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Abstract: Patients with deficit schizophrenia (SZD) suffer from primary and enduring negative symp-
toms. Limited pieces of evidence and neuroimaging studies indicate they differ from patients with
non-deficit schizophrenia (SZND) in neurobiological aspects, but the results are far from conclusive.
We applied for the first time, graph theory analyses to discriminate local and global indices of brain
network topology in SZD and SZND patients compared with healthy controls (HC). High-resolution
T1-weighted images were acquired for 21 SZD patients, 21 SZND patients, and 21 HC to measure
cortical thickness from 68 brain regions. Graph-based metrics (i.e., centrality, segregation, and inte-
gration) were computed and compared among groups, at both global and regional networks. When
compared to HC, at the regional level, SZND were characterized by temporoparietal segregation
and integration differences, while SZD showed widespread alterations in all network measures.
SZD also showed less segregated network topology at the global level in comparison to HC. SZD
and SZND differed in terms of centrality and integration measures in nodes belonging to the left
temporoparietal cortex and to the limbic system. SZD is characterized by topological features in the
network architecture of brain regions involved in negative symptomatology. Such results help to
better define the neurobiology of SZD (SZD: Deficit Schizophrenia; SZND: Non-Deficit Schizophrenia;
SZ: Schizophrenia; HC: healthy controls; CC: clustering coefficient; L: characteristic path length; E:
efficiency; D: degree; CCnode: CC of a node; CCglob: the global CC of the network; Eloc: efficiency
of the information transfer flow either within segregated subgraphs or neighborhoods nodes; Eglob:
efficiency of the information transfer flow among the global network; FDA: Functional Data Analysis;
and Dmin: estimated minimum densities).

Keywords: neuroimaging; clinical neuroscience; brain structural covariance; mental diseases; psychiatric
disorders

1. Introduction

The clinical heterogeneity of schizophrenia (SZ) has widely captured the interest of
researchers and clinicians worldwide. A large amount of neuroanatomical, neurobiologi-
cal, and neuropsychological research has been conducted with the aim of discriminating
between subtypes of schizophrenia characterized by more homogeneous symptom do-
mains [1]. In this view, patients with SZ suffering from primary, stable, and enduring
negative symptoms, have been considered as a separate nosological entity, namely deficit
schizophrenia (SZD) [2–6]. However, SZD cannot be merely considered the extreme end of
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a continuum. Indeed, evidence supports the hypothesis that compared with patients in the
non-deficit subgroup (SZND), SZD is a separate disorder rather than a more severe form of
SZ [3,7–11].

Thinner cortical thickness is a consistent finding in schizophrenia (SZ), as revealed
by several studies [12–16] reporting irregularly distributed reductions across multiple loci.
Most of the investigations compared diagnostic groups with mass univariate analysis
and revealed localized regional changes, in a segregationist view [12–15]. However, this
approach failed to quantify changes in the inter-relationship among different brain areas.
Indeed, the brain is an integrated network emerging from a collective development, and a
substantial body of evidence supports the hypothesis that SZ is a developmental disorder
in which disruptions of cerebral connectivity and morphology contribute to the emergence
of symptoms [17].

Essential information about abnormalities in brain development can be gathered by
studying the structural covariance between brain regions morphology. Indeed, morpholog-
ical networks, based on anatomical covariance among brain regions, identify an important
aspect of developmental maturation, crucial to understand the pathophysiology of psy-
chotic disorders [18,19]. Direct evidence linking anatomical covariance among brain regions
to coordinated physiological brain development was described in recent studies [18,20,21].
Graph theory offers a promising technique for investigating the organization of the pair-
wise connections (covariance) between nodes of such brain networks [22]. Application of
graph theory to neuroimaging data revealed that in the uninjured human brain, regions
tend to be connected creating an efficient ‘small world’ network. This means that key brain
regions are connected to multiple nearby brain regions in a modular or segregated fashion
and are linked by short paths (traveling for long-range connections) that integrate such
modules [23].

Several studies have already supported the evidence of altered brain network topology
and structural covariance in SZ [24,25]. Specifically, the pattern of connections generally
reveals a more segregated, less integrated, and inefficient brain system based on volumet-
ric [26], thickness [16], gyrification [27], microstructural [28], and functional connectiv-
ity [25,28,29] measures. In these studies, the sources of heterogeneity are multifactorial,
ranging from the MRI technique to the brain- or graph-based measures employed for
analyses, leading to inconsistent results. Moreover, the much-discussed source of inconsis-
tency in SZ results may be related to the substantial clinical heterogeneity, also associated
with its multiple pathogenetic mechanisms, which Bleuler in the early years of the last
century already labeled properly as a “Group of Schizophrenias” [30]. Support for clinical
variability in SZ [31] comes from more recent studies that used unsupervised machine
learning [32] or factorial [33] approaches and generated fascinating evidence for discrete
categories of the disorder. Thus, a powerful approach to study SZ relies on separating
more homogeneous subgroups of patients, in order to better characterize such disabling
mental disorders.

Graph theory analysis of cortical thickness data may be used to highlight structural
abnormalities in SZD at the network level. Although some studies suggested regional
cortical thinning in SZD compared with SZND [34], others failed to reveal differences [35].
In this scenario, all studies have been conducted using univariate mass-based approaches,
thus possibly overlooking potential differences in cortical thickness covariance between
diagnostic groups.

This work aimed to investigate the hypothesis that different patterns of brain network
abnormalities characterize SZD and SZND, and to contrast them with healthy controls
(HC). To investigate our hypothesis, we compared the three groups with respect to global
and regional brain network indices (described in Section 2.5) calculated on thickness-
based measures.
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2. Material and Methods
2.1. Study Sample

One hundred and fifteen patients diagnosed with SZ were initially assessed at IRCCS
Santa Lucia Foundation in Rome, between March 2016 and May 2019. Clinicians who had
treated the patients and knew their clinical history made the preliminary diagnosis. Then, a
senior research psychiatrist (G.S.) confirmed all preliminary diagnoses using the Structured
Clinical Interview for the DSM-5 Research Version (SCID-5 for DSM-5, Research Version;
SCID-5-RV) [36]. Overall symptom severity of SZ was assessed using the Scale for the
Assessment of Positive Symptoms (SAPS) [37] and the Scale for the Assessment of Negative
Symptoms (SANS) [38], while the characterization of SZ subtype was done according to
the Schedule for the Deficit Syndrome (SDS) [39] to distinguish SZD and SZND groups.

Five patients were excluded because they were not classifiable as SZD or SZND
according to the SDS criteria and six patients because they were unable to complete the MRI
examination, or because of the presence of MRI artifacts or brain abnormalities. Twenty-one
out of the remaining 104 patients were classified as SZD while 83 were identified as SZND.
We reduced the SZND group to 21 patients closely matched one by one for age (±2 years)
and sex to the SZD ones, in order to obtain a comparable sample size. This was done to
prevent correlational matrices and structural covariance measures from being biased by
differences in patients’ sample size. Finally, 21 HC were recruited through local advertising
and closely matched one by one for age (±2 years) and sex to the SZ subtype samples. All
HC were screened for a current or lifetime history of DSM-5 psychiatric and personality
disorders using the SCID-5-RV [36] and SCID-5-PD [40]. They were also assessed to confirm
that no first-degree relative had a history of psychosis.

Inclusion criteria for all subjects were as follows: (i) age between 18 and 65 years,
(ii) at least 8 years of education, and (iii) suitability for MRI scanning. Exclusion criteria
were as follows: (i) history of alcohol or drug abuse in the 2 years prior to assessment,
(ii) lifetime drug dependence, (iii) traumatic head injury with loss of consciousness, (iv) past
or present major medical illness or neurological disorders, (v) any (for HC) or additional
(for SZ) psychiatric disorder or mental retardation, (vi) dementia or cognitive deterioration
according to DSM-5 criteria, and a mini-mental state examination (MMSE) [41] score
<25, consistent with normative data in the Italian population [42], (vii) low T1-weighted
images quality (i.e., presence of significant motion or scanner-generated artifacts), (viii) any
brain abnormalities or microvascular lesions as apparent on conventional T2-weighted
or fluid-attenuated inversion recovery (FLAIR) scans, potentially explaining the critical
phenomenology. The extent of vascular lesions was assessed using the semi-automated
method developed by our group [43].

Sociodemographic characteristics, SAPS and SANS scores, duration of illness, and
antipsychotic dosages (in chlorpromazine equivalents) are summarized in Table 1.

Table 1. Sociodemographic and clinical characteristics of 21 HC, 21 SZND, and 21 DSZ.

HC (21) SZND (21) SZD (21) Chi, t or F df p

Gender, male (%) 17 (81) 17 (81) 17 (81) 0 2 1
Age, mean (sd) 40 (11.5) 39.95 (11.4) 39.86 (11.6) 0.001 (2;60) 0.999

Educational level, mean (sd) 15.1 (2.5) 11.48 (3.4) 11.86 (2.8) 9.739 (2;60) 0.0002 *
Mean Thick, mean (sd) 2.36 (0.1) 2.32 (0.12) 2.29 (0.1) 1.914 (2;60) 0.156
Chlorp. Eq, mean (sd) - 338.5 (302.5) 484.3 (900.5) −0.703 40 0.486

Illness Duration, mean (sd) - 18.62 (12.1) 17.45 (9.5) 0.348 40 0.73
SAPS Tot, mean (sd) - 30 (14.2) 35.2 (18.2) −0.992 37 0.327
SANS Tot, mean (sd) - 26.37 (12.8) 44.6 (17) −3.772 37 0.001 *

df, degrees of freedom; sd, standard deviation; Chlorp. Eq, Chlorpromazine Equivalent of patients’ pharmacologi-
cal treatment; SAPS Tot, total score of the Scale for the Assessment of Positive Symptoms; SANS Tot, total score of
the Scale for the Assessment of Negative Symptoms. * Statistically significant differences at p < 0.05.
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The study was approved and undertaken in accordance with the guidelines of the
Santa Lucia Foundation Ethics Committee. All participants gave written informed consent
to participate after receiving a full explanation of the study procedures.

2.2. Image Acquisition E Processing

Each participant underwent the same imaging protocol, which included T2-weighted,
FLAIR, and whole-brain 3D high-resolution T1-weighted sequences using a 3T Allegra
MR imager (Siemens, Erlangen, Germany) with a standard quadrature head coil. Whole-
brain 3D T1-weighted images were obtained in the sagittal plane using a modified driven
equilibrium Fourier transform (MDEFT) sequence (TE/TR = 2.4/7.92 ms, flip-angle 15◦,
voxel-size 1 × 1 × 1 mm3) [44]. T2-weighted and FLAIR sequences were acquired to screen
for brain pathology.

2.3. Cortical Thickness Estimation

To estimate cortical thickness, all whole-brain 3D T1-weighted images were processed
using the automated and validated “recon-all” pipeline, as implemented in FreeSurfer
(version 5.3.) (https://surfer.nmr.mgh.harvard.edu/, accessed on 30 November 2020). Pre-
processing included intensity normalization, removal of non-brain tissue, transformation
to Talairach space, segmentation of gray-white matter tissue, tessellation, and smoothing
of the white matter boundary. White matter surfaces were then deformed toward the
gray matter boundary at each vertex [45]. Cortical thickness was calculated based on the
distance between white and gray matter boundaries at each vertex. The cortical thickness
was then parcellated into 68 cortical regions (34 per hemisphere) based on the Desikan–
Killiany parcellation scheme [46]. Finally, the mean thickness was extracted for each of the
68 cortical regions, as well as the mean thickness over both hemispheres. The entire cortex
of each study subject was visually inspected in order to exclude regions with inaccuracies
in segmentation.

2.4. Thickness-Based Covariance Matrices and Thresholding

A 68 × 68 Pearson’s correlation matrix of thickness measures of each parcellated brain
region adjusted for overall mean thickness was used to create a binary adjacency matrix for
each group (DSZ, SZND, and HC), using threshold values for the correlation coefficients.
This approach depends on the assumption that positive correlations between morphometric
parameters of different brain regions indicate connectivity [47]. The constructed binary
adjacency matrices were composed of elements containing values of 1 (indicating connected
pair of nodes) when the correlation coefficients were above the current threshold, or values
of 0 in the opposite case (indicating an unconnected pair of nodes). The diagonal elements
of the resultant matrices were set to zero.

Instead of choosing a single coefficient threshold, we used a range of thresholds
determined by values of connection densities [48] (proportions of connections present in a
graph to all possible connections). Specifically, the lower threshold was computed for each
group as the minimum density to obtain a fully connected and non-fragmented network,
while the upper threshold was set to 0.5 since graphs approached a random configuration
beyond this density. The range of densities was increased in steps of 0.05, in order to
compare the properties of emerging networks. The use of multiple threshold methods
is preferred since thresholding the adjacency matrices of different groups at an absolute
threshold results in networks with a different number of nodes (and degrees) that might
influence the network measures, and reduce the interpretation of results across groups [49]
(Figure 1).

https://surfer.nmr.mgh.harvard.edu/
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2.5. Global and Local Network Measures

The relationship among brain regions within a network can be described by three
groups of topological properties: segregation (e.g., clustering coefficient, CC), integration
(e.g., characteristic path length, L and efficiency, E), and centrality (e.g., degree, D) [22,50,51]
and can be quantified at either regional or global network level. Segregation: at the regional
level, the CC of a node (CCnode) is the number of its current links divided by the number
of all possible links among its neighbors. The highest CCnode has the highest localized
covariance among segregated nodes of the cerebral network. The average of CCnode of
each region (or node) provides the global CC of the network (CCglob) [22]. Integration: L of
a network is the average shortest path length between all pairs of nodes in the network
and is the most commonly used measure of network integration. E is inversely related to
L, but is numerically easier to use to estimate topological distances between elements of
disconnected graphs. Specifically, E is a measure of the efficiency of the information transfer
flow, either within segregated subgraphs or neighborhood nodes (Eloc) or among the global
network (Eglob) [22]. Centrality: the D of a node is the number of connections that link it to
the rest of the network. This is the most fundamental and readily interpretable measure of
centrality for structural networks and most other measures are ultimately linked to node’s
degree [22].

The topological architecture of structural networks constructed from morphometric
correlations of cortical thickness data [52–54] has been shown to follow small-world char-
acteristics in healthy individuals. Small-worldness of a complex network is described
by two key segregation (CCglob) and integration (L) metrics. Thus, we computed segre-
gation and integration indices at both regional and global network levels, in order to
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compare small-world indices (Sigma) among the three groups. In contrast, centrality
metrics were computed only at the regional level, since they are less useful for global
network characterization.

All topological properties were computed using Graph Analysis Toolbox (GAT) [55]
which uses computation algorithms from Brain Connectivity Toolbox (https://sites.google.
com/site/bctnet/, accessed on 30 November 2020).

2.6. Statistics

ANOVA, Student’s t-test, and chi-square test were performed to assess differences be-
tween groups in demographic and clinical variables using SPSS Statistics version 23.0 (IBM,
Armonk, NY, USA) and considering p < 0.05 as the statistical threshold for significance.

To test the statistical significance of the between-group differences in brain network
topology and regional network measures, nonparametric permutation tests, with 1000 rep-
etitions, were used. In each repetition, the regional data of each participant were randomly
reassigned to one of the two groups, so that each randomized group had the same number
of subjects and nodes as the original groups. Then, an association matrix was obtained
for each randomized group. The binary adjacency matrices were then estimated by ap-
plying the same thresholding procedure as described above. Differences in brain topo-
logical measures between the random groups were computed across the entire densities
range, resulting in a permutation distribution of the difference under the null hypothesis.
The actual between-group difference in network measures was then placed in the corre-
sponding permutation distribution and a two-tailed p-value was calculated based on its
percentile position [55]. This nonparametric permutation test based on functional data
analysis (FDA) [56,57] inherently accounts for multiple comparisons across the densities
range [27,58,59].

All network-based comparisons were performed by pairwise comparisons (i.e., HC vs.
SDZ; HC vs. NDSZ; SZD vs. NDSZ), using GAT [55] and considering a pFDA < 0.05 as the
corrected threshold for statistical significance.

3. Results

As expected from the matching procedure, the three groups did not differ in age
and sex distribution. As for education, HC accomplished more years of formal education
than both SZD and SZND groups; however, the two SZ groups did not differ between
them (Table 1). SZD and SZND did not differ in illness duration, equivalent dosages of
chlorpromazine, and whole-brain mean thickness. As expected, SZD suffered from more
severe negative, but not positive symptoms, compared to SZND (Table 1).

3.1. Graph Matrices

The estimated minimum densities (Dmin) at which no individual brain network is
fragmented, were Dmin = 0.17 for HC, Dmin = 0.11 for SZND, and Dmin = 0.09 for SZD
groups, suggesting the need to use different lower thresholds (Dmin) when calculating the
densities range for pairwise comparisons. Then, pairwise comparisons were performed on
binary matrices, computed across a range of densities, considering the lower bound as the
Dmin in which the networks of both groups are not fragmented (i.e., densities range: from
0.17 to 0.47 for both HC vs. SZND contrast and HC vs. SZD contrast; and from 0.11 to 0.46
for SZD vs. SZND contrast).

3.2. Global and Local Network Measures

Across the computed densities, HC, SZD, and SZND brain networks all showed
preserved small-world indices and were not different among each other in pairwise
comparisons. However, segregation measures (see 2.5 for measures description) of SZD
(CCglob = 0.46) were significantly lower as compared to HC (CCglob = 0.54) (pFDA = 0.03),
while integration measures did not show significant differences. No additional differences

https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/
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were found in segregation and integration measures comparing HC vs. SZND and SZD
vs. SZND.

At the local level (see Table 2), comparisons between HC and SZD, at the FDA-
corrected threshold, showed significant differences in all the investigated centrality, seg-
regation, and integration measures. Indeed, SZD resulted in eight cerebral regions of
abnormal D centrality, six regions of abnormal CCnode, and five regions of abnormal Eloc.
Specifically, SZD showed decreased D centrality values in nodes of the left (inferior parietal,
isthmus cingulate, and superior frontal cortices) and right (lateral occipital and pre-cuneus
cortices) hemispheres. Additionally, SZD showed increased D centrality in the bilateral
middle temporal gyri and in the left fusiform gyrus (Table 2). CCnode of SZD showed
reduced values in the left inferior parietal cortex and in three contiguous cortices of the
right hemisphere (i.e., the cuneus, the lingual, and the pericalcarine nodes). Moreover, SZD
showed increased CCnode in bilateral regions of the frontal lobe (i.e., the left frontal pole and
the right lateral orbitofrontal cortex) (Table 2). The Eloc of SZD resulted reduced in the left
inferior parietal, in the right cuneus, and pericalcarine cortices while was increased in the
left frontal pole and the right banks (Table 2, Figure 2).

Table 2. Pairwise comparisons for regional level measures in SZD, SZND, and HC.

HC vs. SZD HC vs. SZND SZD vs. SZND

Cortical Node
Avg across Densities

p FDA Cortical Node
Avg across Densities

p FDA Cortical Node
Avg across Densities

p FDA
HC SZD HC SZND SZD SZND

Centrality (Degree)
L fusiform 16 25 0.021 L inferior parietal 17 26 0.022

L inferior parietal 30 20 0.020 L middle temporal 23 14 0.018

L isthmus cingulate 26 16 0.044

L middle temporal 16 27 0.046

L superior frontal 30 24 0.040

R lateral occipital 28 18 0.024

R middle temporal 16 23 0.044

R precuneus 29 20 0.036
Segregation (Clustering)

L inferior parietal 0.60 0.38 0.045 L transverse temporal 0.6 0.35 0.04

L frontal pole 0.35 0.48 0.034 R supramarginal 0.56 0.75 0.04

R cuneus 0.70 0.46 0.038

R lateral orbito frontal 0.43 0.50 0.034

R lingual 0.65 0.38 0.025

R pericalcarine 0.64 0.36 0.013
Integration (Local Efficiency)

L inferior parietal 0.79 0.61 0.015 L transverse temporal 0.77 0.53 0.03 L para hippocampal 0.43 0.70 0.02

L frontal pole 0.59 0.73 0.028 R rostral anterior
cingulate 0.76 0.50 0.045

R banks 0.63 0.74 0.025

R cuneus 0.85 0.70 0.045

R pericalcarine 0.82 0.57 0.001

Avg = average measure; FDA = Functional Data Analysis; L = left; R = right.

Differences between HC and SZND in FDA comparison were found in two regions
for segregation (CCnode) and one region for integration (Eloc) measures. Specifically, SZND
showed decreased CCnode and Eloc in the left transverse temporal gyrus and increased
CCnode in the right supramarginal gyrus (Table 2).

Comparisons between SZD and SZND showed significant FDA differencies in cen-
trality and integration node measures. Specifically, compared to SZND, the SZD group
showed decreased D centrality of the left inferior parietal cortex and increased D centrality
of the left middle-temporal gyrus, in line with results found comparing SZD and HC.
Moreover, SZD showed decreased Eloc in the para hippocampal and increased Eloc in the
rostral anterior cingulate cortices (Table 2).
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Figure 2. Local brain network differences from pairwise comparisons between HC and SZD, HC
and SZND, and SZD and SZND. Yellow dots: brain nodes resulted as different for centrality index;
green dots: brain nodes resulted as different for segregation index; blue dots: brain nodes resulted as
different for integration index; purple dots: brain nodes resulted as different for multiple indices. HC,
Healthy Controls; SZD, Deficit Schizophrenia; SZND, Non-Deficit Schizophrenia.

4. Discussion

Here, we investigated for the first time the connectome (brain global and local network
metrics) in SZD, SZND, and HC and found three main results: (i) at the global network
level only SZD differed from HC; (ii) at the local network level both SZD and SZND
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were different from HC, although showed alterations that were specific for each group;
(iii) compared among each other at the local node level, SZD and SZND showed differences
in centrality and integrational measures in nodes located in the left temporoparietal cortex
and in the limbic system.

Specifically, our results showed that, compared to HC, only SZD showed a less seg-
regated architecture of the brain global network (CCglob). Although lower CCglob in a
preserved “small-world” network topology was already shown in an undifferentiated SZ
sample [60], here we found that such abnormality could be referred exclusively to the SZD
subgroup. The less segregated topology indicates subtle randomization in the underlying
network architecture, implying a greater number of disparate cerebral clusters and dis-
persive links arrangement among them. This difference between SZD and HC in network
clustering was also confirmed at the local level of brain nodes. Indeed, widespread nodes
of the right medial occipital (cuneus, pericalcarine, and lingual) cortices as well as the left
inferior parietal cortex revealed a lower CCnode in SZD vs. HC. Additionally, SZD showed
an increased CCnode in two bilateral frontal nodes vs. HC. Further differences between
SZD and HC were found for integrational and centrality network measures, in multiple
fronto-parietal-temporal-limbic nodes. All these regions encompass nodes belonging either
to the default mode network or to the executive control network, which are both affected in
SZ as highlighted in functional connectivity studies [61–63]. Here, we demonstrate that
both brain network systems also have structural alterations, particularly characterizing the
SZD group, when compared with HC.

Unlike SZD, SZND showed more focal abnormalities when compared to HC, affecting
only local nodes. Moreover, the number of affected nodes was quite low in SZND, indi-
cating that such abnormalities are less extensive than in SZD. Specifically, SZND showed
an increased segregation of the right supramarginal gyrus and a decreased segregation
and integration of the left transverse temporal node (a district belonging to the superior
temporal gyrus). Thus, the right supramarginal gyrus was abnormally hyperconnected
only with neighbor nodes, while the left transverse temporal area was connected to more
randomly spread cortical areas, affecting its efficiency in local information flow. There-
fore, previous evidence of cortical abnormalities located in these brain regions in SZ as
a whole [64] could be specifically referred to SZND patients and related to abnormal
structural network characteristics.

Another intriguing result is that SZD showed significant differences when compared
to both SZND and HC in the left inferior parietal cortex and the left middle temporal
gyrus. Compared to HC, SZD showed the left inferior parietal cortex as less connected
to other brain regions (lower D), even to their neighbors (lower CCnode), resulting in a
less efficient information transfer (lower Eloc). The inferior parietal cortex is a multimodal
association area intriguingly involved in different cognitive functions [65–69], such as
bottom-up attention, lower-order self-perception, undirected thinking, episodic memory,
and social cognition, and such functions are notoriously impaired in SZD [5]. Moreover,
several pieces of evidence showed that this area is functionally impaired in undifferentiated
samples of SZ (see Torrey, 2007 for a review), being associated with negative symptoms
in a functional MRI study [70], and structurally affected in a volumetric 6-year follow-up
longitudinal study [71] with adolescents at risk of psychosis. The association between
negative symptoms and inferior parietal cortex abnormalities perfectly fits with our result
showing a lower degree of centrality of this node in SZD compared to SZND. As for the left
middle temporal gyrus, a previous morphometric study found that it is specifically altered
in SZD [72]. Our result of increased CCnode in SZD, as compared to both HC and SZND,
strengthens this finding [72] and suggests that its aberrant hyper-segregated connectivity
may additionally characterizes the pathophysiological substrate of SZD.

Finally, integrational differences between SZD and SZND were found in the left
parahippocampal and the right anterior cingulate cortices. These structures are key compo-
nents of the limbic system and are involved in negative symptoms related to motivation and
goal-directed behaviors [71]. Specifically, restricted affect, curbing of interests, diminished
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emotional range, sense of purpose, and social drive are major negative symptoms con-
sidered to be primary in SZD. All these emotional/motivational functions are modulated
through the limbic system [73] and our results intriguingly suggest that differences between
SZD and SZND symptomatology could be related to the aberrant network architecture of
cortices belonging to such systems.

Taken together, our results indicate that impairments in network topology involving
the left inferior parietal, the middle temporal, the parahippocampal, and the right anterior
cingulate cortices could be considered a neural marker that can be used to differentiate
SZD from SZND.

The low prevalence of SZD and the elevated time and competencies required for
the specific diagnostic process discourage many investigators and drug companies from
investing more resources in this research area. Moreover, cognitive deficits and negative
symptoms typical of SZD may attract less clinical attention than positive symptoms, but
they are responsible for much of the morbidity associated with the disorder [74]. Within
such a scenario, our study confirms the strong need to differentiate SZD from SZND and to
pursue personalized treatment for each subtype.

4.1. Limitations

A potential weakness of the present study, linked to the low prevalence of SZD, is the
relatively small sample size of the included groups. However, the groups were homoge-
neous with respect to clinical and demographic characteristics, reducing the potential effect
of confounding variables and increasing the statistical power of comparisons. Additionally,
we employed the permutation tests for the purpose of group comparisons, which are less
affected by sample size and other confounding effects than the parametric one.

4.2. Conclusions

Our results highlighted that SZD patients are characterized by brain network abnor-
malities that differ from those of SZND patients. Topological differences found in network
architecture between these two subtypes of SZ involve brain regions that appear to be
intimately associated with the large spectrum of negative symptoms, helping to better
define the symptomatic picture of SZD.
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