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Abstract: Polygenic models have emerged as promising prediction tools for the prediction of 
complex traits. Currently, the majority of polygenic models are developed in the context of pre-
dicting disease risk, but polygenic models may also prove useful in predicting drug outcomes. 
This study sought to understand how polygenic models incorporating pharmacogenetic variants 
are being used in the prediction of drug outcomes. A systematic review was conducted with the 
aim of gaining insights into the methods used to construct polygenic models, as well as their per-
formance in drug outcome prediction. The search uncovered 89 papers that incorporated phar-
macogenetic variants in the development of polygenic models. It was found that the most com-
mon polygenic models were constructed for drug dosing predictions in anticoagulant therapies (n 
= 27). While nearly all studies found a significant association with their polygenic model and the 
investigated drug outcome (93.3%), less than half (47.2%) compared the performance of the poly-
genic model against clinical predictors, and even fewer (40.4%) sought to validate model predic-
tions in an independent cohort. Additionally, the heterogeneity of reported performance measures 
makes the comparison of models across studies challenging. These findings highlight key consid-
erations for future work in developing polygenic models in pharmacogenomic research. 
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1. Introduction 
The concept of polygenic inheritance was first introduced in 1918 by R.A. Fisher 

who showed that continuous traits are passed down through Mendelian inheritance of 
many genetic variants of small effect [1]. Since then, this polygenic approach to inher-
itance has been used to study complex human phenotypes [2–6]. Given the small indi-
vidual effects that each genetic variant contributes to the heritability of complex traits, 
polygenic scores have emerged as tools to estimate individual probability for these 
complex phenotypes. Polygenic scores combine the individual effects of several genetic 
variants into a single score which can be used to assign a probability to any individual 
representing their genetic predisposition for a phenotype [7–9]. As genotyping technol-
ogies become increasingly affordable, the excitement surrounding the possibility of gen-
erating genome-wide risk scores for various diseases is continually growing [7,10]. 

Thus far, polygenic scores have primarily been applied in the prediction of disease 
risk. A highly cited study by Khera et al., published in 2018, developed a polygenic risk 
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score comprised of over 6 million common single nucleotide polymorphisms (SNPs) to 
predict individual risk of developing coronary artery disease (CAD) [9]. The higher the 
burden of risk-alleles, the higher an individual’s genetic risk of CAD, and one of the 
striking discoveries in this study was that patients within the top 8% of the polygenic 
risk score had a 3-fold increased risk of CAD which is comparable to the risk imparted 
by rare, monogenic causes of heart disease [9]. The advantage of the polygenic approach 
is that because it is constructed using common SNPs, it can be applied to many more pa-
tients, whereas only a small proportion of the population will carry rare genetic variants. 
Many other similar polygenic scores have been developed to predict disease risk, and 
thus, polygenic scores offer the potential to improve genetic screening for disease and 
are more generalizable to the broader population [11,12]. 

The polygenic nature of complex traits and disease have become widely accepted, 
but this has not been translated to the same extent within the field of pharmacogenomics 
[13]. Innumerable genetic studies have been conducted to explain the interindividual 
variability in drug-related outcomes such as nonresponse, dosing requirements, and the 
development of adverse drug reactions (ADRs) [13]. However, many of these early 
pharmacogenetic studies focused on the monogenic architecture of drug-outcomes 
where genetic variants of larger effect size were thought of as separate predictors [13]. 
Relatively few studies have aimed to combine pharmacogenetic variants to improve 
predictions of these drug outcomes. Perhaps one of the most well-studied multigenic-
drug interactions is in warfarin dosing. Warfarin is a widely used oral anticoagulant 
with a narrow therapeutic window and a high interindividual variability in dosing re-
quirements [14,15]. Early genome-wide association studies of warfarin maintenance 
dose identified pharmacogenetic variants in VKORC1 and CYP2C9 which were strongly 
associated with warfarin dosing requirements, and genotyping for these variants have 
been added to the FDA warfarin dosing guidelines [16–18]. This highlights the potential 
utility of pharmacogenetic prediction models comprising multiple genetic loci to guide 
treatment decisions in clinical practice. 

Polygenic scores in pharmacogenomics research were recently reviewed, examining 
the use of polygenic scores developed from pre-existing genetic studies in disease phe-
notypes as a predictor of drug outcomes (e.g., schizophrenia-derived polygenic risk 
score used to predict lurasidone response) [19,20]. However, there has been no review 
to-date evaluating the use of polygenic models derived specifically from pharmaco-
genetic variants associated with gene-drug relationships. To this end, a systematic re-
view was conducted to summarize the methods and performance of polygenic models 
encompassing pharmacogenetic variants in predicting drug outcome phenotypes. In the 
context of this review, a polygenic model was broadly defined as any model or score en-
compassing pharmacogenetic variants at more than one genetic locus. In doing so, this 
review aims to understand the current methods used to develop polygenic models for 
predicting drug outcomes, as well as the performance of these models in their ability to 
reliably predict drug outcomes in patients. 

2. Materials and Methods 
The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRIS-

MA) guidelines for a systematic review were followed to ensure completeness of the re-
view. A study protocol was written prior to the initiation of the review but was not reg-
istered. 

2.1. Rationale and Scope of Review 
This review aimed to summarize the methods and performance of polygenic mod-

els encompassing pharmacogenetic variants for predicting drug outcomes. While poly-
genic models encompassing non-pharmacogenetic variants have been applied to the 
prediction of drug outcomes, these models were not considered to be true pharmaco-
genetic models and were not included in the current review. An example of one such ar-
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ticle is a 2018 study by Li et al., examining the association between a polygenic risk score 
derived from schizophrenia risk-alleles and response to lurasidone treatment [20]. While 
interesting, studies like these were excluded from this review as they draw from poly-
genic disease risk to predict drug outcomes, rather than from pharmacogenetic associations 
with the drug outcome. Articles repurposing phenotype-derived polygenic risk models 
for drug outcome prediction were similarly excluded. For example, Helmstaedter et al. 
sought to predict levetiracetam-induced behavioural side-effects using SNPs that predis-
posed individuals to impulsive, reactive, or aggressive behaviours [21]. As this polygen-
ic model does not incorporate pharmacogenetic variants involved in levetiracetam-
induced outcomes, it was not considered a pharmacogenetic model. This is not to say 
these types of polygenic models are not useful in the prediction of drug outcomes, but 
simply that they fall outside the scope of the current review. Additionally, these studies 
were recently reviewed by Johnson et al., so this work sought instead to take a more fo-
cused approach in evaluating polygenic models encompassing pharmacogenetic vari-
ants only [19]. 

2.2. Search Details 
Liberal search criteria were applied in order to capture all relevant articles. For the 

purposes of this review, a polygenic model was broadly defined as any model or score 
encompassing pharmacogenetic variants at more than one genetic locus used to stratify 
patients by genetic risk. Both weighted and unweighted models derived from candidate 
gene or genome-wide associations were included. Any specific drug-related outcomes 
were included, such as drug-dosing, therapeutic drug response, or drug-induced ad-
verse effects. Studies that did not investigate pharmacological treatments (e.g., surgical 
procedures, supplementation, radiation therapy) were excluded. Additionally, studies 
that did not examine a specific drug (e.g., investigating a chemotherapeutic regimen ra-
ther than a specific chemotherapeutic agent) were excluded as it is not possible to asso-
ciate pharmacogenetic findings to a specific drug-related phenotype. Studies repurpos-
ing disease-derived or phenotype-derived polygenic scores to predict drug-related out-
comes (e.g., schizophrenia-derived polygenic risk score used to predict lurasidone re-
sponse) were also excluded, as this was not considered a polygenic model developed us-
ing pharmacogenetic variants. 

A librarian specializing in medical genetics research was consulted to help con-
struct the search strategy. This was done beginning with MeSH terms, followed by key-
words and variations. This strategy was further refined upon review of initial search re-
sults in order to ensure all relevant papers were being captured by the search. For ex-
ample, search terms pertaining to ‘personalized medicine’ were included in the search 
strategy as some pharmacogenetic studies were filed under this concept within the data-
bases and not necessarily within the ‘pharmacogenetics’ search term. The final search 
strategy consisted of terms pertaining to “pharmacogenomics”, “pharmacogenetics”, 
“personalized medicine”, and “polygenic model”. The full search strategy is shown in 
Figure S1. The search was conducted in MEDLINE and EMBASE using the OVID inter-
face from 1946 to 27 July 2021 for articles that described the development or validation 
of a polygenic model in human subjects to predict any drug outcomes. 

2.3. Study Selection 
Study screening was performed by two independent reviewers (A.S. and S.A.) in 

order to minimize bias and retrieve all relevant records pertaining to the research ques-
tion. Articles were screened for relevancy by their title and abstract, followed by full-text 
review. To begin the title and abstract screening process, reviewers screened 20 articles 
for inclusion in full-text review. Conflicts were resolved through discussion between re-
viewers until a minimum inter-rater reliability of 𝛼 = 0.8 was reached. Articles selected 
for full review included English language original studies containing a polygenic model 
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used to predict drug outcomes. Conference abstracts, case reports, editorials, notes, me-
ta-analyses, and review articles were not included for full-text review. 

2.4. Data Extraction 
Data extraction was performed by a single reviewer (AS). A standard data extrac-

tion sheet was created and piloted on 10 articles, and necessary changes were made to 
the form before applying it to the full list of included papers. Additional articles were 
excluded during this process as they were not found to meet all inclusion criteria upon 
detailed review. Names of the lead authors were extracted, as well as the year of publi-
cation. Drugs were classified using the LexiComp database according to their pharmaco-
logical category [22]. Details of the drug outcome under investigation were extracted 
and categorized according to safety, efficacy, or dosing predictions. The method of se-
lecting pharmacogenetic variants for consideration into model development was collect-
ed and categorized according to candidate-gene or genome-wide association methods. 
Details of the model training and validation cohorts were extracted, including popula-
tion details, as well as number of patients in all study cohorts. Development cohorts 
were defined as populations used to develop the original score or model, and validation 
cohorts were defined as any independent population used to test the model’s predictive 
capabilities. Details of model performance measures were also extracted where availa-
ble. In cases where the pharmacogenetic prediction model was compared to clinical pre-
diction models, performance measures of the comparison were extracted. If the model 
was independently validated in an external cohort, predictive performance of the model 
in this independent population was also extracted. There is currently no risk of bias as-
sessment tool for polygenic model reviews, thus this could not be formally assessed. 

2.5. Synthesis of Results 
Figures, plots, and measures of central tendency used to summarize the included 

articles were conducted in RStudio Version 1.3.959 for MacOS. 

3. Results 
3.1. Overview of Included Articles 

The initial literature search conducted in MEDLINE and EMBASE identified 5132 
articles. After removal of 514 duplicates, 4618 articles remained for title and abstract 
screening. From these, 4259 irrelevant studies were excluded by two independent inves-
tigators, leaving 359 reports to be extracted for full-text review. Following full-text 
screening, 100 articles were initially included. During detailed data extraction, an addi-
tional 11 reports were excluded as they were found not to include a pharmacogenetic 
model with multiple genes, leaving 89 papers for inclusion in the systematic review 
(Figure 1). Full details on included studies can be found in Table S1. 
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Figure 1. CONSORT flow diagram of articles screened and included in the final review. Flow chart 
adapted from an example in Page  et al. (2021) [23]. 

Included papers were published on or before the search date (27 July 2021). The 
vast majority of drugs for which polygenic predictive models are developed fall under 
anticoagulants (n = 32, 36.0%) or antineoplastic agents (n = 22, 24.7%). Of the anticoagu-
lants studied, all were vitamin K antagonists. Drug outcomes under investigation were 
categorized under three main categories: drug safety (i.e., adverse drug reactions), drug 
dosing requirements (including drug exposure prediction), and drug effectiveness. Of 
these, drug dosing requirements was the most common outcome under investigation 
when developing polygenic prediction models (n = 33, 37.1%) [18,24–55], followed by 
drug safety (n = 32, 36.0%) [56–87] and drug effectiveness (n = 24, 27.0%) [88–111]. The 
vast majority of studies investigating dosing requirements were conducted in regard to 
anticoagulant therapy, whereas the majority of drug safety studies were conducted in 
antineoplastics. A summary of investigated drug outcomes stratified by drug class can 
be seen in Figure 2. 
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Figure 2. Number of articles included in the review grouped by drug class and investigated drug 
outcome. The “Other” category is comprised of Sufonylurea antidiabetic (n = 1), Angiogenesis in-
hibitor (n = 1), 5-Aminosalicylic acid derivative (n = 1), Beta2 agonist (n = 1), Antifungal agent (n = 
1), Antitubercular agent (n = 1), Immunosuppressant agent (n = 1), and Immune globulin (n = 1). 

3.2. Method of Gene-Selection for Developing a Polygenic Model Predicting Drug Outcomes 
74 of the 89 included studies (83.1%) used a candidate-gene approach when choos-

ing SNPs for inclusion in a multi-pharmacogenetic prediction model. Only 11 studies 
(12.4%) performed a genome-wide or exome-wide association study to identify phar-
macogenetic variants for model development [49,65,69,70,76,86,95,100,102,107,108]. An 
additional 4 studies (4.5%) aimed to validate a previously published polygenic model 
[87,109–111]. The preference for the candidate-gene approach in these articles may be 
explained by several factors. Candidate gene analyses are simpler to run and more cost-
effective to perform [112,113]. Additionally, sample size constraints remain a challenge 
in pharmacogenomics research [113]. The median sample size for model development 
cohorts was 269 patients which would generally be underpowered to accurately esti-
mate allele effect-sizes in a genome-wide study design [7]. 

Among the candidate-gene approaches, a variety of rationales were used for selec-
tion of candidate genes for model development. The most popular method was through 
literature search to identify variants previously associated with the drug outcome of in-
terest or variants with functional relevance to the drug’s pharmacokinetic or pharmaco-
dynamic pathways. Only two studies explicitly incorporated evidence-threshold criteria 
in the selection of candidate SNPs. The study by Palles et al. developing a prediction 
model for capecitabine-induced toxicities used a statistical evidence threshold to select 
variants associated with the drug outcome in studies of 500 patients with an OR/HR of 1.5 [75]. Another study by Leusink et al. examining statin-induced cholesterol lowering 
chose candidate SNPs for model development based on SNPs previously reaching ge-
nome-wide significance and replicated in at least one other study for the same drug out-
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come [104]. For pharmacogenetic models developed using candidate-SNPs, a range of 2 
to 60 SNPs were incorporated into the predictive model. 

Among the GWA studies, all studies set a p-value threshold for choosing SNPs to 
include in model development. Most studies set this threshold a priori, whereas two 
studies by Suzuki et al. examining mesalamine allergy and Lanfear et al. examining 
overall-survival in patients on 𝛽-blocker therapy used varying p-value thresholds to 
maximize model performance [114,70]. Some studies, like that by Sordillo et al. investi-
gating albuterol response in children with asthma, set a modest p-value threshold (p < 
0.001) but also incorporated functional criteria in SNP-selection by restricting SNPs to 
those whose predicted functional consequence exceeded 10 on the Combined Annota-
tion Dependent Depletion (CADD) scale [102]. Pharmacogenetic models developed us-
ing GWAS included between 5 and 610 SNPs into the predictive pharmacogenetic mod-
el. 

3.3. Overview of Methods Used to Develop Polygenic Predictions Models in Pharmacogenomics 
Once pharmacogenetic SNPs were selected for inclusion into a polygenic prediction 

model, a variety of statistical methods were employed for the development of the mod-
els. These include regression-based methods, such as linear, logistic, or Cox proportional 
hazards regression analyses, and machine learning methods. Machine learning methods 
varied widely from more common techniques like random forest analyses to newly de-
veloped machine learning algorithms. The details of each of the different machine learn-
ing methods are beyond the scope of this review, and papers were broadly classified as 
using regression-based modelling (n = 68, 76.4%) or machine learning modelling (n = 11, 
12.4%). A subset of papers used neither of these, relying instead on pharmacokinetic 
modelling techniques to create a polygenic prediction model (2 papers, 2.2%) [28,88], 
Baeysian probability modelling (1 paper, 1.1%) [50], or simply binned patients according 
to their genotype-category without applying any statistical modelling (7 papers, 7.9%) 
[42,45,52,59,75,93,105]. No difference was observed between the model development 
method and the model’s performance (p = 0.09). The methods for SNP-selection and 
modelling technique are summarized in Table 1. 

Table 1. Summary of sample and methods used for developing polygenic prediction models in 
pharmacogenomics research. 

 n = 89 

Development cohort size (n)  

Median (range) 269 (37.0, 8726) 

Validation cohort size (n)  

Median (range) 187 (16.0, 14,348) 

Method of SNP-selection for inclusion in polygenic model  

Candidate-gene 74 (83.1%) 

Genome-wide association 11 (12.4%) 

Validation of existing polygenic model 4 (4.5%) 

Method for model development  

Machine Learning 11 (12.4%) 

Regression-based method 68 (76.4%) 

Other 10 (11.2%) 
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3.4. Performance of Polygenic Models in Pharmacogenomics Research 
Given the variability in methodologies used to develop polygenic prediction mod-

els, it is unsurprising that the same heterogeneity exists for measuring model perfor-
mance. Methods for assessing model performance included plotting receiver operating 
characteristic (ROC) curves and calculating area under the curve (AUC) as a measure of 
model discrimination, R2 measures of predictive accuracy, model calibration as meas-
ured by the Hosmer-Lemeshow goodness-of-fit test, sensitivity and specificity, positive- 
and negative-predictive values, mean absolute error, and Pearson correlations (for con-
tinuous outcomes only). Some studies did not formally evaluate model performance; ra-
ther, patients were binned into risk groups based on polygenic model score and associa-
tion with the drug outcome was compared between groups. Given the variance in re-
porting of model performance, direct comparisons could not be drawn between models 
across different studies. 

Instead, performance results were interpreted within the context of each individual 
study by examining (1) whether the polygenic model was successfully associated with 
the drug outcome of interest, and (2) whether it was able to improve predictions beyond 
clinical models. Nearly all included studies that developed a model (n = 83, 93.3%) iden-
tified a significant association between the drug outcome of interest and the pharmaco-
genetic variants incorporated into the model. However, less than half of these studies (n 
= 42, 47.2%) compared the polygenic model against clinical predictors. Comparisons 
against clinical predictors are used to demonstrate the added utility of pharmacogenetics 
beyond clinical factors alone in predicting drug outcomes [115]. Of the studies that did 
make this comparison, 73.8% showed a significant improvement of the polygenic model 
over a clinical model. A summary of models reporting significant polygenic associations 
and improvement over clinical models is shown in Figure 3. 

 
Figure 3. Summary of performance and validation of polygenic models for predicting drug out-
comes. 

3.5. Validating the Performance of Polygenic Models 
Over half the included papers (n = 56, 63.0%) included some form of model valida-

tion in their analysis or were validated in a future study. However, only 36 (40.4%) 
models were tested in an independent cohort for external validity. As mentioned previ-
ously, secondary cohorts of patients treated with the same drug may not be readily 
available due to sample size constraints. In these cases, some studies (n = 16, 18.0%) per-
formed internal validation using cross-validation or internal bootstrap samples to vali-
date their model. Expectedly, internal validation of polygenic prediction models was far 
more successful than external validation. Where all internally validated models reported 
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successful validation with only a slight reduction in performance, over one third (n = 14, 
38.9%) of externally validated models did not validate successfully in an independent 
patient population. Model validation is also summarized in Figure 3. 

A very small subset of papers (n = 4, 4.5%) was dedicated solely to the independent 
validation of a previously developed polygenic model. This is in line with the trend in 
scientific research which has historically favored discovery over replication for publica-
tion and explains why most studies aimed to created their own polygenic model rather 
than validate an existing one [116]. 

4. Discussion 
4.1. Drug Outcomes Investigated 

A wide range of therapeutic classes have been investigated among the included 
studies in the development of polygenic prediction models (Figure 2). However, the 
studies reviewed were heavily dominated by anticoagulant (n = 32, 36.0%) and antineo-
plastic (n = 22, 24.7%) outcome prediction. Historically, coumarin anticoagulants were 
extensively studied in the context of pharmacogenomics research due to the widespread 
prescription of warfarin for the prophylaxis and treatment of venous thromboembolism 
and other cardiac conditions [117–119]. Due to the narrow therapeutic index and high 
interindividual variability in dosing requirements, ability to predict a patient’s optimal 
warfarin dose is crucial for avoiding serious adverse drug reactions [120,121]. Prior to 
any genome-wide studies, researchers and clinicians already suspected that up to 50% of 
this variability could be explained by patient-specific factors such as age, body mass in-
dex, and genetics [14]. Up to one-third of this variability has been associated with varia-
tions in the main metabolizer enzyme for coumarin anticoagulants, CYP2C9, and the 
primary drug target, vitamin K epoxide reductase complex I (VKORC1) [122]. This 
prompted the FDA to include pharmacogenetic information on the warfarin drug label, 
and the International Warfarin Pharmacogenetics Consortium to produce a standard 
drug-dosing algorithm for warfarin prescription based on genetic information [18,123]. 
The extensive research on warfarin pharmacogenetics makes it a compelling case study 
for the polygenic nature of individual drug response, as well as how the use of phar-
macogenetic testing can optimize drug outcome predictions. 

The pharmacogenetics of anti-cancer therapies have also been extensively investi-
gated. The potent pharmacological agents used to prolong life in cancer can result in se-
vere adverse drug reactions which disproportionately affect cancer patients, with up to 
74.3% of hospitalized oncology patients experiencing one or more adverse drug reaction 
during their stay [124]. As advancements in cancer therapy have improved patient sur-
vival, increasing attention has been given to the life-altering and life-threatening adverse 
effects of chemotherapy [125–127]. It is, therefore, unsurprising that the majority of pol-
ygenic risk models in cancer therapeutics were developed to predict individual suscep-
tibility to chemotherapy-related adverse drug reactions (Figure 2). 

4.2. Methods for Polygenic Model Development 
In the context of this review, the term ‘polygenic’ was not restricted to the classical 

definition of “a sum of genome-wide genotypes” [8]. Instead, the term ‘polygenic’ was 
broadly defined as any pharmacogenetic prediction score or model that encompassed 
more than one genetic locus in order to also capture pharmacogenetic models not devel-
oped from genome-wide studies. Nearly all studies included in this review took a can-
didate-gene approach when choosing pharmacogenetic SNPs to incorporate into a poly-
genic prediction model which are widely regarded as inferior to GWA studies due to 
their hypothesis-driven nature. Linskey and colleagues identified that 94% of genes dis-
covered in pharmacogenomic GWA studies are novel and not previously included in 
candidate gene studies [128]. This demonstrates the gap in our current understanding of 
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drug pathways and emphasizes the need to shift pharmacogenomic research towards 
agnostic genome-wide study designs. 

The current preference for candidate-gene studies may be explained by the small 
average sample sizes available in the included articles (median n = 269) which would 
generally be considered underpowered for genome-wide analyses [7]. However, phar-
macogenetic variants tend to have larger effects sizes compared to variants associated 
with other complex traits [129]. While smaller samples may suffice for detection of these 
larger effect sizes, pharmacogenetic associations of modest effect involved in complex 
drug pathways may still be missed [113]. This highlights a common challenge within 
pharmacogenomics research of recruiting sufficiently large samples of uniformly treated 
patients to perform GWA studies [7,19,113]. This has led many researchers to leverage 
GWASs derived from large cohorts of related disease phenotypes in the development of 
polygenic models to predict drug outcome [19]. As mentioned, these studies fell outside 
the scope of this review as they failed to include pharmacogenetic variants. GWA stud-
ies also present additional challenges that may have contributed to the preference for 
candidate-gene approaches among the included articles. Due to their large scale, GWA 
studies are often more complex, more time-consuming, and more expensive to run as 
they require statistical experts familiar with genomic analyses, higher computing power, 
and specialized genetic analysis software [112]. 

Nearly all included studies employed regression-based statistical modelling tech-
niques to develop the polygenic prediction models, with only 11 (12.4%) papers using 
machine learning techniques. Currently, there is not one methodology that produces the 
best model across all contexts or drug outcomes; rather, it appears that each drug out-
come is assessed independently based on the phenotype and study population to deter-
mine the most suitable modelling method [115,130]. This is in line with findings from the 
current review, where no difference was observed between the method used to create 
the model and the model’s performance (p = 0.09). 

This suggests that it is perhaps the data used to create the model which has more 
impact on model performance than the method of model creation [131,132]. For instance, 
Perini et al., found that a warfarin dosing algorithm developed in a Brazilian population 
outperformed previous models developed in European populations when applied to 
Brazilian patients [46]. This is unsurprising given the genetic differences between ances-
tries. Variant frequency and linkage disequilibrium patterns can vary widely between 
populations, which often translates to poor performance of polygenic models applied to 
patients who are different from the input data [133–135]. Another study in warfarin dose 
prediction compared the performance of various models for predicting dosing require-
ments in children [47]. This study found that the model generated in a pediatric popula-
tion outperformed those that adapted warfarin dosing models constructed in adults for 
use in children [47]. This demonstrates that a model performs best within the population 
for which it was developed, particularly when populations have differing pharmacoki-
netic profiles [136]. 

Phenotypic characterization also presents a unique challenge within phar-
macogenomic research as many drug outcomes are difficult to measure quantitatively 
[14]. For example, cisplatin-induced hearing loss is a common adverse drug reaction re-
sulting from cisplatin chemotherapy [137–139]. Many pharmacogenomic studies have 
been conducted to explain the interindividual variability of this adverse outcome, but 
results are inconsistently replicated [140]. This may be partially explained by the differ-
ent scales used to grade hearing loss which results in the same patient being assigned in-
to different phenotypic categories depending on the grading criteria used [137,141–145]. 
Such discrepant phenotyping may result in different polygenic models being construct-
ed depending on the definition of the drug outcome. 

There is a wide variety of methods for generating polygenic models in phar-
macogenomics research and this diversity continues to increase as different mechanisms 
arise to overcome challenges in modelling complex drug-related data [115]. This pre-
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sents a challenge as each drug outcome may have multiple polygenic models with little 
guidance in choosing the ‘correct’ model to implement clinically. Additionally, polygen-
ic models constructed using more complicated or abstract techniques may face addition-
al barriers toward clinical implementation [131,132,146]. For example, due to the data-
driven nature of machine learning methods, learning algorithms are often perceived as a 
“black box”, manipulating data in unknown ways to generate predictions. Due to the 
limited interpretability of algorithm results, clinicians and practitioners may have diffi-
culty trusting a model that is not easily explained by current medical evidence [146]. 
This illustrates a need for data scientists and clinicians to work together in early stages of 
model development in order to create polygenic prediction models that are clinically 
useful and interpretable by its intended end-users. 

4.3. Model Performance 
All except for two studies in the current review found significant polygenic associa-

tions between the studied polygenic model with the drug outcome of interest. This is in 
contrast to findings from a review published by Johnson et al. in 2021 where more than 
half the included studies did not find a significant association between the polygenic 
risk score and the drug outcome of interest [19]. This difference may be attributed to the 
fact that variants incorporated into many of the prediction models reviewed by Johnson 
et al. were disease-related rather than drug-related, and hence did not capture the true 
pharmacogenetic landscape of the drug outcome under investigation [19]. Articles in-
cluded in the present review comprised of pharmacogenetic variants previously found 
to be in direct association with drug outcomes, or with established functional relevance 
in the drug’s biotransformation pathway. This may explain why the overwhelming ma-
jority of studies in this review found a statistically significant association between poly-
genic models and the drug outcomes. These findings suggest that disease-associated 
variants cannot always substitute for true pharmacogenetic associations. Pharmacologi-
cal agents form complex interactions with biological systems through various pharma-
cokinetic and pharmacodynamic pathways that extend beyond disease mechanisms 
[147]. Thus, the most robust polygenic models for predicting drug response are those 
constructed using pharmacogenetic variants. However, these results should be inter-
preted with caution as studies failing to show a statistically significant association be-
tween pharmacogenetic models and investigated drug outcomes may be more likely to 
remain unpublished [148]. 

While nearly all studies were able to show a significant genetic association between 
their polygenic models and drug outcomes, far fewer demonstrated that the inclusion of 
pharmacogenetic information significantly improved predictions beyond clinical factors 
alone. Less than half (n = 42, 47.2%) the included studies formally compared polygenic 
versus clinical models for predicting drug outcomes. Of the models that did draw this 
comparison 73.8% (n = 31 out of 42) showed significant improvement over clinical mod-
els with the addition of pharmacogenetic factors, suggesting that pharmacogenetics have 
the potential to improve prediction of drug outcomes over clinical models alone. How-
ever, this should also be interpreted with caution due to the low proportion of studies 
that reported the predictive performance of clinical versus pharmacogenetic models. It is 
possible that negative results failing to demonstrate improvement of polygenic models 
over clinical models are less likely to be reported [148]. This may also be due to the lack 
of established clinical prediction tools against which to compare pharmacogenetic mod-
els. Unlike for predicting disease risk, validated clinical prediction tools often do not ex-
ist for predicting drug outcomes. Nevertheless, clinical factors have been associated with 
many drug outcomes of interest. For example, younger-aged children tend to be more 
at-risk for chemotherapy-induced adverse reactions and body mass index is a well-
established predictor for warfarin dosing requirements [149–152]. Comparisons between 
these clinical factors and polygenic models are crucial to show clinicians and stakehold-
ers how pharmacogenetics can be used in conjunction with clinical information to result 
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in more effective, individualized therapy [153–156]. Reporting the extent to which a pol-
ygenic model is able to improve (or not) upon clinical predictions where available is 
likely to play an important role in the implementation of pharmacogenetic testing. 

The diversity that exists within model development methods also exists within the 
reporting of predictive performance. This variability makes comparison and evaluation 
of polygenic models challenging when trying to decide on the ‘best’ model for use in pa-
tients [11]. For instance, the area under the curve (AUC) is the most frequently used met-
ric of a model’s discriminative ability, but it has also been criticized as lacking in other 
predictive aspects [157]. This has led some authors to instead report metrics of calibra-
tion, mean-average-error, or percent variability explained (among many others). Rec-
ommendations for reporting practices and guidelines for polygenic model development 
have been published in the context of disease prediction but are not routinely followed 
[8,158–160]. This inconsistency is apparent in the vast array of performance measures 
reported among the included studies in this article, and the same trend was observed in 
a recent review of polygenic risk scores [19]. Improving adherence to standardized re-
porting guidelines would facilitate comparisons between polygenic prediction models 
and allow more straightforward evaluation of model performance. Additionally, there 
are currently no reporting guidelines that are specific to pharmacogenetic polygenic 
models. Thus, it remains to be seen whether guidelines for disease polygenic models are 
applicable to pharmacogenetic models, and if so, consensus must be reached on the 
one(s) to follow in order to facilitate cross-study comparisons. 

4.4. Model Validation 
In order for any prediction model to be implemented, validation of the model must 

occur in order to demonstrate its predictive performance. In the current review, over 
one-third of studies (n = 33, 37.1%) did not include any obvious form of validation. That 
is, a polygenic model was fit to the data without testing the validity of genotype-based 
groupings or predictions. n = 16, (18.0%) performed internal validation only using boot-
strap or other re-sampling techniques. However, it is widely accepted that it is not suffi-
cient to demonstrate good model performance in the development sample only [161]. In 
order to demonstrate generalizability, it is essential to confirm that a model maintains 
good prediction in a different set of individuals than were used for model creation [162]. 
In this review, a low proportion of articles (n = 36, 40.4%) validated the polygenic model 
in an independent test sample. Only n = 4 (4.5%) of the articles were focused solely on 
conducting an external validation of an existing polygenic prediction model. This low 
number may be explained by the tendency to preferentially produce novel research ra-
ther than attempt to replicate previously published results [116,163–167]. Often, especial-
ly until more recent years, publication preference has been given to novel findings 
[116,163–167]. However, replication of polygenic models for predicting drug outcomes is 
key to demonstrating their generalizability across patient populations. Generalizability 
of model predictions has been particularly challenging in the development of polygenic 
prediction models, with a drop in model performance often observed when applied to a 
new patient population [135,168–170]. This trend is observed in the present study where 
over one-third of externally validated models failed to predict the drug outcome in an 
independent cohort (Figure 3.). Part of this challenge reflects a larger bias in genetic re-
search which has primarily been conducted in European populations (Table S1) [113]. As 
a result, many of these genetic findings are not applicable to populations of different an-
cestries. Recently, suggestions have been made for reweighting or adjusting models 
when applied to different populations, but ultimately, there is a need to increase patient-
diversity in genetic studies [171]. It has been previously demonstrated that polygenic 
models developed in more diverse samples have improved generalizability and im-
proved performance when applied to external cohorts of different populations [134]. 
Thus, improving diversity in pharmacogenetic research is an essential step in creating 
polygenic models that are widely applicable. Fostering international research collabora-
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tions and the formation of large consortia comprised of genetically diverse patients 
would allow for improved generalizability of pharmacogenetic predictions and more 
widespread applications of polygenic models. 

4.5. Study Limitations and Future Directions 
This work has several limitations. As discussed previously, the scope of the current 

study was limited to polygenic models constructed from pharmacogenetic variants only 
and excluded those derived from disease or phenotype GWAS data. As such, direct 
comparisons could not be drawn between these different models. Future studies may 
consider performing a larger-scale review which directly compares these different mod-
els, particularly where both are available for the same drug outcomes. This study also 
excluded polygenic models constructed for multi-drug regimens and thus the results 
cannot be generalized to drug outcomes resulting from the combined effect of multiple 
pharmacotherapies. An additional limitation is the exclusion of any non-English lan-
guage articles as this may have introduced bias into the current study and caused some 
evidence to be missed. Finally, due to the heterogeneity in reporting of model results, no 
assessment of publication bias was conducted. As mentioned, negative results are less 
likely to be reported and thus, the effects of publication bias on the results of the current 
review cannot be ruled out [148]. This highlights the need to establish clear reporting 
guidelines for polygenic models predicting drug outcomes, as well as the need to report 
negative findings to reduce publication bias. Another important consideration in future 
work is the integration of multiple gene effects (polygenic models) into clinical practice 
guidelines for pharmacogenetic testing. Currently, clinical practice recommendations for 
pharmacogenetic testing are predominantly made on a per-gene basis [172,173]. Clear 
guidelines on clinical interpretation of pharmacogenetic results that combine multiple 
variants are needed. 

In conclusion, the development of polygenic models for predicting drug outcomes 
is an emerging field with the potential to improve predictions for individual patient re-
sponse to pharmacological therapy. However, to facilitate advancements in this area of 
research, consensus is needed surrounding the reporting of model development meth-
ods and model performance measures. Additionally, increasing diversity in study popu-
lations for polygenic model development can lead to improved generalizability of model 
predictions and demonstrate clinical utility in a broader group of patients. 
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