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Abstract: (1) Introduction: Multiparametric magnetic resonance imaging (mpMRI) is the main
imagistic tool employed to assess patients suspected of harboring prostate cancer (PCa), setting the
indication for targeted prostate biopsy. However, both mpMRI and targeted prostate biopsy are
operator dependent. The past decade has been marked by the emerging domain of radiomics and
artificial intelligence (AI), with extended application in medical diagnosis and treatment processes.
(2) Aim: To present the current state of the art regarding decision support tools based on texture
analysis and AI for the prediction of aggressiveness and biopsy assistance. (3) Materials and Methods:
We performed literature research using PubMed MeSH, Scopus and WoS (Web of Science) databases
and screened the retrieved papers using PRISMA principles. Articles that addressed PCa diagnosis
and staging assisted by texture analysis and AI algorithms were included. (4) Results: 359 papers were
retrieved using the keywords “prostate cancer”, “MRI”, “radiomics”, “textural analysis”, “artificial
intelligence”, “computer assisted diagnosis”, out of which 35 were included in the final review.
In total, 24 articles were presenting PCa diagnosis and prediction of aggressiveness, 7 addressed
extracapsular extension assessment and 4 tackled computer-assisted targeted prostate biopsies.
(5) Conclusions: The fusion of radiomics and AI has the potential of becoming an everyday tool in
the process of diagnosis and staging of the prostate malignancies.

Keywords: prostate cancer; multiparametric magnetic resonance imaging; textural analysis; artificial
intelligence; radiomics; computer-assisted diagnosis

1. Introduction

Prostate cancer (PCa) is the most diagnosed urological malignancy in the male popu-
lation [1]. Any clinical or biochemical suspicion of neoplasia requires further investigations
via multiparametric magnetic resonance imaging (mpMRI) [2], each lesion being classified
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according to Prostate Imaging-Reporting and Data System (PI-RADS) scoring [3]. However,
although the mentioned scale has the property of raising the suspicion of PCa with high
positive predictive value, according to current guidelines, a histopathological confirmation
of PCa and aggressiveness evaluation is needed in order to decide upon further therapeutic
strategies, thus more invasive procedures are being imposed.

Targeted prostate biopsy is performed based on radiologist’s interpretation of mpMRI
acquisitions. Over the years, significant inter-observer variability has been reported in
terms of PI-RADS score assessment, as the overall agreement between radiologists reaches
only 61% [4], thus not providing a fully reliable decision tool to stratify the indication of
prostate biopsy. Moreover, when it comes to MRI-guided targeted sampling, the manual
annotation of described nodules and synchronization between T2 sequences and real-
time transrectal ultrasound images, in most departments, it is carried out by a urologist.
Therefore, the risk of missing clinically significant PCa (csPCa) found outside of the selected
region of interest is present in 27.6% of cases [5]. Additionally, mpMRI plays a crucial role
in PCa staging. Even so, the sensitivity reported by the multicenter study conducted by
Kam et al. [6] reaches only 38%, showing that additional factors that have the potential to
weight in upon the staging are needed.

As a response to these hindrances, Lambin et al. [7] introduced the concept of radiomics
for the first time in 2012, being defined as a novel domain meant to extract information
derived from medical imaging acquisitions, using AI-based and similar image processing
techniques. Texture analysis represents a subdomain of radiomics that focuses on quanti-
fying the heterogeneity of pixels in selected regions of interest, finding its applicability in
oncological imaging. Recent studies highlighted the possibility of implementing radiomics
features into routine PCa diagnostic workflow. Nketiah et al. [8] showed an increased csPCa
detection rate when texture analysis was implemented as compared to standard targeted
prostate biopsy protocol (84% versus 56%). The combination of automatic detection of
suspect prostate nodules and textural features characterization has the potential to become
an AI-based “prostate biopsy”, that will discern benign from aggressive cancerous tissue,
thus becoming a non-invasive diagnostic solution [9].

This paper aims to present the current state of the art regarding decision support
tools based on texture analysis and artificial intelligence for MRI image analysis and to
assess their accuracy and performance in terms of PCa diagnosis and staging, prediction of
aggressiveness as well as biopsy assistance.

2. Materials and Methods

A thorough PubMed MeSH, Scopus and WoS (Web of Science) search was performed
in February of 2022, targeting the topic of multiparametric magnetic resonance imaging
(mpMRI) and decision support systems in diagnosing and staging of prostate cancer. Key-
words included (but not limited to) the following: “prostate cancer”, “MRI”, “radiomics”,
“textural analysis”, “artificial intelligence”, “computer assisted diagnosis”. Retrieved
articles were selected or excluded based on specific criteria:

Inclusion criteria:

• Only original research papers were considered;
• Decision support tools trained and validated on at least 50 cases;
• Imagistic technique employed: mpMRI, with specified field strength (1.5 or 3 T);
• Analytical observational studies, written in English and published in the last 10 years;
• Focus on clinical aspects.
• Exclusion criteria:
• Study population under 50 cases;
• Other imagistic methods used, including biparametric MRI (bpMRI);
• Papers designed as systematic reviews, meta-analyses, comments, letters to editor,

case reports and clinical practice guidelines;
• Articles focusing on the technical aspects of MRI, textural analysis and artificial

intelligence, without a well-established clinical application;
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• Studies based on public datasets or carried out on animal subjects or phantom substitutes.

Additional studies were included by reviewing the reference lists of the selected
studies, that were missed through the aforementioned search strategy. The search process
was synthetized in a Preferred Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) type flowchart (Figure 1).

Figure 1. PRISMA flowchart of the screened and included studies.

3. Results

The obtained results were categorized according to the three main criteria as stated in
Figure 1. Diagnostic accuracy and prediction of PCa aggressiveness (24 studies), diagnostic
accuracy and prediction of extracapsular extension (7 studies) and artificial intelligence-
assisted targeted prostate biopsy (4 studies).

3.1. Diagnostic Accuracy and Prediction of PCa Aggressiveness
3.1.1. General Data

Following the above-mentioned inclusion criteria, 24 studies published between 2017–
2021 have been selected (Table 1). A multicenter research protocol has been described in
20.83% (n = 5) of papers. The median number of cases per study was 222, ranging from a
minimum of 54 subjects, to a maximum of 1034. In nearly half of the studies (n = 11), the
subjects were divided into a ‘training’ and a ‘testing’ cohort, 25% (n = 6) of the described
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protocols had an additional ‘validation’ group, while 29.16% (n = 7) did not elaborate
the division of patients. All studies were conducted using mpMRI scans, 66.6% (n = 16)
reporting a field power of 3 Tesla (T), 20.83% (n = 5) 1.5 T and 12.5% (n = 3) used 2 different
MRI scanners of 1.5 T and 3 T, respectively. Texture analysis features were extracted from
more than one acquisition in 75% of papers (n = 18), T2-weighted images being the most
constantly used (83.33%, n = 20). The segmentation (identifying the region of interest on
each mpMRI slice) was done in an automated or semiautomated fashion in 16.66% (n = 4) of
cases. The ground truth used as reference by texture analysis software was the pathological
result from prostate biopsies in 58.33% (n = 14) of studies, from radical prostatectomy
specimens in 25% (n = 6), or from both in 16.66% of the reported studies (n = 4).

Table 1. Features of individual studies describing strategies of improving PCa detection.

No. Study No. of
Centers

Total
Cases

Study
Protocol

mpMRI
Field

Power (T)

Sequences
Used for
Features

Extraction

Segmentation Ground
Truth

Focus
Region

1. Zhang et al.,
2021 [10] Unicentric 139

Training
n = 93

Testing
n = 46

3 T2WI
DWI Manual

Systematic
prostate
biopsy

PZ

2. Bonekamp
et al., 2018 [11] Unicentric 316

Training
n = 183
Testing
n = 133

3 T2WI
ADC Manual

Targeted
prostate
biopsy

PZ + TZ

3. Hectors et al.,
2021 [12] Unicentric 240

Training
n = 188
Testing
n = 52

3 T2WI Manual
Targeted
prostate
biopsy

PZ + TZ
(Same

protocol)

4. Zhang et al.,
2021 [13] Unicentric 140

Training
n = 105
Testing
n = 35

3
T2WI
ADC
DCE

Manual

Systematic
prostate
biopsy
Radical

prostatec-
tomy

specimen

WG

5. Giannini et al.,
2021 [14] Multicentric 149

Training
n = 81

Testing
n = 38

Validation
n = 30

1.5 T2WI
ADC Automated

Radical
prostatec-

tomy
specimen

PZ

6. Parra et al.,
2019 [15] Unicentric 72 Single

cohort 1.5/3 DCE Manual
Systematic

prostate
biopsy

PZ + TZ

7. Winkel et al.,
2020 [16] Unicentric 402

Benign
n = 201

Low risk
n = 57

Intermediate
risk n = 97
High risk

n = 47

3 DCE Manual
Targeted
prostate
biopsy

PZ

8. Han et al., 2021
[17] Unicentric 176

Training
n = 123
Testing
n = 53

3 ADC Automated
versus Manual

Radical
prostatec-

tomy
specimen

WG
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Table 1. Cont.

No. Study No. of
Centers

Total
Cases

Study
Protocol

mpMRI
Field

Power (T)

Sequences
Used for
Features

Extraction

Segmentation Ground
Truth

Focus
Region

9. Li et al., 2021
[18] Unicentric 203

Training
n = 141
Testing
n = 62

3

T2WI
ADC
DWI
DCE

Manual

Systematic
prostate
biopsy
Radical

prostatec-
tomy

specimen

PZ + TZ

10. Zhang et al.,
2021 [19] Unicentric 316

Training
n = 183
Testing
n = 133

3 ADC Manual
Targeted
prostate
biopsy

PZ

11. Wang et al.,
2017 [20] Unicentric 54 Single

cohort 3 T2WI
DWI Manual

Radical
prostatec-

tomy
specimen

PZ + TZ

12. Hou et al., 2020
[21] Unicentric 263 Single

cohort 3
T2WI
ADC
DWI

Manual

Systematic
prostate
biopsy
Radical

prostatec-
tomy

specimen

PZ + TZ
(Same

protocol)

13. Castillo et al.,
2021 [22] Multicentric 204

Training
n = 48

Testing
n = 84

Validation
n = 72

1.5/3
T2WI
ADC
DWI

Manual

Radical
prostatec-

tomy
specimen

PZ + TZ

14. Khosravi et al.,
2021 [23] Multicentric 400

Training
n = 95

Testing
n = 305

1.5/3 T2WI Automated

Targeted
prostate
biopsy
Radical

prostatec-
tomy

specimen

PZ

15. Chen et al.,
2019 [24] Unicentric 381

Benign
n = 266

Malignant
n = 115

3 T2WI
ADC Manual

Systematic
prostate
biopsy

PZ + TZ
(Same

protocol)

16. He et al., 2021
[25] Unicentric 58 Single

cohort 1.5 T2WI
ADC Manual

Systematic
prostate
biopsy

PZ

17. Cuocolo et al.,
2019 [26] Unicentric 75 Single

cohort 3 T2WI
ADC Manual

Targeted
prostate
biopsy

PZ

18. Damascelli
et al., 2021 [27] Unicentric 62 Single

cohort 1.5
T2WI
ADC Semiautomated

Radical
prostatec-

tomy
specimen

PZ + TZ
(Same

protocol)

19. Min et al., 2019
[28] Unicentric 280

Training
n = 187
Testing
n = 93

3
T2WI
ADC
DWI

Manual
Targeted
prostate
biopsy

PZ + TZ

20. Xiong et al.,
2020 [29] Unicentric 85 Single

cohort 1.5 T2WI
ADC Manual

Systematic
prostate
biopsy

PZ + TZ
(Same

protocol)
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Table 1. Cont.

No. Study No. of
Centers

Total
Cases

Study
Protocol

mpMRI
Field

Power (T)

Sequences
Used for
Features

Extraction

Segmentation Ground
Truth

Focus
Region

21. Liu et al., 2021
[30] Unicentric 466

Training
and testing

n = 324
Validation

n = 142

3 T2WI
ADC Manual

Radical
prostatec-

tomy
specimen

PZ + TZ +
AFMS

22. Sanford et al.,
2020 [31] Multicentric 1034

Training
n = 727
Testing
n = 212

Validation
n = 95

3
T2WI
ADC
DWI

Manual
Targeted
prostate
biopsy

PZ + TZ

23. Schleb et al.,
2019 [32] Unicentric 457

Training
n = 369
Testing
n = 88

3
T2WI
ADC
DWI

Manual
Targeted
prostate
biopsy

PZ + TZ

24. Peng et al., 2021
[33] Multicentric 252

Training
n = 135
Testing
n = 59

Validation
n = 58

1.5 T2WI
DCE Manual

Targeted
prostate
biopsy

PZ

mpMRI = multiparametric magnetic resonance imaging; T2WI = T2 weighted images; ADC = apparent diffusion
coefficient; DWI = diffusion weighted images; DCE = dynamic contrast enhancement; PZ = peripheral zone;
TZ = transitional zone; AFMS = anterior fibromuscular stroma; WG = whole gland.

3.1.2. AI-Based Automatic Detection of PCa

Khosravi et al. [23] developed an automated prediction model, built on deep learning
algorithms, that extracted relevant features from T2 weighted images, using class activation
maps (AI based algorithms that emulate neuronal networks, used to discriminate between
a given set of images) and GoogLeNet architecture. The system was trained on 212 cases,
95 of them having biopsy confirmed PCa with Gleason Group (GG) 3–5, while 117 were
classified with benign lesions. The algorithm was constructed to discern non-malignant
nodules from csPCa, reaching an accuracy of 81.8%.

Another paper, published by Giannini et al. [14], focused on creating a computer-
assisted diagnosis tool, based upon texture analysis features derived from both T2WI and
ADC maps, that aimed to automatically differentiate cancerous nodules from indolent ones.
The system was trained on 81 lesions, confirmed after radical prostatectomy, and validated
on two groups, with 38 and 30 cases each, from two different centers. While the accuracy
was as high as 95.1% in the training setting, it dropped significantly to 75% in the validation
groups, due to the data originating from two different MRI machines.

To achieve higher performance, various authors tried to associate multiple acquisi-
tions, or to subtract volumetric parameters. The highest performance was achieved when
DCE features were associated with non-contrast-enhanced sequences, providing additional
input information for machine learning models and reaching higher sensitivity, specificity
and AUC compared to gradient-boosting machines based solely on T2WI and DWI (100%
versus 86%, 100% versus 90%, 1 versus 0.953, p = 0.001). This shows that the tumor’s
microvasculature perfusion is an earlier indicator than the diffusion of water molecules
on DWI and ADC maps [16]. A parameter that could potentially characterize malignant
prostatic tissue was tumor shape, Cuocolo et al. [26] describing a significant link between
ADC-derived surface area to volume ratio (which measures the degree of tumor compact-
ness and spheroid shape) and csPCa, with a sensitivity, specificity and AUC of 56%, 97%
and 0.78, respectively (p = 0.002).
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3.1.3. Prostate Cancer Aggressiveness

The greatest foreseeable advantage that radiomic features might bring is the possibility
of differentiating between indolent and clinically significant PCa, providing a non-invasive
way to conduct active surveillance strategies, limiting the use of prostate biopsies, or
deciding the treatment strategy, with better performance than PI-RADS classification
(sensitivity, specificity and AUC of 90% versus 83%, 70% versus 47% and 0.85 versus 0.73,
respectively, all p < 0.05) [30].

Aiming to develop an ‘AI-biopsy’, Min et al. [28] analyzed the radiomic signature of
csPCa in 280 patients confirmed with malignant nodules via MRI-TRUS fusion prostate
biopsy. The authors reported a significant difference between clinically insignificant and
csPCa (p < 0.01), concluding that texture analysis has the potential of further stratifying the
indication of biopsy.

The study conducted by Chen et al. [24] elaborated a texture analysis-based protocol,
that aimed to differentiate PCa from non-PCa lesions, as well as low-risk PCa from high-risk
PCa. Having a larger sample population than the previous studies, the authors showed a
significantly higher AUC in terms of differentiating cancerous from non-cancerous lesions
for the prediction model based on T2WI and ADC maps, compared to PI-RADS score (0.99
versus 0.86). The same results have been reported for comparing low-risk PCa versus high-
risk PCa; however, due to the limited number of low-grade tumors, the synthetic minority
oversampling technique (SMOTE) was applied, a technique that amplifies the number of
available relevant cases in a small cohort, in order to obtain a statistically significant result.

Finally, texture analysis could further stratify PI-RADS 3 lesions into indolent or
clinically significant PCa (csPCa) nodules, thus avoiding unnecessary biopsies [12,19,21].
The paper published by Hectors et al. [12] showed a sensitivity and specificity of 75% and
79.6%, respectively, with an AUC of 0.76 regarding the detection of csPCa among PI-RADS
3 lesions (p = 0.022), while mpMRI alone registered a sensitivity of 38.24% and a specificity
of 53.85% for PI-RADS 3 tumors [34].

3.1.4. Decision Support Tools’ Accuracy Compared to Radiologists’ Interpretation

Out of the 24 papers analyzed, 3 compared the performance of decision support
systems with the results given by senior radiologists, with expertise varying from 4 to
10 years [11,22,31]. The study conducted by Bonekamp et al. [11] reported a significantly
higher diagnostic performance than the radiologists for features extracted from ADC maps,
for both training and testing groups (p = 0.008 and 0.048, respectively), while the radiomic
machine learning model outperformed the radiologist only in the test setting. Castillo
et al. [22] developed a predictive model based on textural features extracted from T2WI,
ADC maps and DWI acquisitions, with higher diagnostic accuracy as compared to two
senior radiologists (average AUC = 0.75 versus 0.5 and 0.44 for the two experts involved),
but only when the training and testing subjects came from the same center. For the
external validation cohort, mean AUC dropped to 0.54, most likely due to the dependency
of radiomic features on MR acquisition setup and manual delineation being made by
different radiologists, based on pathology reports made by different specialists. In terms of
attributing a PI-RADS score to a suspect lesion, the prediction of the artificial intelligence
model proposed by Sanford et al. [31] overlapped in 58% of cases with the radiologist’s
result. Interobserver agreement between the radiologists and the AI-based model increased
proportionally with the PI-RADS score: from 6% for PI-RADS 2 lesions to 80% for PI-RADS
5 cases. Overall, there was no significant difference between the deep-learning system
and radiologist’s prediction of aggressiveness (p = 0.59, 0.36 and 0.47 for lesions of PI-
RADS 3, 4 and 5, respectively). Although the results did not reach statistical significance,
adding artificial intelligence elements to the diagnostic workflow might reduce the inherent
subjectivity of assessing the PI-RADS score, thus limiting interobserver variability.
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3.2. Diagnostic Accuracy and Prediction of Extracapsular Extension (ECE)
3.2.1. General Data

We identified seven studies published between 2019–2021 (Table 2). Regarding the
number of centers, 42.85% (n = 3) were designed as a multicentric study. The total number
of cases was 2209, ranging from a minimum of 95 patients to a maximum of 849 patients.
Following the study protocol, 85.71% (n = 6) of papers divided their subjects into a “training”
and a “testing” cohort, while only one had an additional “validation” group. All studies
were conducted using mpMRI scans, 85.71% of them employed a 3 Tesla power field
mpMRI machine (n = 6) and 14.28% (n = 1) reported a multivendor strategy (both 1.5 T
and 3 T). The most constantly used sequence was T2-weighted imaging (T2WI). For feature
extraction, apparent diffusion coefficient (ADC) was used in 71.42% of the studies (n = 5)
and diffusion-weighted imaging (DWI) with dynamic contrast-enhanced method (DCE)
was used in 28.57% of the studies (n = 2). Regarding image segmentation, they were
manually done in 85.71% of the cases (n = 6) and automated in only one case. The radical
prostatectomy pathological report was the ground truth for all study protocols and least
absolute shrinkage and selection operator (LASSO) regression algorithm was employed to
build the radiomics model, to regularize the data used for training purposes, thus avoiding
redundant variability and enhancing accuracy.

Table 2. Features of individual studies focusing on diagnosing extracapsular extension.

No. Study No. of
Centers Total Cases Study

Protocol

mpMRI
Field Power

(T)

Sequences
Used for
Features

Extraction

Segmentation Main Goal

1. Ying Hou et al.,
2021 [35] Multicentric 849

Training
n = 596
Testing
n = 150

External
validation

n = 103

3
T2WI
DWI
ADC

Automated

Develop and
validate an AI
based tool to

preoperatively
assess ECE of
localized PCa

2. Cuocolo et al.,
2021 [36] Multicentric 193

Training
n = 104

External
validation 1

n = 43
External

validation 2
n = 46

1.5/3
(2 vendors)

T2WI
ADC Manual

Build an ML
model to detect
ECE based on

radiomics

3. Bai et al., 2021
[37] Multicentric 284

Training
n = 158
Internal

validation
n = 68

External
validation

n = 58

3
(3 vendors)

T2WI
ADC Manual

Preoperative
prediction of

ECE using
peritumoral
radiomics

4. He et al., 2021
[38] Unicentric 273

Training
n = 192
Testing
n = 81

3
T2WI
ADC Manual

Radiomics
model for

predicting ECE
and PSM

5. Xu et al., 2020
[39] Unicentric 115

Training
n = 82

(35 ECE and
47 non-ECE)

Testing
n = 33

(14 ECE and
19 non-ECE)

3

T2WI
DWI
ADC
DCE

Manual

Preoperative
prediction of

ECE using
radiomics
signature
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Table 2. Cont.

No. Study No. of
Centers Total Cases Study

Protocol

mpMRI
Field Power

(T)

Sequences
Used for
Features

Extraction

Segmentation Main Goal

6. Ma et al., 2019
[40] Unicentric 210

Training
n = 143

Validation
n = 67

3
(2 vendors) T2WI Manual

Preoperative
prediction of

ECE using
radiomics
signature,

compared to
radiologists’

interpretation

7. Ma et al., 2019
[41] Unicentric 119

Training
n = 74

(148 bilateral
samples)

Validation
n = 45

(90 bilateral
samples)

3
(2 vendors) T2WI Manual

Preoperative
prediction of
side specific
ECE status

using
radiomics
signature

mpMRI = multiparametric magnetic resonance imaging; PCa = prostate cancer; T2WI = T2 weighted images;
ADC = apparent diffusion coefficient; DWI = diffusion weighted images; DCE = dynamic contrast enhancement;
ECE = extracapsular extension, AI = artificial intelligence; PSM = positive surgical margins.

3.2.2. AI-Based Tools for Automatic Detection of ECE

Most studies relied on manual segmentation of the prostate and surrounding struc-
tures. Hou et al. [35] conducted a multicentric study of 849 patients, developing a deep
learning network that automatically detected ECE serving as a non-invasive, preoperatory
tool, advising upon the oncological safety of nerve-sparing procedures. The algorithm
performed better when only the slice with the maximum tumoral diameter was taken
into consideration, compared to multislice-based prediction (AUC of 0.818 versus 0.799,
p = 0.019). This finding was attributed to the hypothesis of overprediction in multislice
analysis, leading to overstaging of PCa. When tested on external validation datasets, the
accuracy dropped from 83.6% in the training phase to 71.8%, showing that, although based
on many cases, the algorithm built on a single MRI machine and acquisition protocol is
not perfectly reproductible when employed in a different setting. Similar results were
published by Cuocolo et al. [36], in a study designed with two external validation cohorts,
achieving an accuracy of 79% and 74%, respectively.

3.2.3. Radiomic and Texture Analysis-Based Prediction of ECE

Several studies focused upon extracting significant textural features, to objectify the
extraprostatic effraction [37–39,41]. For the selected papers, the sensitivity, specificity and
accuracy of predictions reached 94.6%, 89.4% and 85.8% in the training setting and 84.6%,
72.7% and 81.8% when it was applied to an external validation cohort.

Bai et al. [37] included 284 patients with PCa from two centers, analyzing the radiomic
signature of both intra- and peritumoral regions. Defined as the 3–12 mm surrounding
area of the suspected nodule, the peritumoral region turned out as a better predictor of
capsular effraction, motivated by similar changes of vessels and soft tissue found in the
periprostatic area. Since the algorithm was trained on acquisitions obtained from 3 different
MRI scanners, the performance maintained constant in the external validation setting
as well.

Taking a step forward, foreseeing the ECE could eventually decrease the rate of positive
surgical margins (PSM). A study conducted by He et al. [38] assessed radiomic features that
were strongly correlated with PSM on the radical prostatectomy specimens. The highest
accuracy, of 72.8%, was achieved by ADC-extracted parameters, thus correlating with the
tumor’s cellularity and cell count.
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Although the results seem to be promising as stand-alone variables, the final target
of radiomic signatures is to provide another puzzle piece to the diagnostic workflow and
to stratify the indication of invasive procedures and radical treatments. Combining the
clinicopathological data such as age, total and free PSA, PI-RADS score and Gleason group
with T2, ADC and DWI-derived radiomic features, the accuracy of extracapsular extension
prediction increased from 67.1% to 85.4% in the training group and from 69.7% to 81.8% in
the validation setting [38].

3.2.4. The Accuracy of the Decision Support Tool Compared to the Interpretation of
the Radiologist

Out of the analyzed seven papers, three aimed to compare the preoperative probability
of ECE given by radiomic assessment with the radiologists’ prediction [35,36,40]. All
studies showed that texture analysis features were superior compared to best radiologists’
performance, reaching an accuracy of 84.62% versus 73.43% (p = 0.02) and a sensitivity of
76.81% versus 60.87% (p = 0.043). Regarding the prostate segment, the radiomics model
showed the best prediction capacity when assessed the apex of the prostate, due to the
anatomical constrains of the region that hinder the radiological diagnosis, such as the
absence of distinct capsule contour and neighboring structures such as the neurovascular
bundles and external sphincter [40]. When the experts used artificial intelligence and
radiomics model to adjust their ECE diagnosis, the accuracy increased from 67.6% to 79.5%
in the training setting and from 64.7% to 76% in the validation cohort, concluding that
deep learning prediction models have the potential of serving as a daily decision support
tool [35].

3.3. Artificial Intelligence-Assisted Targeted Prostate Biopsy
3.3.1. General Data

After screening the literature, four papers met the inclusion criteria (Table 3). The
number of patients per study ranged between 62 and 916, being selected from multiple
centers in 75% of cases (n = 3). The research protocol was heterogenous, with one study
comprising a “training” and a “testing” cohort, while the others did not detail the validation
process of the artificial intelligence-driven prediction algorithm. Most of the studies aimed
to use a single vendor mpMRI scanner of 3 Tesla magnetic power field (n = 3), and one
used 3 different machines of 1.5 and 3 Tesla, to increase the training data variability degree.
The most frequently used acquisition was T2WI. The ground truth used as reference was
the pathological report of the radical prostatectomy specimen in one of the studies and
targeted biopsy cores in the other three studies.

Table 3. Characteristics of individual studies debating the use of computer-assisted diagnosis in
targeted prostate biopsies.

No. Study No. of Centers Total Cases mpMRI Field
Power (T)

Sequences
Used for
Features

Extraction

Aim of the Study

1. Soerensen et al.,
2021 [42] Multicentric

916
Training
n = 805
Testing
n = 111

1.5/3
(3 vendors) T2WI

Deep-learning
automatic

segmentation of
the prostate

2. van de Ven et al.,
2013 [43] Multicentric 62 3 ADC

Assessing the
required spatial

alignment accuracy
at MRI—

guided biopsies



J. Pers. Med. 2022, 12, 983 11 of 17

Table 3. Cont.

No. Study No. of Centers Total Cases mpMRI Field
Power (T)

Sequences
Used for
Features

Extraction

Aim of the Study

3. Campa et al.,
2018 [44] Unicentric 63 3

T2WI
DWI
DCE

Defining the
accuracy of

targeted cores
sampled using
RAD, CAD and
TiT prediction

4. Ferriero et al.,
2021 [45] Multicentric

183
Fusion biopsy

n = 94
CAD assisted

n = 89

3 T2WI

Comparing the
csPCA detection

rate of
CAD-assisted

targeted biopsies
versus stand-alone

fusion biopsies

mpMRI = multiparametric magnetic resonance imaging; csPCa = clinically significant prostate cancer; T2WI = T2
weighted images; ADC = apparent diffusion coefficient; DWI = diffusion weighted images; DCE = dynamic
contrast enhancement; RAD = lesions sampled based on mpMRI prediction alone; CAD = lesions sampled based
on computer-assisted diagnosis prediction alone; TiT = target -in-target lesions, identified by both radiologist and
CAD system.

3.3.2. Accuracy and csPCa Detection Rate of AI-Assisted Targeted Prostate Biopsy

The first improvement brought by artificial intelligence was the automatic segmenta-
tion of the prostate prior to targeted biopsy. Soerensen et al. [42] developed a deep-learning
model that performed the delineation of the gland 17 times faster than radiology techni-
cians, while maintaining the same accuracy, thus sparing approximatively 16 work hours
per 100 patients.

MRI-targeted biopsy is known to increase the csPCa detection rate, compared to stan-
dard systematic biopsy. However, it is still highly dependent on the mpMRI interpretation
given by the radiologist, as well as the image registration performed by the urologist during
the fusion process. In order to achieve a 95% detection rate of high Gleason grade tumors,
van de Ven et al. [43] concluded that the required target accuracy for tumors of at least
0.5 cm [3] is 1.9 mm, such precision being achievable by employing AI-tools.

Regarding csPCA detection rate (CDR), Campa et al. [44] compared the performance of
an automated computer-assisted prediction model with the analysis provided by senior uro-
radiologists with 10 and 15 years of experience. Targeted cores were sampled from nodules
described by the automated prediction system and confirmed by experts (‘’target-in-target”
lesions, TiT), as well as from suspect areas identified solely by radiologists (RAD) or by the
computer-assisted diagnosis algorithm (CAD). The cancer detection rate increased from
68.64% for nodules sampled based on RAD assessment to 81.81% for TiT cases. Moreover,
78% of the highest Gleason scores of the study cohort were detected by target-in-target
biopsies, thus avoiding unjustified active surveillance strategies. A similar paper published
by Ferriero et al. [45] studied the CDR with and without CAD assistance. The authors
concluded that the AI system had the greatest advantage in nodules located in the anterior
and transitional zone, increasing the detection rate from 11.1% to 54.5% (p = 0.028), CAD
being the only independent prediction factor for csPCa detection in the above-mentioned
regions (p = 0.013).

4. Discussion

We aimed to highlight the progress of artificial intelligence and its use in daily clinical
practice, being a valuable tool for diagnosing and staging prostate cancer. Radiomics,
and especially texture analysis, quantify the heterogeneity of selected regions of inter-
est compared to the surrounding structures, having proven their utility in detecting and
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characterizing malignant tissue [46]. Based on extracted features, machine-learning al-
gorithms can automatically identify suspect lesions, distinguishing indolent from csPCa
and ultimately assessing preoperative extracapsular extension with an accuracy of 83.58%
compared to the prostatectomy specimen [40], thus serving as a decision support tool
regarding further treatment.

4.1. PCa Detection and Aggressiveness

Currently, the component with the highest precision of the PCa diagnostic workflow
is mpMRI, reaching an accuracy of 60% and 83% for detecting csPCa in nodules graded
as PI-RADS 4 and 5, respectively [47]. However, intermediate-risk patients with PI-RADS
3 lesions reach an accuracy as low as 27%, mainly explained by the poor interobserver
agreement, estimated to be around 43% [4]. From this standpoint, assisted diagnosis has
the potential of improving csPCa detection rates, especially when used by less-experienced
radiologists. Hambrock et al. [48] demonstrated that readers with less than 50 prostate
mpMRI interpretations improved their overall, PZ and TZ accuracy by 10% (p 0.001), 9%
(p < 0.001) and 7% (p = 0.01), respectively.

Regarding the evidence provided by the selected papers, some limitations can be
addressed. Firstly, although the total number of subjects respected the chosen inclusion
criteria, when divided into testing and training cohorts, 9 studies allocated under 50 cases
for testing their developed model, thus raising the question of accuracy of the reported
results [10,13–15,20,25–27,29]. In terms of cohorts’ composition, 2 studies designed the
training group on a multicentric structure, using different MRI machines or mixing in-house
cases with publicly available ones [22,23], while other studies trained, tested and validated
the algorithm on patients selected from the same center [10,30]. Although the authors suggest
that exposing neural networks to various MRI settings reduces the risk of overfitting the
algorithm to one center, CAD needs sufficient data variety in order to reach high diagnostic
accuracy, one of the main sources being multivendor MRI acquisitions. However, the number
of cases included in the selected papers might be insufficient and the desired variability
will not be properly represented by a significant number of cases for decision support tools
development. Second, studies focusing on aggressiveness prediction encounter limitations in
terms of differentiating each Gleason score, mostly classifying each lesion as below or above
a Gleason score of 7 [14,18,27,29,33]. The authors attributed this limitation to the insufficient
number of cases required for a subdivision of patients based on Gleason score. In this context,
patients cannot be further stratified into low-risk, intermediate-risk and high-risk PCa groups,
thus implying that all csPCa lesions benefit from a unitary treatment. Lastly, a frequently
admitted limitation is the lack of differentiation between peripheral and transitional zone
nodules. While some studies purposefully limit the investigation protocol to the peripheric
lesions, being considered more obvious and well-defined, thus suitable for designing a PCa
detection prototype [10,14,16], others were restricted by the sample population size, which
did not allow a separate analysis of peripheral and transitional lesions [12,24–26,29].

4.2. Extracapsular Extension Assessment

Preoperatory extraprostatic involvement is defined by specific digital rectal examina-
tion and imagistic findings. However, both methods have clear limitations, as DRE has an
average accuracy below 60% [49], while the rate of upstaging to extracapsular extension at
the final pathological report compared to the mpMRI prediction is up to 29% [50]. Using
radiomics-based computer-assisted algorithms to weight in upon the diagnosis of ECE
increased the radiologists’ accuracy up to 76% [35].

The main limitation that this subgroup of papers faced was their retrospective nature,
having no possibility of investigating and adjusting radiomic features that affect the re-
producibility of the prediction model [35,36,38,40,41]. The data heterogeneity is further
accentuated by manual annotation of the suspect lesions, thus making the delineation pro-
cess highly dependent of the radiologist’s experience and making the external validation
rather difficult and unreliable [36–41].
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Another identified hindrance is the employment of only T2 acquisition into the feature
extraction process [40,41]. Although the anatomical criteria for extracapsular extension are
mostly subtracted from T2 images, it is considered that functional sequences that provide
diffusion details might increase the overall accuracy and reproducibility.

Lastly, the best performance of the prediction model in an AI-radiologist based setting
was achieved in large tumors, with a higher PI-RADS score and D’Amico risk score, thus
leaving the open invitation for future papers to assess ‘grey-zone’ lesions, with intermediate
levels of PSA and a PI-RADS score of 3 [35].

4.3. AI-Assisted Targeted Prostate Biopsy

The main hindrance that targeted biopsy faces is the lack of guidance for the urolo-
gists when performing the lesion annotation. Although targeted sampling increases the
diagnostic rate of csPCa from 48% to 56% when compared to standard systematic biopsy,
adding textural analysis extracted features can increase the biopsy accuracy up to 84%,
however only when used in combination with the radiologist’s interpretation [8].

The researched literature is relatively scarce, with little insight regarding computer-
assisted targeted biopsy, most studies not meeting the inclusion criteria or focusing on other
imagistic techniques than mpMRI. Moreover, each individual paper had a different study
protocol, thus drawing a general conclusion is rather difficult, with a level of evidence of
low strength.

Soerensen et al. [42] developed an algorithm that managed to automatically contour
the prostate outline. The main identifiable hindrance would be that, to increase the biopsy
accuracy, automatic delineation of the suspect lesion would be of greater help, especially
for nodules with a smaller volume and with an intermediate PI-RADS score. Although
it has the potential of aiding the radiology assistant that performs the segmentation, the
urologist that further executes the annotations and overlaps the MRI acquisitions with the
real-time transrectal ultrasound does not benefit equally.

CAD detection alone registered a significantly lower performance compared to radi-
ologist’s interpretation (35.8% versus 68.64%), representing a great advantage only when
used in combination with the expert’s reading. The authors attributed these findings to the
CAD system’s overestimation of csPCa on DCE acquisitions and its susceptibility of being
influenced by technical artifacts [44]. Additionally, it was showed that for the peripheral
zone, CAD-aided biopsy did not outperform the standard procedure, significant improve-
ment being noted only for lesions situated in the transitional and anterior part of the gland,
due to their inherent heterogenous nature and great potential of false-positive results [45].

4.4. Limitations of the Review Process

The review process employed for the current paper has limitations as well. Being a
relatively newly developed domain, we could not extend the exclusion criteria, leading
to an accentuate heterogeneity amongst selected papers in terms of study protocol (MRI
magnetic field intensity, selected MRI sequences, targeting all identified lesions versus only
index nodules and the choice of performing external validation), algorithm complexity (au-
tomated detection and characterization of the suspect lesions versus manual segmentation
and texture analysis-based malignancy prediction) and ground truth reference (prostate
biopsy cores versus radical prostatectomy specimen).

4.5. Implications for Clinical Practice and Future Research

Although the cited articles face the above-mentioned limitations, radiomics is a rapidly
developing branch of radiology, with promising results when used in combination with
clinical and biochemical information [13]. Amongst the most studied pathologies depicted
through MRI protocols are the central nervous system tumors, neuroradiology compris-
ing 19.71% of the international literature tackling radiomics-based tools, being the fastest
developing research domain, with an annual growth rate of published papers of 316.02%,
between 2013–2018 [51]. The greatest advantage that texture analysis brings in this con-
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text is the preoperative aggressiveness assessment of gliomas, differentiating low-grade
gliomas from glioblastoma multiforme with an accuracy of 89% [52], having the potential
of predicting the short (<12 months) or long-term survival rate (>24 months), based on the
identified heterogeneity degree [53]. Finally, this emerging research area finds applicability
in benign pathologies as well, being used for instance in differentiating endometriomas
from hemorrhagic ovarian cysts, outperforming the classical pathognomonic “T2 dark
spots” sign in terms of sensitivity (55.17%, versus 75%) and both “T2 shading” and “T2
dark spots” signs when it comes to specificity (35.71% and 64.29% versus 100%) [54].

Even though the diagnosis and screening of PCa has been the subject of great in-
novations in the past decades, it is still affected by interobserver subjectivity, especially
in early-detected cases that fall in the “gray area” of PI-RADS 3 lesions and PSA values
between 4 and 10 ng/mL. Having texture analysis tools and computer-assisted diagno-
sis as additional elements that can differentiate between active-surveillance or radical
treatment strategies and that can weight in upon the predicted malignancy of a suspect
lesion opens the path for personalized diagnosis, offering patients tailored treatment and
follow-up options.

5. Conclusions

The proposed systematic review shows that texture analysis and artificial intelligence
can be taken into consideration when aiming to improve diagnostic precision, reaching
an accuracy as high as 95% in training environment. Although the recently developed
AI algorithms need further testing on large, multicentric cohorts, these techniques have
the potential to serve as decision support tools that enhance the expert’s performance and
bring additional information to correctly stratify the risk of each patient, opening a new
horizon in terms of personalized medicine.
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