristic (ROC) curve, and the corresponding AUC as evaluation criteria. Means and
corresponding 95% confidence intervals (CIs) were calculated. This study’s segmentation
and classification tasks were binary classifications, and the threshold was set to 0.5.

2.7. Experiments

It should be emphasized that slices of the same patients may have high similarity. Data
leakage may occur if slices are randomly divided directly, resulting in artificial performance
improvement. Therefore, patients were randomly divided into a training set, validation set,
and test set in a ratio of 8:1:1 during the segmentation. When the training was complete,
the performance evaluation of models on the test set was carried out. The classification task
employed a 5-fold cross-validation method for patients; thus, the dataset was randomly
divided into 5 parts, 4 of which were used for training, and the rest were used for validation,
repeated 5 times. After dividing according to the above criteria, convert the raw data into
slices to enter the models.

The study trained the CT slices but validated and evaluated them on a patient-specific
basis, which is clinically significant. The specific method was to summarize the predicted
probabilities of all slices for each patient and take their average as the probability of the
patient. All experiments were carried out using Windows 10 operating system. Related
computing devices were configured with AMD Ryzen 7 5800H CPU (16 GB memory) and
2 GPUs, including NVIDIA®GeForce RTX 3070 and NVIDIA®Tesla V100 GPU with 32 GB
memory. Both were supported by CUDA acceleration. All work was conducted using
Python 3.8 and the deep learning framework Paddle-Paddle.
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3. Results
3.1. Patient’s Demographics and Clinical Characteristics

A preliminary collection of 389 patients with hypertensive intraparenchymal hematoma
was used. The patient selection flowchart is shown in Figure 2. Nine patients had sec-
ondary ICH originating from arteriovenous malformations, aneurysms, head trauma,
or brain tumors, and three patients with hemorrhagic evolution due to ischemic infarc-
tion were excluded. Forty-nine patients with the presence of surgical treatment prior to
follow-up were also excluded. Thirty-four patients had predominantly intraventricular
hematomas, and twenty-one patients who had hematomas located in the cerebellum and
brainstem were excluded. Six and fourteen patients, respectively, who received anticoagu-
lation/antiplatelet therapy and had CT images with artifacts that interfered with image
interpretation were excluded.

A total of 253 patients were finally enrolled, including 157 males and 96 females, with
an average age of 58.3 ± 13.0 years (age range 26–91 years), of which 57 (22.5%) patients
had hematoma expansion. The HE group included 39 men and 18 women (median age,
57.0; IQR, 48.0–64.0), and the NHE group included 118 men and 78 women (median age,
59.0; IQR, 50.8–68.0). There were no statistically significant differences between the HE and
NHE groups in terms of age (p = 0.179) and sex (p = 0.261). As for hematoma characteristics,
hematoma volume (17.8 mL vs. 27.5 mL, p < 0.001), 3D diameter (47.5 mm vs. 57.5 mm,
p < 0.001), and hematoma 2D diameter (40.6 mm vs. 49.8 mm, p < 0.001) were significantly
smaller in the HE group. The clinical characteristics of the above patients are shown in
Table 1.

Table 1. Statistical results of clinical indicators of ICH patients.

Characteristics HE Group NHE Group p

Patients, No. (%) 57 (22.5%) 196 (74.5%) -
Age, y, median, (IQR) 57.0 (48.0–64.0) 59.0 (50.8–68.0) 0.179

Sex, M/F 39/18 118/78 0.261
Hematoma Volume (mL), mean, SD 17.8 (16.3) 27.5 (21.7) <0.001

Hematoma Maximum 3D shape diameter (mm), mean, SD 47.5 (15.4) 57.5 (17.3) <0.001
Hematoma Maximum 2D slice diameter (mm), mean, SD 40.6 (15.2) 49.8 (16.9) <0.001

Note: SD represents standard deviation; IQR represents interquartile range.
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3.2. Segmentation Results

These experiments employed supervised learning to train the training set and compare
the final results. U-Net with attention, U-Net++, and U-Net were all iterated until the loss
became stable and there was no overfitting. Momentum was selected as the optimizer and
set to 0.9. Other key parameters such as initial learning rate, weight_decay, and batch size
were set to 0.0001, 0.0003, and 2, respectively.

Using the well-trained models for testing, Figure 3 shows the visualization of manual
annotation and segmentation of each model. The green area represents the ROI. The
evaluation indicators of the three segmentation models are shown in Table 2. It is not
difficult to find that U-Net with attention has the best performance, with mIoU of 0.9025,
Acc of 0.9976, kappa of 0.8922, and Dice of 0.9461. U-Net and U-Net++ perform similarly,
where their mIoUs are 0.8847 and 0.8773, respectively.
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It is worth noting that U-Net with attention also has the largest number of parameters,
which increases the training difficulty.
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Table 2. Comparison of model segmentation results.

Model mIoU Acc Kappa Dice Parameter

U-Net
attention 0.9025 0.9976 0.8922 0.9461 34,894,262

U-Net++ 0.8773 0.9969 0.8605 0.9303 8,368,872
U-Net 0.8847 0.9971 0.8700 0.9350 13,404,354

3.3. Prediction Results

ResNet-18, ResNet-34, and VGG-16 deep learning models were adopted to automati-
cally extract the texture features of the hematoma area and predict HE. The training was
carried out according to the dataset mentioned above division ratio.

During training, key hyperparameters have been optimized (some parameters were
set the same for the purposes of comparison). Among them, Adam was employed as
the optimizer, which utilizes the first- and second-moment estimates of the gradient to
dynamically adjust the learning rate of each parameter. The main advantage of Adam is
that after bias correction, the learning rate has a certain range after each iteration, which
makes the parameters relatively stable. The initial learning rate was set to 1.0 × 10−5,
weight_decay was 0.001, verbose was 1, and batch size was set to 64.

After 10,000 iterations, all models converged without overfitting (the loss value tended
to be stable and less than 0.001). The validation results at this time were selected, and the
experiment was repeated five times to calculate the average value and the corresponding
95% CI of each model. The validation results of each model are shown in Table 3. It is not
difficult to find that ResNet-34 performs the best among the three, with accuracy reaching
0.8827, higher than ResNet-18’s 0.8432 and VGG-16’s 0.8043. The F1 score is an important
indicator used to measure the performance of the two-class model. It considers the accuracy
and recall of the model at the same time. It can be regarded as a weighted average of the
accuracy and recall, which is widely representative. ResNet-34 has the highest F1 score
(0.8644) in this study, indicating that the model has the most robust generalization ability
in predicting HE.

The average ROC curves and their AUC values are shown in Figure 4 are another
important indicator reflecting the performance of the models. The AUC value of ResNet-34
is still the highest, reaching 0.9267, followed by ResNet-18 (0.9115) and VGG-16 (0.8673).
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Table 3. The performance of different prediction models on the validation set.

Model Acc Recall Prec F1 Score

ResNet-34 0.8827 ± 0.0562 0.8281 ± 0.0703 0.9058 ± 0.0699 0.8644 ± 0.0663
ResNet-18 0.8432 ± 0.0216 0.7304 ± 0.0344 0.9063 ± 0.0293 0.8086 ± 0.0306
VGG-16 0.8043 ± 0.0441 0.7199 ± 0.1316 0.8431 ± 0.0629 0.7629 ± 0.0713

Note: Acc and Prec are abbreviations for accuracy and precision, respectively.

4. Discussion

This paper constructed deep learning models to accurately predict whether HE occurs
in patients with cerebral hemorrhage with hypertension. The deep learning framework
set up automatic segmentation, extracted imaging features, and classified them. Through
comparison, it was found that the best performance in the segmentation models is U-Net
with attention, reaching 0.9025 mIoU. ResNet-34 performs best in predicting HE, with an
AUC of 0.9267. This is the first report to integrate preprocessing, automatic segmentation,
feature extraction, and HE prediction.

Attention U-Net introduced an attention mechanism based on U-Net, using an atten-
tion module to readjust the output features of the encoder before stitching the features
on each resolution of the encoder with the corresponding features in the decoder. The
module generates a gated signal that controls the importance of features at different spatial
locations. This mechanism focuses attention on the target region, which is simply to make
the value of the target region larger. U-Net with attention performs well in the segmentation
tasks of medical imaging, which is closely related to its model architecture. This study
introduced it into the HE classification and found that this model is superior to traditional
U-Net and U-Net++.

ResNet-34 outperforms ResNet-18 and VGG-16 in this experiment. We believe that
there are the following reasons. First, the input sample size reaches 1985 slices, and the
texture characteristics of the hematoma area are more complex, which makes the training
more difficult. As a result, ResNet-34 is more able to capture depth texture features because
of the complexity of its model. Secondly, the residual structure solves the problem of
network degradation, which is conducive to improving the prediction ability of HE.

By considering the small amount of data and the difficulty of training, this study
built models for slices without setting the 3D input channel. A total of 253 patients were
included in the study, and if directly targeted at patients, there may be an inability to
converge due to a sample size that is too small. In addition, the input of 3D significantly
increases the difficulty of training, which puts forward higher requirements for computing
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equipment. Based on this, this work proposed a method for training slices and predicting
individual patients.

There are also reports of employing machine learning to predict HE based on radiomics.
Liu et al. [29] retrospectively collected 1157 patients with spontaneous ICH. All hematoma
areas were manually segmented. The study developed an SVM machine learning model to
predict HE, where the AUC is 0.89. Cheng et al. [30] adopted a bimodal machine learning
strategy to predict HE and obtained the highest AUC of 0.73. The method is similar to this
paper, in which 5616 segmented hematoma images (from 104 patients) were trained, and
individuals were predicted after summarizing the slices of each patient. Multiple logistic
regression (LR) was employed to construct clinical radiology models for predicting HE
tasks [31]. The study included 261 patients, eventually reaching an AUC of 0.867 in the
validation cohort. A deep learning method was developed and validated to predict HE
in patients with intracerebral hemorrhage [32]. The investigators retrospectively analyzed
1899 non-contrast computed tomography (NCCT) images of 118 patients with intracerebral
hemorrhage and established a prediction model. The average AUC of this model reaches
0.780. Our work included only 253 patients, while the end-to-end deep learning method
developed reached a maximum AUC of 0.9267.

There is no denying that this work is also flawed. For example, prediction based on
2D data cannot capture spatial information between slice and slice, which can affect the
accuracy of decision-making. Second, the inputs in this study only considered brain CTs of
patients and did not include other clinical indicators, which may also reduce the model’s
accuracy. Furthermore, deficiencies such as the small sample size from the one center need
to be continuously improved in the future. Additionally, the proposed method has not yet
been used in clinical practice, which requires further attempts in the future.

5. Conclusions

Aiming at the high risk of HE occurrence in ICH patients, this study proposed an
end-to-end deep learning method for automatic segmentation of hematomas, deep feature
extraction, and HE prediction. It was found that U-Net with attention performs best in the
segmentation task, reaching a mIoU of 0.9025. ResNet-34 is the most accurate predictor of
HE, with an AUC of 0.9267. In the future, we will further expand the dataset to verify the
applicability of the method and develop related software to serve radiologists.

Author Contributions: Conceptualization, C.M. and L.W.; methodology, L.W.; software, L.W.;
validation, C.M., L.W. and C.G.; formal analysis, D.L.; investigation, K.Y.; resources, Z.M.; data
curation, S.L.; writing—original draft preparation, L.W.; writing—review and editing, C.M.; visual-
ization, Y.Z.; supervision, Y.Z.; project administration, G.W.; funding acquisition, G.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by Neuro-oncology Project from the Chinese Anti-Cancer
Association (CSNO-2016-MSD05) and the Beijing Municipal Science and Technology Commission
(Z171100001017199).

Institutional Review Board Statement: The Ethics Committee of Beijing Tiantan Hospital approved
this study (ethical statement number: KY2020-112-02).

Informed Consent Statement: Written informed consent has been obtained from the patient(s) to
publish this paper.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qureshi, A.I.; Tuhrim, S.; Broderick, J.P.; Batjer, H.H.; Hondo, H.; Hanley, D.F. Spontaneous intracerebral hemorrhage. N. Engl.

J. Med. 2001, 344, 1450–1460. [CrossRef] [PubMed]
2. Sudlow, C.L.; Warlow, C.P. Comparable studies of the incidence of stroke and its pathological types: Results from an international

collaboration. International Stroke Incidence Collaboration. Stroke 1997, 28, 491–499. [CrossRef] [PubMed]

http://doi.org/10.1056/NEJM200105103441907
http://www.ncbi.nlm.nih.gov/pubmed/11346811
http://doi.org/10.1161/01.STR.28.3.491
http://www.ncbi.nlm.nih.gov/pubmed/9056601


J. Pers. Med. 2022, 12, 779 10 of 11

3. Feigin, V.L.; Lawes, C.M.; Bennett, D.A.; Anderson, C.S. Stroke epidemiology: A review of population-based studies of incidence,
prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003, 2, 43–53. [CrossRef]

4. Hansen, B.M.; Nilsson, O.G.; Anderson, H.; Norrving, B.; Saveland, H.; Lindgren, A. Long term (13 years) prognosis after primary
intracerebral haemorrhage: A prospective population based study of long term mortality, prognostic factors and causes of death.
J. Neurol. Neurosurg. Psychiatry 2013, 84, 1150–1155. [CrossRef] [PubMed]

5. Poon, M.T.; Fonville, A.F.; Al-Shahi Salman, R. Long-term prognosis after intracerebral haemorrhage: Systematic review and
meta-analysis. J. Neurol. Neurosurg. Psychiatry 2014, 85, 660–667. [CrossRef]

6. Davis, S.M.; Broderick, J.; Hennerici, M.; Brun, N.C.; Diringer, M.N.; Mayer, S.A.; Begtrup, K.; Steiner, T.; Recombinant Activated
Factor VIIIHTI. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology
2006, 66, 1175–1181. [CrossRef]

7. Delcourt, C.; Huang, Y.; Arima, H.; Chalmers, J.; Davis, S.M.; Heeley, E.L.; Wang, J.; Parsons, M.W.; Liu, G.; Anderson, C.S.; et al.
Hematoma growth and outcomes in intracerebral hemorrhage: The INTERACT1 study. Neurology 2012, 79, 314–319. [CrossRef]

8. Fujii, Y.; Tanaka, R.; Takeuchi, S.; Koike, T.; Minakawa, T.; Sasaki, O. Hematoma enlargement in spontaneous intracerebral
hemorrhage. J. Neurosurg. 1994, 80, 51–57. [CrossRef]

9. Anderson, C.S.; Heeley, E.; Huang, Y.; Wang, J.; Stapf, C.; Delcourt, C.; Lindley, R.; Robinson, T.; Lavados, P.; Neal, B.; et al. Rapid
blood-pressure lowering in patients with acute intracerebral hemorrhage. N. Engl. J. Med. 2013, 368, 2355–2365. [CrossRef]

10. Qureshi, A.I.; Palesch, Y.Y.; Barsan, W.G.; Hanley, D.F.; Hsu, C.Y.; Martin, R.L.; Moy, C.S.; Silbergleit, R.; Steiner, T.; Suarez, J.I.; et al.
Intensive Blood-Pressure Lowering in Patients with Acute Cerebral Hemorrhage. N. Engl. J. Med. 2016, 375, 1033–1043. [CrossRef]

11. Balami, J.S.; Buchan, A.M. Complications of intracerebral haemorrhage. Lancet Neurol. 2012, 11, 101–118. [CrossRef]
12. Brouwers, H.B.; Chang, Y.; Falcone, G.J.; Cai, X.; Ayres, A.M.; Battey, T.W.; Vashkevich, A.; McNamara, K.A.; Valant, V.;

Schwab, K.; et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014, 71, 158–164.
[CrossRef] [PubMed]

13. Demchuk, A.M.; Dowlatshahi, D.; Rodriguez-Luna, D.; Molina, C.A.; Blas, Y.S.; Dzialowski, I.; Kobayashi, A.; Boulanger, J.M.;
Lum, C.; Gubitz, G.; et al. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the
CT-angiography spot sign (PREDICT): A prospective observational study. Lancet Neurol. 2012, 11, 307–314. [CrossRef]

14. Orito, K.; Hirohata, M.; Nakamura, Y.; Takeshige, N.; Aoki, T.; Hattori, G.; Sakata, K.; Abe, T.; Uchiyama, Y.; Sakamoto, T.; et al.
Leakage Sign for Primary Intracerebral Hemorrhage: A Novel Predictor of Hematoma Growth. Stroke 2016, 47, 958–963. [CrossRef]
[PubMed]

15. Li, Q.; Liu, Q.J.; Yang, W.S.; Wang, X.C.; Zhao, L.B.; Xiong, X.; Li, R.; Cao, D.; Zhu, D.; Wei, X.; et al. Island Sign: An Imaging
Predictor for Early Hematoma Expansion and Poor Outcome in Patients with Intracerebral Hemorrhage. Stroke 2017, 48,
3019–3025. [CrossRef] [PubMed]

16. Li, Q.; Zhang, G.; Huang, Y.J.; Dong, M.X.; Lv, F.J.; Wei, X.; Chen, J.J.; Zhang, L.J.; Qin, X.Y.; Xie, P. Blend Sign on Computed
Tomography: Novel and Reliable Predictor for Early Hematoma Growth in Patients with Intracerebral Hemorrhage. Stroke 2015,
46, 2119–2123. [CrossRef]

17. Sporns, P.B.; Schwake, M.; Schmidt, R.; Kemmling, A.; Minnerup, J.; Schwindt, W.; Cnyrim, C.; Zoubi, T.; Heindel, W.;
Niederstadt, T.; et al. Computed Tomographic Blend Sign Is Associated with Computed Tomographic Angiography Spot Sign
and Predicts Secondary Neurological Deterioration after Intracerebral Hemorrhage. Stroke 2017, 48, 131–135. [CrossRef]

18. Li, Q.; Zhang, G.; Xiong, X.; Wang, X.C.; Yang, W.S.; Li, K.W.; Wei, X.; Xie, P. Black Hole Sign: Novel Imaging Marker That Predicts
Hematoma Growth in Patients with Intracerebral Hemorrhage. Stroke 2016, 47, 1777–1781. [CrossRef]

19. Ng, D.; Churilov, L.; Mitchell, P.; Dowling, R.; Yan, B. The CT Swirl Sign Is Associated with Hematoma Expansion in Intracerebral
Hemorrhage. AJNR Am. J. Neuroradiol. 2018, 39, 232–237. [CrossRef]

20. Vahadane, A.; Atheeth, B.; Majumdar, S. Dual Encoder Attention U-net for Nuclei Segmentation. Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. 2021, 2021, 3205–3208.

21. Hui, H.; Zhang, X.; Wu, Z.; Li, F. Dual-Path Attention Compensation U-Net for Stroke Lesion Segmentation. Comput. Intell.
Neurosci. 2021, 2021, 7552185. [CrossRef] [PubMed]

22. Lin, H.; Li, Z.; Yang, Z.; Wang, Y. Variance-aware attention U-Net for multi-organ segmentation. Med. Phys. 2021, 48, 7864–7876.
[CrossRef]

23. Jin, J.; Zhu, H.; Zhang, J.; Ai, Y.; Zhang, J.; Teng, Y.; Xie, C.; Jin, X. Multiple U-Net-Based Automatic Segmentations and Radiomics
Feature Stability on Ultrasound Images for Patients with Ovarian Cancer. Front. Oncol. 2021, 10, 614201. [CrossRef] [PubMed]

24. Falk, T.; Mai, D.; Bensch, R.; Çiçek, Ö.; Abdulkadir, A.; Marrakchi, Y.; Böhm, A.; Deubner, J.; Jäckel, Z.; Seiwald, K.; et al. U-Net:
Deep learning for cell counting, detection, and morphometry. Nat. Methods 2019, 16, 67–70. [CrossRef] [PubMed]

25. Su, R.; Zhang, D.; Liu, J.; Cheng, C. MSU-Net: Multi-Scale U-Net for 2D Medical Image Segmentation. Front. Genet. 2021,
12, 639930. [CrossRef]

26. Sitaula, C.; Hossain, M.B. Attention-based VGG-16 model for COVID-19 chest X-ray image classification. Appl. Intell. 2021, 51,
2850–2863. [CrossRef]

27. Yu, X.; Kang, C.; Guttery, D.S.; Kadry, S.; Chen, Y.; Zhang, Y.D. ResNet-SCDA-50 for Breast Abnormality Classification. IEEE/ACM
Trans. Comput. Biol. Bioinform. 2021, 18, 94–102. [CrossRef]

28. Yaqoob, M.K.; Ali, S.F.; Bilal, M.; Hanif, M.S.; Al-Saggaf, U.M. ResNet Based Deep Features and Random Forest Classifier for
Diabetic Retinopathy Detection. Sensors 2021, 21, 3883. [CrossRef]

http://doi.org/10.1016/S1474-4422(03)00266-7
http://doi.org/10.1136/jnnp-2013-305200
http://www.ncbi.nlm.nih.gov/pubmed/23715913
http://doi.org/10.1136/jnnp-2013-306476
http://doi.org/10.1212/01.wnl.0000208408.98482.99
http://doi.org/10.1212/WNL.0b013e318260cbba
http://doi.org/10.3171/jns.1994.80.1.0051
http://doi.org/10.1056/NEJMoa1214609
http://doi.org/10.1056/NEJMoa1603460
http://doi.org/10.1016/S1474-4422(11)70264-2
http://doi.org/10.1001/jamaneurol.2013.5433
http://www.ncbi.nlm.nih.gov/pubmed/24366060
http://doi.org/10.1016/S1474-4422(12)70038-8
http://doi.org/10.1161/STROKEAHA.115.011578
http://www.ncbi.nlm.nih.gov/pubmed/26931155
http://doi.org/10.1161/STROKEAHA.117.017985
http://www.ncbi.nlm.nih.gov/pubmed/29018128
http://doi.org/10.1161/STROKEAHA.115.009185
http://doi.org/10.1161/STROKEAHA.116.014068
http://doi.org/10.1161/STROKEAHA.116.013186
http://doi.org/10.3174/ajnr.A5465
http://doi.org/10.1155/2021/7552185
http://www.ncbi.nlm.nih.gov/pubmed/34504522
http://doi.org/10.1002/mp.15322
http://doi.org/10.3389/fonc.2020.614201
http://www.ncbi.nlm.nih.gov/pubmed/33680934
http://doi.org/10.1038/s41592-018-0261-2
http://www.ncbi.nlm.nih.gov/pubmed/30559429
http://doi.org/10.3389/fgene.2021.639930
http://doi.org/10.1007/s10489-020-02055-x
http://doi.org/10.1109/TCBB.2020.2986544
http://doi.org/10.3390/s21113883


J. Pers. Med. 2022, 12, 779 11 of 11

29. Liu, J.; Xu, H.; Chen, Q.; Zhang, T.; Sheng, W.; Huang, Q.; Song, J.; Huang, D.; Lan, L.; Li, Y.; et al. Prediction of hematoma
expansion in spontaneous intracerebral hemorrhage using support vector machine. EBioMedicine 2019, 43, 454–459. [CrossRef]

30. Cheng, X.; Zhang, W.; Wu, M.L.; Jiang, N.; Ni Guo, Z.; Leng, X.; Song, J.N.; Jin, H.; Sun, X.; Zhang, F.; et al. A prediction
of hematoma expansion in hemorrhagic patients using a novel dual-modal machine learning strategy. Physiol. Meas. 2021,
42, 074005. [CrossRef]

31. Song, Z.; Guo, D.; Tang, Z.; Liu, H.; Li, X.; Luo, S.; Yao, X.; Song, W.; Song, J.; Zhou, Z. Noncontrast Computed Tomography-Based
Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage. Korean J. Radiol.
2021, 22, 415–424. [CrossRef] [PubMed]

32. Teng, L.; Ren, Q.; Zhang, P.; Wu, Z.; Guo, W.; Ren, T. Artificial Intelligence Can Effectively Predict Early Hematoma Expansion
of Intracerebral Hemorrhage Analyzing Noncontrast Computed Tomography Image. Front. Aging Neurosci. 2021, 13, 632138.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.ebiom.2019.04.040
http://doi.org/10.1088/1361-6579/ac10ab
http://doi.org/10.3348/kjr.2020.0254
http://www.ncbi.nlm.nih.gov/pubmed/33169546
http://doi.org/10.3389/fnagi.2021.632138
http://www.ncbi.nlm.nih.gov/pubmed/34122038

	Introduction 
	Materials and Methods 
	Patient’s Demographics and Data Acquisition 
	CT Examination and Image Analysis 
	Manual Annotation 
	Segmentation Models Construction 
	U-Net with Attention 
	U-Net++ 
	U-Net 

	Prediction Models Construction 
	Statistics and Evaluation 
	Experiments 

	Results 
	Patient’s Demographics and Clinical Characteristics 
	Segmentation Results 
	Prediction Results 

	Discussion 
	Conclusions 
	References

