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Abstract: Functional electrical stimulation (FES) is a rehabilitation and assistive technique used for
stroke survivors. FES systems mainly consist of sensors, a control algorithm, and a stimulation unit.
However, there is a critical need to reassess sensing and control techniques in FES systems to enhance
their efficiency. This SLR was carried out following the PRISMA 2020 statement. Four databases
(PubMed, Scopus, Web of Science, Wiley Online Library) from 2010 to 2024 were searched using
terms related to sensing and control strategies in FES systems. A total of 322 articles were chosen in
the first stage, while only 60 of them remained after the final filtering stage. This systematic review
mainly focused on sensor techniques and control strategies to deliver FES. The most commonly
used sensors reported were inertial measurement units (IMUs), 45% (27); biopotential electrodes,
36.7% (22); vision-based systems, 18.3% (11); and switches, 18.3% (11). The control strategy most
reported is closed-loop; however, most of the current commercial FES systems employ open-loop
strategies due to their simplicity. Three main factors were identified that should be considered when
choosing a sensor for gait-oriented FES systems: wearability, accuracy, and affordability. We believe
that the combination of computer vision systems with artificial intelligence-based control algorithms
can contribute to the development of minimally invasive and personalized FES systems for the gait
rehabilitation of patients with FDS.

Keywords: stroke; functional electrical stimulation; sensing; inertial measurement unit; EMG;
rehabilitation; vision systems; foot drop

1. Introduction

The study of targeted rehabilitation has become an important aspect of stroke man-
agement. Stroke is a major cause of severe and long-term disability, often resulting in foot
drop (FD), an impairment seen in 20% to 30% of stroke survivors. [1,2]. FD can result in
gait related deficiencies. Is characterized by weakness or loss of control in the ankle and toe
dorsiflexor muscles. Many survivors are permanently disabled and usually need physical
therapy to regain their daily living abilities and prevent further loss of their remaining
voluntary functions [1,3,4]. FD can arise from a variety of conditions, including muscular,
neurological, spinal, autoimmune, and musculoskeletal disorders; these conditions fre-
quently follow traumatic events such as vehicle accidents, sports and recreational activities,
and medical procedures such as lumbosacral spine and hip replacement surgeries, among
others [5,6].
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However, survivors still retain excitable peripheral nerves and muscle tissues that
may be re-established through functional electrical stimulation (FES) [7]. This method
bypasses the biological lesion and delivers the necessary stimulation to induce muscle
contractions [7]. FES is a rehabilitation tool for restoring motor skills in stroke survivors.
By delivering electrical impulses through the skin and targeting specific muscles and
nerves, it enables movements involved in specific functional tasks. This method is widely
employed to help neurologically impaired individuals restore walking ability [8]. The aim
of FES intervention is to enhance gait function by either substituting or assisting voluntary
movements to achieve the desired motion [8,9]. Nevertheless, significant challenges remain
despite ongoing advancements. A key issue lies in the structure of control strategies of
neuroprostheses, which need to synchronize muscle movements with sensory feedback
integration [8].

FES is a complex and dynamic process influenced by muscle fatigue, patient effort, and
spasticity, which can vary unpredictably during treatment. Minor variations in electrode
placement from day to day can significantly alter motor responses. To achieve a more
robust FES system, it is essential to measure human motion and muscle contraction via
lightweight, portable, and real-time-capable measurement systems [7].

Building on this understanding, in the following sections, two key blocks of FES
systems are explored, sensor techniques and control strategies, in order to present an
overview of which are used today, their limitations, and the advantages.

1.1. Sensing Techniques

FES systems consist mainly of sensors, a control algorithm, and a stimulation unit.
Sensors offer crucial feedback to FES systems, allowing the control system to adjust stimula-
tion outputs based on changes in parameters and environmental interactions [6]. Therefore,
feedback sensors are a key element in the design of FES systems for the gait rehabilitation
of patients with foot drop. Hence, having a quick reference of the state of the art in this
topic would be of great help for new and potential researchers in the field. Such a reference
would save them plenty of time, work, and resources, before testing different combinations.
This systematic literature review (SLR) is focused on these topics, with the main aim of
serving as a first reference and guide to FES researchers and designers, before embarking
in technology development or clinical trials.

Wearable sensors, such as foot pressure insoles, foot switches, accelerometers, gyro-
scopes, inertial measurement units (IMUs), and electromyography (EMG) electrodes, have
been extensively utilized in FES control strategies [8]. Particularly, IMUs have been used ex-
tensively in this field, since they integrate gyro-scopes, accelerometers, and magnetometers
to estimate joint angles, gait, and angular velocities through sensor fusion techniques. These
combined measures enable detailed motion monitoring in gait-oriented FES applications,
enabling access to specific kinematic variables in real-time, like acceleration and orientation
of relevant body segments, such as the foot, ankle, and lower and upper leg. The accuracy
and precision of wearable sensing systems are influenced by the number and placement
of sensors, their alignment with the body’s coordinate system, and the signal processing
algorithms employed. Moreover, effective calibration methods in FES systems depend
on sensors, such as non-restrictive sensor-to-segment calibration or automatic anatomical
calibration, and are crucial for obtaining precise measurements and reliable data [10–12].

Muscle activity, specifically the recruitment of motor units, can be monitored using
surface electromyography (sEMG). The sEMG signal represents the activity muscle in the
form of a voltage that can be measured by surface electrodes and is closely related to the
timing and intensity of muscle contraction [10]. sEMG signals are less favored in wearable
gait, such as those based on FES, due to their complexity in acquisition and post-processing.
Nevertheless, the sEMG signals evoked by electrical stimulation can be employed to predict
the resultant joint torque, which provides a necessary prediction of the muscle response
before achieving accurate joint torque controlled by FES [8].
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Vision-based non-wearable technologies utilizing standard or depth cameras are
increasingly used for tracking human motion. It has been reported recently that these
cameras can extract the detailed information necessary for biomechanical analyses [11].
Some studies have explored the applicability of Microsoft Kinect as the only sensory input
for the CL of an FES system [13,14]. In general, Kinect requires an RGB camera for image
capture and an infrared camera for depth estimation to provide the three-dimensional
coordinates of objects. Furthermore, using a sequence of images, it is possible to estimate
the speed at which objects are moving. It also includes efficient algorithms that allow the
detection of the body skeleton in real time. One of the advantages of Microsoft Kinect is that
it allows the estimation of the distance and pattern of the moving objects in the scene [13].
Nevertheless, these studies were only tested for upper limb applications (assisted grasping).

Also, ultrasound (US) imaging-derived echogenicity signals have been used for mea-
suring muscle activation [15]. Authors refer to US echogenicity as the ability to reflect US
waves in the context of surrounding tissues, and it can be used to estimate its displacement.
Echogenicity is obtained by calculating the average intensity of pixels, within a region of
interest, in each frame of the generated images. However, due to the high computational
cost of processing US images, the sampling rate allowed by this technique is low.

Another approach, which has apparently been less commonly applied for that pur-
pose, is the use of binocular vision systems. A binocular vision system requires only two
calibrated RGB cameras to estimate the three-dimensional distance between objects, via
the triangulation of corresponding points in both cameras. The hardware required for this
approach can be even cheaper than that required by depth cameras.

However, it remains unclear whether vision-based non-wearable technologies have
been fully exploited beyond subjective assessment and documentation. The potential use of
standard camera footage for motion analysis would require simpler setup requirements and
fewer recording constraints, and could be integrated more seamlessly into daily research,
clinical, and telemedical settings [11]. These characteristics could potentially result in
lower costs, providing non-wearable marker-less tools with significant advantages over
traditional gold-standard technologies, which are expensive and challenging to implement
in everyday activities where FES systems are used and evaluated.

1.2. Control Strategies

Once human kinematics and muscle activity are measured, this information can be
used to adjust the stimulation parameters automatically to the needs of the user in order to
delay the onset of fatigue and to target desired movements in an optimal way. These needs
can be addressed through the implementation of feedback control [10].

A variety of control strategies are utilized to replicate or support functions carried out
by the central nervous system (CNS), enabling the activation of muscles for the execution
of natural movements. These strategies can be classified into two modalities: open-loop
(OL) or closed-loop (CL) [16].

An OL control strategy in FES is a straightforward yet dependable method for regulat-
ing stimulation timing. OL architectures are commonly utilized in medical environments.
These systems offer less precise movement control as they depend on manual input to
initiate stimulation delivery [8,17].

On the other hand, CL FES control strategies can enhance the stability and robustness
of position and force control by adjusting various stimulation parameters. These strategies
aim to correct model errors and address internal disturbances (such as muscle fatigue) and
external disturbances (such as obstacles) through feedback information [16].

1.3. Objectives and Structure of the Paper

This SLR aims to identify which sensing and control methods are currently used in
lower limb FES applications, and to carry out a systematic comparison of key features
related to them, such as invasiveness, cost-effectiveness, ease of use, practicality and
suitability for the target application.
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This SLR can serve as a complement to other recent reviews [18] that explore control
strategies and different type of sensors for upper and lower limb applications of FES. It is
our goal to help researchers interested in FES by carrying out a process of selecting suitable
combinations of sensing and control strategies for lower limb FES applications, taking into
consideration technical and clinical parameters. For example making a more informed
choice would help to implement more effective FES control systems for lower limbs. Once
these variables are chosen, they directly influence the type of sensor. Although several
papers have been published on the exploration of sensors and control strategies, many of
them do not consider computer vision as a measurement tool for the controlled variable.

The main aim of this work is to perform a SLR of alternative measurement methods
for parameters used in lower limb FES control systems, such as foot angle and velocity.
A secondary aim is to explore current and potentially novel approaches for control and
sensing in lower limb FES systems and applications, beyond classical approaches.

The remainder of this article is organized as follows. First, the Materials and Methods
section details the search strategy and how the PRISMA methodology was followed to
conduct this SLR. The analysis of each article reviewed is presented in a table format. In
Section 3, the results are presented, addressing each of the research questions proposed in
Section 2. Additionally, the main findings of the results are highlighted, suggesting a classi-
fication based on the analyzed data. Section 4 covers the discussion, where the implications
of the findings of the SRL are mentioned and proposals are given for implementation in
FES systems. Finally, a conclusion is given in Section 5.

2. Materials and Methods

The PRISMA methodology was followed to conduct the SLR search [19]. A set of four
academic and scientific databases were searched, PubMed, Scopus, Wiley Online Library,
and Web of Science, from 2010 to 2024. Records were imported to the web application
rayyan.ai for filtering and classification. This SLR does not have registration information.

2.1. Search Strategy

The three steps involved in the manual literature search process are summarized
in the PRISMA flow diagram in Figure 1. In the first step (Step 1—Identification), the
titles of articles reporting sensing and control strategies were identified from electronic
databases. It was specified that the search terms should be found in the titles, keywords,
and abstracts in databases that allowed such specification, such as Web of Science and
Scopus. Data collection was performed independently by two authors to reduce the risk of
selection errors and selection bias. The database search concluded in April 2024. Then, data
extraction from abstracts and keywords was performed, and duplicate records, unrelated
studies, and articles published before 2010 were removed.

The second step was a more detailed review of the full-text articles (according to the
inclusion and exclusion criteria), to assess the eligibility of the selected papers (Step 2-
Screening). If the abstract did not indicate clearly whether or not the inclusion and exclusion
criteria were met, the full-text paper was also read. In the last step (Step 3-Included), studies
considered relevant and those on recent advances were selected for further analysis in this
SLR. The last step of filtering was applied to papers after reading the full text, taking into
consideration whether or not they reported any sensing or control strategy.
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2.1.1. Types of Population

This SLR focuses on works where FES systems and interventions are designed or
ap-plied for the assistance or rehabilitation of patients with FD. However, FES technology
is particularly useful for the treatment of foot drop of central origin, when peripheral
structures (nerves, muscles, and joints) are functional. Additionally, this SLR was not
limited only to poststroke patients, in order to obtain a more comprehensive overview.
Finally, the review included those studies that tested FES systems or interventions in
healthy volunteers and that reported on the development or preliminary testing of FES
systems for patients with FD.

2.1.2. Types of Intervention

This review included studies that used FES systems for gait assistance or rehabilitation.
Only studies where non-invasive, surface electrodes were used for the application of FES
were included. Works using any type of invasive stimulation electrodes were excluded.
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Reports of hybrid systems that combined FES with another type of actuator such as ex-
oskeletons were also included for the same purposes. Technical tests, proof-of concepts,
pilot studies, and controlled clinical trials were included.

2.1.3. Types of Comparison

Due to the technical nature of this SLR, no comparison was performed in clinical terms.
Only the applications of different control and sensor strategies employed in the different
reports were compared.

2.1.4. Types of Outcomes

No outcomes were considered, since the purpose of the paper was to explore the
application and combination of different control and sensing strategies in FES systems for
FD assistance and rehabilitation.

2.2. Research Questions

As a complement to other reviews that explored control strategies and sensors for FES
systems [18], our objective was to focus this research on drop foot FES applications and
to expand the investigation to include vision systems as a new sensor. The aims of this
SLR were translated into a set of research questions to better explain and summarize the
evidence about FES systems for lower limb applications.

RQ1: What types of sensors are used to measure the body’s state and its response
to FES?

RQ2: What variable is measured by this sensor?
RQ3: Which control strategies are employed in lower limb FES systems and applica-

tions?
RQ4: What stimulation parameters are modulated in CL lower limb FES applications?

2.3. Inclusion and Exclusion Criteria

The keywords used for a Boolean search through the databases were as follows: (“Foot
Drop” OR “Drop Foot” OR “Dropped foot” OR “Foot drop syndrome”) AND (“Functional
electrical stimulation” OR “Therapeutic Electrical Stimulation” OR “Electrotherapy” OR
“Electric stimulation”) AND (“Electromyography” OR “EMG” OR “Electric Myography”
OR “Elec-tromyographic techniques” OR “Inertial sensors” OR “Inertial sensing devices”
OR “Inertial measurement units” OR “IMUs” OR “Computer vision” OR “Machine vision”
OR “Vision systems” OR “Leap Motion Controller” OR “Kinect” OR “Stereoscopic vision”
OR “ToF camera” OR “Structured light imaging”) AND (“Open-loop” OR “Open-loop
control systems” OR “Open loop” OR “Closed-loop” OR “Feedback sensory” OR “Feedback
mechanisms” OR “Closed-loop systems” OR “Closed loop”).

Articles in which the subjects of study were animal models were excluded. Also,
articles using invasive electrodes and those that focused on upper limbs were excluded as
they were not of interest for this SLR. SLRs and conferences older than 3 years were also
excluded. Additionally, book chapters, abstracts and posters, and any articles written in
languages different to English were excluded.

2.4. Quality Assessment

To analyze the information, all the 60 included articles were reviewed, to extract
from them relevant data based on the questions asked and other information considered
important, such as the test subjects, the type of target movement, the purpose of the study,
and the type of application (rehabilitation or assistance). It is crucial to note that some
articles did not report or focus on some of the parameters mentioned above.

2.5. Data Extraction and Analysis

To analyze the information, all the 60 included articles were reviewed, to extract
from them relevant data based on the questions asked and other information considered
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important. It is crucial to note that some articles do not report or focus on some of the
parameters mentioned above. Experimentally informed studies and the data acquisition
reported in each article were analyzed. This analysis aimed to evaluate the type of move-
ment, the sensor used, and the variable being measured. It also sought to establish the
health condition of the participants in each study. With regard to the sensing strategy, the
equipment (sensors) utilized for data acquisition, as well as the specific parameters that
were measured during this acquisition, was considered. Subsequently, the control strategy
pursued by each article was examined. It should be noted that some articles did not report
on the implementation of a control strategy, while others did not provide sufficient detail
regarding the strategy’s implementation. It is also important to mention that, in some cases,
the control strategy was not applied to the users from whom the data were obtained but
was instead implemented in a simulation. Also, due to its relevance to the FES control
strategy, an additional analysis was conducted to examine whether or not and how the
electrical parameters were modulated.

3. Results

The 60 papers remaining after the filtering stages, out of the original 322, were included
as relevant to this SLR and then selected for data extraction and further analysis.

Table 1 shows the 60 articles considered relevant for this SLR.
It is important to mention that in 45% (27) of the articles, tests were conducted with

healthy subjects. In total, 35% (21) performed tests with patients, while 16.7% (10) con-
ducted tests with both patients and healthy subjects. Also, it was observed that 31.7%
(19) of the tests were conducted with subjects seated, another 38.3% (23) were performed
while subjects were walking, and 11.7% (7) performed both types of tests. For 78.3% (47) of
the analyzed articles, the goal of the work was rehabilitation, while 11.3% stated that the
purpose was assistance. The remaining works considered both rehabilitation and assistance
as objectives.

It is worth highlighting that the target population in most articles was stroke patients
(19). Other pathologies found in the included articles were spinal cord injury (SCI) (15),
neurologically impaired individuals (8), and CNS disorders (3). Some studies did not
specify the pathology they focused on (13). The remaining studies focused on pathologies
that were mentioned only once.
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Table 1. Sensing and control strategies in FES systems.

Author Subjects Type of Movement Purpose Sensing
Technology/Strategy Measured Variable/Signal Control Strategy Parameters Modulated

[20] Healthy Sitting Rehabilitation EMG and EEG sensors
Torque transducers

Real-time control
interface of the

MAFO
-

[21] Healthy Walking Assistance FSRs
IMUs

Ground reaction force
Angular rate
Acceleration

Reflexive control
algorithm

Timing and coordination of
muscle activations

Stimulation sequences for
specific muscles’

stimulation amplitude

[22] Healthy Walking Rehabilitation IMUs
FSRs

Dynamics of the leg and
foot

Gait events
Ground reaction forces

CL Pulse width

[23] Both Sitting Rehabilitation and
Assistance Load cell

Torque generated by the
muscle contractions

Knee joint angle
CL, PID -

[24] - Sit-to-stand Assistance - -

Combination of
sliding mode control

and wavelet
networks

-

[25] Patients FES cycling Rehabilitation IMUs Angular velocity
Linear acceleration Adaptive method Timing of muscle

contractions

[26] Healthy and patient Walking and sitting Rehabilitation
sEMG sensors
Torque sensors

Kinematic sensors

Joint angles
Angular velocity

Acceleration

Linear control
schemes

Stimulation intensity
Pulse width
Frequency

[27] Patients Walking Rehabilitation IMUs Angular displacements CL, FSM Stimulation amplitude

[28] Healthy Sitting Rehabilitation and
Assistance Force transducers Force CL Stimulation amplitude

[29] Patients Walking/sitting Rehabilitation EMG/EEG - -

[30] Patients Walking Rehabilitation IMUs
Force sensors

Knee angle
Gait events

CL, Proportional
controller Pulse width
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Table 1. Cont.

Author Subjects Type of Movement Purpose Sensing
Technology/Strategy Measured Variable/Signal Control Strategy Parameters Modulated

[31] Healthy Walking and sitting Rehabilitation Motion capture system Ankle joint angle CL, ILC Pulse width
Stimulation intensity

[32] Both Walking Rehabilitation sEMG sensors
Pressure Sensors

Angular velocity
Ground reaction forces CL, NS Stimulation intensity

[33] Healthy Walking Assistance FSRs
IMUs

Sagittal shank angle
Angular velocity

Acceleration
CL, FSM Time coefficient parameter

(τ) and pulse width

[34] Patients Walking Rehabilitation IMUs Angular velocity
Acceleration

CL, Proportional
controller Pulse width

[35] Healthy Sitting Rehabilitation Goniometer Knee joint

Musculoskeletal
model-integrated
iterative learning
control (MMILC)

Pulse width

[36] Patients Walking Rehabilitation IMUs
Foot pose

initiation of the subject’s
step

CL, NS Yes, NS

[37] Healthy Sitting Rehabilitation sEMG sensors Volitional electrical activity
of the muscles

CL,
Gram–Schmidt

filtering algorithm

Waveforms proportional to
the measured vEMG

envelope

[38] Healthy Walking Rehabilitation IMUs
FSRs

Heel pressure, shank tilt,
and foot rotations CL, FSM Yes, NS

[39] Healthy Sitting Rehabilitation Optical encoders Knee joint angle CL Pulse amplitude

[40] Patients Walking and sitting Rehabilitation and
Assistance

sEMG sensors
IMUs

Angles of the ankles and
feet Electrical activity of

muscles
CL, NS PWM signals

[41] Patient Walking and sitting Rehabilitation IMUs Foot pitch
Roll rate state CL, NS -

[42] Healthy Sitting Rehabilitation IMUs knee joint angle CL
fuzzy controller Yes, NS
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Table 1. Cont.

Author Subjects Type of Movement Purpose Sensing
Technology/Strategy Measured Variable/Signal Control Strategy Parameters Modulated

[43] Healthy Walking Rehabilitation
sEMG sensors

Ground reaction forces
Motion capture

Electrical activity
Timing of heel-strikes

hip and knee joint
CL, FSM Timing and sequence

[44] Patients Walking Rehabilitation Motion Analysis
system

Muscle Forces
Step length

Ankle angles
OL No

[45] Healthy Sitting Rehabilitation IMUs ankle angle
neural

network-based H
model

Pulse amplitude

[17] Healthy Walking Rehabilitation
IMUs

Motion Capture
System

Angular velocity FSM No

[46] Healthy Sitting Rehabilitation sEMG sensors joint torque CL, NS Yes, NS

[7] Patients Walking Assistance IMUs Foot angle and angular
velocity CL, NS Pulse width

[47] Patients Walking Rehabilitation Forefoot switch
accelerometer

Timing and intensity of
muscle contractions No

[48] Both Rehabilitation

Video-based motion
capture/
IMUs/

Force-sensing
resistance sensors/
EEG-sEMG sensors

Motion law of joints/
joint acceleration, velocity
and angular acceleration/

planta pressure/
bioelectrical information

- -

[3] Healthy Sitting Rehabilitation Encoder
sEMG sensors

Knee joint angle, angular
velocity, and acceleration OL -

[49] Patients Swiming Assistance IMUs

Trunk roll angle and rate
Upper-arm inclination

angle
Knee joint angle
Torso roll angle

CL and OL -
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Table 1. Cont.

Author Subjects Type of Movement Purpose Sensing
Technology/Strategy Measured Variable/Signal Control Strategy Parameters Modulated

[50] Healthy Sitting Rehabilitation and
Assistance Leg extension machine Torque produced about the

knee joint
CL

nonlinear control Pulse width

[51] Patients Walking and sitting Rehabilitation IMUs Accelerations, Angular
rates of the foot CL, ILC Stimulation intensity and

timing

[52] Patients Walking Rehabilitation angle sensors angles of the knee joint CL, ILC Pulse sequences

[53] Patients Walking Rehabilitation
Heel switches,

accelerometers, and tilt
sensors

Gait symmetry,
rhythmicity, and ankle

movements
CL, NS Duration and intensity of the

electrical stimulation

[54] Both Cycling Rehabilitation sEMG
Optical encoder

Electrical activity
Crank position

CL
repetitive learning

control
Pulse width

[55] Patients Sitting Rehabilitation
Goniometers

Dynamometers
sEMG sensors

- -

[56] Healthy Sitting Rehabilitation sEMG sensors Motor-evoked potentials
(MEPs) OL No

[4] Patients Walking Rehabilitation and
Assistance Electrode pads

Angle of ankle dorsiflexion
Position

Electrical activity of
muscles

CL, RC Pulse width

[57] Healthy Walking Rehabilitation sEMG sensors M-wave
CL

model predictive
control (MPC)

Pulse width

[58] Both Sitting Rehabilitation sEMG sensors
Dynamometer

Evoked electromyography
Ankle joint torque - -

[59] Both Sitting Assistance
EMG amplifiers

IMUs
goniometers

Muscle activation patterns,
Joint angles - -
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Table 1. Cont.

Author Subjects Type of Movement Purpose Sensing
Technology/Strategy Measured Variable/Signal Control Strategy Parameters Modulated

[60] Both Standing Rehabilitation
Electrogoniometer

Gyroscope
Accelerometers

Angular position of lower
limb

CL
RISE control strategy -

[61] Healthy Sitting Rehabilitation US imaging Delayed muscle activation CL, NS -

[62] Healthy Standing Rehabilitation force transducers
optical encoders

torque produced about the
knee-joint and the
knee-joint angle

CL, asynchronous
stimulation controller

Pulse width
Stimulation channels

[63] Healthy Sitting Rehabilitation US US echogenicity signal CL, NS Pulse width threshold and
saturation values

[15] Healthy Walking Rehabilitation
US

Force plates
IMUs

US echogenicity
Ground reaction force

2D motion in the sagittal
plane

CL, NS Pulse width

[64] Healthy Squat/heel
lift/walking Rehabilitation sEMG sensors

IMUs
Motion intention

Joint angle CL, NS Yes, NS

[65] Healthy Sitting Rehabilitation and
Assistance sEMG sensors Muscle activity - -

[66] Patients Walking Rehabilitation
Distributed

Measurement Units
(DMU)

Knee joint angle Gait
phases CL, NS Yes, NS

[44] Patients Walking Rehabilitation Foot switch
Motion capture

Heel strike and toe off
Muscle forces

Step length
Maximum knee and ankle

angles

OL -

[67] Patient Walking and sitting Rehabilitation Surface electrodes
IMUs

EEG and EMG
Tapping frequency of

finger or foot
CL -
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Table 1. Cont.

Author Subjects Type of Movement Purpose Sensing
Technology/Strategy Measured Variable/Signal Control Strategy Parameters Modulated

[68] - - Rehabilitation EMG Evoked EMG CL -

[69] Simulation - Rehabilitation - - OL -

[70] Healthy Walking Rehabilitation Motion analyzer Shank and thigh
movement Fuzzy controller Stimulation intensity

[71] Both Walking and sitting Assisted Dynamometer Torque RISE controller -

[72] Patient Walking Rehabilitation IMUs
Force sensor

Posture information of
limb movement

Specific movement of limb
OL -

[73] Healthy Standing balance
exercise Rehabilitation Depth camera

Pressure mat
Center of mass

Center of pressure - -

EMG—electromyography; EEG—electroencephalogram; IMUs—inertial measurement units; FSRs—force-sensing resistor; CL—closed-loop; FSM—finite state machine; RC—reflexive
control; OL—open-loop; NS—non-specified; ILC—iterative learning control; US—ultrasound; MAFO—motorized ankle–foot orthosis; RISE—robust integral of the sign of the error;
PID—proportional–integral derivative; vEMG—volitional electromyography; sEMG—surface electromyography; PMW—pulse width modulation.
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3.1. RQ1: What Types of Sensors Are Used to Measure the Body’s State and Its Response to FES?

For the analyzed articles, sensors were classified according to their purpose into four
categories: switches, electrodes, vision-based, and IMUs. Additionally, it is important to
note that most papers utilized more than one type of sensor.

In total, 45% (27) of the articles used IMUs as sensors to measure body/limb posture.
About 36.7% (22) used electrodes, encompassing terms such as “EMG sensors”, “sEMG”,
“Electrode pads”, and “EEG sensors”. Additionally, the category of vision-based systems
was included, which comprised all systems using images generated by any hardware. This
category was present in 18.3% (11) of the articles. The systems included in this category are
as follows: motion capture systems, 11.7% (7); US imaging, 5% (3); and depth camera, 1.7%
(1). Meanwhile, 18.3% (11) were categorized under switches, including terms like “FSRs”,
“forefoot switches”, “heel switches”, “force transducers”, “Foot pressure insoles”, and “Foot
Plantar Pressure Sensors”. Goniometers were present in 6.7% (4), while dynamometers also
were present in 5% (3) of the articles.

As shown in Table 1, there were other types of sensors used for these measurements.
However, it is relevant to mention those that are more commonly used. Other sensors were
analyzed in the category of others, 28.3% (17).

The results yielded a set of key criteria (Figure 2) useful for selecting sensor strategies
in FES systems targeting FD. It is important to note that the inclusion of more than one
of these criteria is essential for consideration in an FES system. However, articles were
divided according to the main criterion they considered in order to categorize them. It is
also important to mention that this categorization is based solely on the sensing method.
Those articles that did not focus on the criteria for selecting the sensor were not included in
this categorization. The proposed criteria are described in detail below and illustrated in
Figure 2.
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• Accuracy

Twenty-three of the articles included in this SLR emphasize the necessity of employing
a sensor or sensing strategy that allows for precise measurement. The design of systems for
gait rehabilitation is a complex process that requires precise and robust control systems that
incorporate sophisticated actuation and sensing capabilities. Precise identification of gait
phases and a responsive control strategy are vital for effective assistance and rehabilitation
of walking using FES, since they directly affect the precise timing of stimulation. To achieve
suitable controllers that deliver stimulation that mirrors normal muscle activation patterns,
reliable online detection of gait phases has been shown to be essential [17,33,43]. It is
of great importance to acknowledge that the accuracy of a FES system is reliant on both
the selection of the sensor and the processing and control algorithm technique employed.
However, the focus of this section is the examination of the precision of the sensors utilized.

In [38], the authors address that a FD stimulator should be able to differentiate between
walking and other type of activities (exercises) to avoid unnecessary stimulations in non-
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walking conditions. This allows patients to safely warm up with the device donned and
eliminates the need to remove it after warming up.

Another example where accuracy in some aspect of FES systems has been shown to
be a factor in the performance of FES systems for gait assistance and rehabilitation is the
work reported in [17]. The researchers created a real-time gait phase detection system for
an FES system, with optimized sensors and data processing. However, they found that
the use of wearable IMU sensors caused a delay in the detection of gait phases, and led to
stimulation timing errors, which may have increased the time shift between the intended
and actual actions assisted by FES by up to 100%. The origin of those delays can come from
wireless IMU data streaming, USB communication protocol timing uncertainties, or even
the non-real-time nature of the Windows operating system.

In order to improve accuracy in FES systems, multiple studies, 46.7% (28), included
in the SLR used two or more sensors. Previous research [74] indicates that a single foot
switch, due to its low detection reliability, is not suitable for triggering FES stimulation
sequences for walking assistance/rehabilitation. Therefore, the researchers developed a
system comprising a novel sensor combination: three FSRs to measure the load force in a
shoe insole and a miniature gyroscope chip to measure the foot’s rotational velocity. This
way, the authors achieved a novel gait phase detection sensor that accurately identifies
transitions between the stance, heel off, swing, and heel strike phases of walking.

In another work [21], the authors reported that using only motion sensors in FES
systems poses challenges to their performance, due to their low signal-to-noise ratio and
the need for extensive signal post-processing. Therefore, they report on the combination of
FSRs and motion sensors. By placing FSRs under the foot and attaching accelerometers to
the shank, feedback signals can be gathered to generate FES sequences for four muscles,
guided by a controller with rules derived from human data.

• Wearability

The authors of 18 of the articles presented in this SLR were motivated to implement
wearable sensors, although these studies also sought to achieve high accuracy. The primary
considerations influencing the selection of sensors were the practicality of incorporating
them into daily activities or settings outside the laboratory, and the ability to allow patients
to walk freely. Sensors in FES systems are often employed to measure the state of the body
through variables such as muscle force, joint angle, velocity, and acceleration. Although
some variables are measured with specific sensors, sometimes they are not practical for the
operation conditions of the system. Some projects involving FES for FD are suitable to be
used solely in the laboratory, while others are operated outside of it. For ex-ample, since
torque is considered an important variable related to bodily response [68] in FES systems,
the use of conventional, mechanical torque sensors is desired. However, torque sensors that
are available commercially are unsuitable to be used in patients’ daily lives. Similar reasons
have motivated researchers to employ different types of sensors to indirectly measure some
variables; for example, a number of methods have been proposed to estimate muscle force
or joint torque from sEMG signals [46,75].

Another situation related to wearability is when multiple stimulation electrodes and
sensors are placed on the body, which is complicated when using traditional wired con-
nections. Wireless sensing and stimulation systems offer a more streamlined and mobile
solution to their wired alternatives. However, only a few external wireless FES stimulators
currently attempt to connect and coordinate individual channels via a network. In this
regard, in [66], the authors presented a wireless distributed FES architecture. The system
relies on the collection of potentially diverse distributed stimulation and measurement
units overseen by a wearable controller.

• Affordability

While less predominant, five of the articles that addressed the motivation behind the
selection of sensors were driven by the desire to implement sensors that are cost-effective. In
some instances, this objective coincides with that of the incorporation of wearable sensors.
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The rise in the use of open-source and low-cost prototyping electronics has enabled
the popularization of platforms like the Arduino microcontroller unit to be employed in
the development of a wide variety of electronic systems. These platforms utilize high-level
libraries that allow for the quick and easy integration of various sensors and actuators into a
testing platform, making them ideal for developing low-cost, portable gait neuroprostheses.
In [22], a flexible, low-cost micro-controller-based platform for the rapid prototyping of
FES-based neuroprostheses is presented. The system was designed to reduce computational
complexity, the time for development, and production costs. Its small size and weight
(225 g with all modules connected) make it perfect to be attached to a below-the-knee cuff
or at the hip.

The study conducted by [73] sought to explore the practicality of using a more cost-
effective and accessible sensor, such as a depth camera or pressure mat, as an alternative to
the force plate.

3.2. RQ2: What Variables Does the Sensor Measure in Gait-Oriented FES Systems?

Due to the dispersion of the variables, we decided to categorize them for the analysis.
The category Angles, which includes all variables related to angles of body segments, such
as knee joint, ankle joint, foot, etc., was present in 38.3% (23) of the articles.

Another category included was electrical activity, which was present in 18.3% (11) of
the articles included in this review.

The next most used variable was angular velocity, which appeared in 13.3% (8) of
the articles. Following this, acceleration was present in 11.7% (7) of the works. Another
category that was found to be important to group was Torque, which encompassed all
methods related to torque measurements from different parts of the body; this category
appeared in 10% (6) of the articles. Finally, the category gait phases, which includes all
variables related to identifying gait features, such as heel strike and toe off, gait events, etc,
was present in 10% (6) of the articles. The remaining variables were reported only in one or
two works and can be seen in Table 1. Some of them are commented below.

In [30], the researchers carried out preliminary work on a sensor-based multichannel
FES system for post-stroke gait where FES was used to control knee joints. Their research
highlights that the application of FES to a stiff knee in hemiplegic individuals reduces
spasticity in both the knee flexors and extensors, while enhancing their range of motion.
Additionally, they highlight that avoiding hyperextension and allowing slight knee flexion
in the affected limb during the stance phase significantly aid in gait recovery. Therefore,
accurate control of knee angle is vital for improving gait in people with CNS disorders.

Due to FD, patients often experience ankle dyskinesia. In [45], the human ankle
dorsiflexion angle is considered the research object in the authors’ FES system. An accurate
ankle model helps explore movement characteristics under different electrical stimulation
parameters. The motion characteristics of the ankle angle, including hysteresis, time
variance, and nonlinearity, can be summarized based on experiments that measure ankle
angle changes induced by electrical stimulation.

In [58], the researchers predict torque output based on evoked electromyography
(eEMG) recordings only. Volitional EMG-based joint movement estimation is effective in
healthy subjects; however, SCI patients cannot generate volitional EMG due to spinal cord
damage. Consequently, performance prediction is more stable in healthy subjects than
in SCI patients. On the other hand, evoked signals in SCI patients are reliable due to the
absence of volitional contractions, since their weaker muscles result in less progressive
and stable recruitment. Nevertheless, the extent of spinal lesions varies widely among SCI
patients, requiring more patient-specific adjustments compared to healthy individuals.

3.3. RQ3: Which Control Strategies Are Employed in Lower Limb FES Systems and Applications?

In total, 63.3% (38) of the articles employed a CL strategy, 8.3% (5) employed an OL
strategy, and the remaining were categorized as Others. Some articles reported the strategy
used to implement the CL, with the most common being finite state machine, 8.3% (5);
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iterative learning control, 5% (3); and proportional–integral derivative (PID), 1.7% (1); and
P controller, 3.3% (2).

According to some works in this SLR, adaptive CL control is ideal for FES systems
but is rarely developed [17,43]. Most commercial FES-based gait rehabilitation systems use
simpler OL control solutions. Parastep I (Sigmedics, Inc., Fairborn, OH, USA) and RehaStim
(Hasomed Inc., Magdeburg, Germany) are two commercially available FES systems that
use OL control strategies. These simple solutions demand continuous or repeated user
input, usually via a device button, for muscle activation, thus requiring the complete focus
of the user, clinical personnel, and/or caregiver [17,43].

Finite-state-controlled FES systems combine the accuracy of CL controllers with the
simplicity of OL setups, using minimal sensors, generally single or a few foot switches, or
an IMU. In general, they operate with preset stimulation sequences triggered by specific
conditions. However, there are works that report offline adjustments between the period of
use as a strategy to combat muscle fatigue [17].

Additionally, six articles were found that reported on the use of machine learning
techniques. Among them, neural networks were the most used technique, with a focus
on model accuracy and personalization to improve clinical outcomes. As examples, three
studies are described below.

In [45], ankle angle characteristics are used to train a Hammerstein (H) model based
on a neural network, with model parameters identified using a genetic algorithm. This
approach effectively predicts ankle angle changes induced by electrical stimulation. Experi-
mental results confirm that the neural-network-based H model can accurately forecast the
output changes in the ankle angle due to the electrical stimulation pulse.

Another study [58] introduces a real-time system for estimating FES-induced torque,
utilizing a wireless portable stimulator. The system uses a Kalman filter and recurrent
neural network (RNN) to predict torque output from eEMG recordings. Experiments with
able-bodied subjects and SCI patients demonstrate its promising performance. This system
offers personalized muscle response evaluation, beneficial for clinical diagnostics.

Another paper [60] introduces a new machine learning approach to improve lower
limb tracking control for individuals with SCI through neuromuscular electrical stimula-
tion/FES. The method uses data-driven models with historical rehabilitation data, applies
robust integral of the sign of the error (RISE) as a control technique for stability, and
employs an enhanced genetic algorithm for effective controller tuning.

Reinforcement learning (RL) is a machine learning technique that relies on rewards and
involves an agent who observes the environment and learns an optimal policy for action
selection based on the states [26]. In [26], the researchers introduce an RL algorithm utilizing
a decayed epsilon greedy approach to investigate different pulse parameter variations,
with the goal of optimizing stimulation patterns during FES cycling sessions.

3.4. RQ4: What Stimulation Parameters Are Modulated in CL Lower Limb FES Applications?

In total, 60% (36) of the articles specify the use of adaptive FES systems. Some of them
specify which parameters are modulated, with the most frequently modulated ones being
pulse width, 26.7% (16); intensity, 8.3% (5); timing, 8.3% (5); frequency, 3.3% (2); and ampli-
tude, 8.3% (5). Below, three examples of parameter modulation strategies are described.

In [45], an experimental platform was used to study the effects of different electrical
stimulation parameters on ankle motion characteristics. The parameters investigated were
frequency, amplitude, and pulse width. The findings highlight that lower frequencies are
preferred to avoid muscle fatigue, with 25 Hz being optimal. Increased amplitude generally
led to a greater ankle angle, with 25 mA being the ideal setting. Adjustments in pulse width
affected the ankle angle, with discomfort noted at higher widths. The results provided
valuable data for neural network-based model input parameters and demonstrated that
electrical stimulation parameters significantly influence ankle joint motion.

In 2016, the authors of [27] proposed a control method for an FES system aiding in
walking. It adjusts the quadricep stimulation amplitude based on knee flexion angles
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increasing it by 10 mA for angles over 10◦ (knee unlock), maintaining amplitude for 5–10◦

(knee extension), and gradually reducing it by 5 mA over 2 s for angles below 5◦ (knee
lock). After each increment, a 1 s interval follows before potentially adjusting it again, with
flexibility if knee buckling exceeds 10◦ per second. This approach aims to optimize muscle
stimulation for enhanced stability and control during the stance phase of walking, adapting
in real-time to knee angle feedback.

In the work reported in [33], the aim was to optimize FES assistance by dynamically
adjusting stimulation parameters according to real-time feedback, thereby improving
the effectiveness of gait assistance across different walking speeds and conditions. The
parameters (τ and PW) were updated dynamically based on data from the previous five gait
cycles, ensuring that the assistance provided by the FES system aligned with the current
walking conditions and speed.

4. Discussion
4.1. Sensing

Feedback signals based on artificial or natural sensors are required to build CL control
systems for FES-based gait assistance.

Although sensors are employed to measure the state of the body, response variables
such as muscle force, joint angle, velocity, and acceleration are not the only factors to
con-sider when choosing which sensor or sensors to use in the FES system. Even though
certain variables may seem more suitable to measure with specific sensors, this is not the
sole consideration.

A key consideration is the purpose for which the FES system will be implemented.
Some projects are intended to be used solely in the laboratory, while others aim to be
utilized outside of it. For example, the implementation of torque sensors is often pursued
because torque is considered an important bodily response. However, existing torque
sensors are unsuitable to be used in patients’ daily lives. Reasons like this motivate the
search for non-evident or conventional sensors to indirectly measure some variables. Other
examples include reports of methods that have been proposed to estimate muscle force or
joint torque from sEMG signals [46,75].

Another consideration is the choice of the control system. Choosing a sensor digitized
with a low sampling rate can be challenging to incorporate into CL FES control. For instance,
the sampling frequency of the echogenicity signal derived from US imaging is significantly
lower than kinematic measurements obtained from IMUs or angular encoders [15]. This
serves as an example that some reports of the implementation of FES systems employ-
ing novel sensing strategies are not always aimed at demonstrating improvements over
an existing method but rather at showcasing the potential advantages one sensor has
over others.

Moreover, the performance assessment of FES systems is a crucial factor for their
design. Previous research has concentrated on the torque or angle between intended and
actual limb movements. For instance, Sharma et al. explored the nonlinear FES tracking
control of human limbs and assessed the system used by monitoring the knee’s trajectory
to control the angular deviation from the ideal path. Zhang et al. (2013) employed sEMG-
based CL torque control in the FES system and analyzed the discrepancy between the
generated and desired torque [32].

Furthermore, it is important to mention that some sensors are more complex and
expensive than others; this is another important thing to consider. For example, the use
of motion capture data is another common sensing strategy utilized for feedback and
the assessment of FES systems’ performance; however, the equipment used for capturing
gait using video (photogrammetry) is costly and complicated. A video-based motion
capture system typically involves placing reflective markers on the subject’s skin or using
specialized clothing to record human movement using cameras and specialized software.
Additionally, the captured video image data can be easily influenced by factors such as
lighting and range of movement [73].
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According to the articles reviewed, IMUs and biopotential electrodes are the most
commonly used sensors in research. It is also important to mention that most of the
analyzed articles use more than one sensor.

Taking all of this into account, to aid in the development of a more robust FES system,
it is important to explore new alternatives that have high measurement precision, are
portable, can be integrated into control systems, and are not prohibitively expensive.

To our knowledge, and based on the results of this SLR, few articles have used depth
cameras as a method of measuring the body’s response to FES. In fact, only a few articles
were found in this review to employ depth cameras, and these were mostly focused on
balance training or upper limb applications [73,76].

Using depth cameras as feedback sensors, cheaper, and more portable FES systems
can be implemented. In 2024 [73], a depth camera showed higher potential as a low-cost,
portable sensor, compared to a pressure mat in an FES balance application. Also, a depth
camera is a feasible option as a replacement for the force plate for use in a FES + VFBT
(virtual feedback balance training) system.

Furthermore, no works were found that used binocular vision, which can lead to
similar results to those of using depth cameras, at a lower cost. This is because infrared
sensors used in depth cameras are more expensive than RGB cameras. The above discussion
opens up an area of opportunity to explore new techniques and improve existing ones.

Measuring the body’s state and its reactions can provide valuable information about
the system’s effectiveness, with each type of measurement offering different insights. For
example, FES-restored motion relies on active joint torques and environmental interactions.
Joint angle feedback cannot distinguish between motion from stimulation and external
forces, making joint torque control superior. Torque control provides essential compliance,
especially for environmental interactions and daily human activities [46].

Focusing on a specific joint can be crucial for post-stroke gait recovery. Several studies
have indicated that preventing hyperextension and allowing slight knee flexion of the
paretic limb during the stance phase can significantly enhance gait recovery. This is the
reason why many studies focus on measuring the knee joint [30].

4.2. Control Strategies

When it comes to muscle stimulation, most commercial FES systems operate in OL mode,
where the stimulation intensity—comprising pulse width and pulse amplitude—remains
constant. The primary drawback of OL FES is its inability to adjust stimulation intensity in
response to changes in residual muscle activity and spasticity, which can happen within as
few as five strides [34].

In contrast, a CL FES control strategy is considered a better solution for gait rehabil-
itation applications, as it more accurately replicates the nervous system’s control of gait.
This approach uses feedback information to modify stimulation parameters according to
the desired joint angle or moment trajectories [43]. The difficulties in CL control stem
from the complex and nonlinear nature of electrical muscle stimulation, involving unpre-
dictable mapping from electrical input to muscle force, muscle fatigue, and delayed muscle
responses [39]. To address these challenges, various control strategies have been sought
that are robust against unpredictable changes in input delay and the uncertain dynamics
of muscles.

The key muscles involved in gait include the hamstrings (biceps femoris), quadriceps
(vastus medialis), calf muscles (soleus), and tibialis anterior; each have unique functions
during the stance and swing phases of the gait cycle, and they are activated in a specific
order [77]. In FES-based rehabilitative gait systems, the activity of these muscles must
transition in the same sequence. A finite-state machine (FSM) can be employed to achieve
this, as it allows for the sequential stimulation of muscles. An FSM model, which sequences
ON/OFF actions, can control the timing of muscle stimulations within the different states
of the gait cycle [43].
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Another strategy used is iterative learning control (ILC), which is suitable for systems
performing repeated tasks [4]. ILC aims to minimize trajectory tracking errors through
repeated system operation. It continuously adjusts the controlled system’s trajectory
towards the desired path, characterized by a strong mathematical foundation and flexibility
for systems with uncertain parameters, which are particularly beneficial for nonlinear
systems [52].

The functional effectiveness of an FES system for gait heavily depends on the precise
timing of the applied stimulation within the gait cycle. The most straightforward way
to control this timing is through manual press buttons or foot switches, which constitute
a common approach in most commercial products [21]. The success of FES in treating
FD patients relies on the control and modulation of stimulation intensity. Two popular
modulation methods for FD intervention are the trapezoidal stimulation profile and the
EMG-modulated natural stimulation profile [32].

Although the use of machine learning-based control algorithms was reported in some
works reviewed in this SLR, deep learning algorithms were not found, although these
techniques have been applied in other technologies used for motor rehabilitation that
require interaction with the user, like brain–computer interfaces [78]. In the future, it
would be interesting to attempt to incorporate such algorithms to improve sensing/control
strategies, for example, to create intelligent–adaptive FES systems, that require no or little
previous calibration.

The integration of these kinds of intelligent algorithms, trained with large databases
comprising multimodal variables from conventional and novel sensors, validated by gold-
standard techniques, such as photogrammetry, would contribute greatly to improving the
design and performance of FES systems. To this end, multi-center collaboration would be
ideal in overcoming the limitations of the sample sizes of most works, especially when
treating patients with FD caused by low-incidence medical conditions, like spinal cord
injury or cerebral palsy.

One of the main limitations identified in the studies reviewed is that they tested
their systems only with healthy volunteers or with a small sample of patients. Hence,
larger pilot and controlled clinical trials are required to better assess the benefits and
feasibility of novel sensing and control approaches. Another key limitation was that many
studies did not explicitly report the type of sensors they employed, which reduced the
information available.

To summarize, some key considerations for practical applications derived from this
SLR are as follows:

• Applying a multimodal sensing strategy, comprising more than one sensor, is a highly
recommended approach in CL gait-oriented FES systems for FD, with the potential to
improve system accuracy and performance.

• Novel sensing and control strategies, such as US sensors and machine/deep learning-
based controllers, should be considered, possibly combined with the multimodal
approach mentioned above. To achieve this, fast and reliable digitizing and processing
systems are required, to be feasible in real-life applications.

• The integration of markerless motion analysis tools, employing computer vision and
depth sensors, is an alternative approach worthwhile to explore in gait-oriented FES
applications, the relevance of which has already been shown in upper limb and
stability training applications.

5. Conclusions

This SLR will serve as a global framework of sensing and control strategies employed
in FES systems for gait rehabilitation for patients with FD. This topic is of great relevance
to researchers and developers, since both elements play a fundamental role in the overall
performance of FES systems and applications; knowing beforehand the different existing
techniques already implemented and tested by other research groups could be vital at the
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initial stages of the design process of an effective FES system, according to specific needs
and purposes.

Taking into account the criteria proposed for the selection of sensors for FES systems,
one conclusion is that the use of depth cameras as a measurement method is feasible,
these being non-invasive, portable, and low-cost sensors. Future research will focus on
comparing the accuracy of depth cameras and other vision-based methods with other
sensors mentioned in this SLR.

In particular, the variable angles was of utmost interest in the articles analyzed, due
to its direct relation with the target ankle movement to be induced by the FES system.
Furthermore, it is worth noting that measuring the angle variable through depth cameras
is highly feasible, in static or dynamic conditions, through signal processing algorithms.

For future research, it is recommended to further explore the implementation of control
methods based on machine learning algorithms, especially in combination with multimodal
sensing techniques if possible, including novel approaches in the field, such as US or depth
cameras/computer vision. Such combinations could allow the development of better, more
natural interfaces for FES systems, especially if they are coupled with high-performance
computing systems, like Field programmable gate array circuits, real-time microprocessor
devices, or even emerging artificial intelligence dedicated processing units.
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14. Strbac, M.; Kočović, S.; Marković, M.; Popović, D.B. Microsoft kinect-based artificial perception system for control of functional

electrical stimulation assisted grasping. BioMed Res. Int. 2014, 2014, 740469. [CrossRef] [PubMed]
15. Zhang, Q.; Lambeth, K.; Iyer, A.; Sun, Z.; Sharma, N. Ultrasound Imaging-Based Closed-Loop Control of Functional Electrical

Stimulation for Drop Foot Correction. IEEE Trans. Control Syst. Technol. 2023, 31, 989–1005. [CrossRef]
16. Gil-Castillo, J.; Alnajjar, F.; Koutsou, A.; Torricelli, D.; Moreno, J.C. Advances in neuroprosthetic management of foot drop: A

review. J. Neuroeng. Rehabil. 2020, 17, 46. [CrossRef]
17. Zahradka, N.; Behboodi, A.; Wright, H.; Bodt, B.; Lee, S. Evaluation of Gait Phase Detection Delay Compensation Strategies to

Control a Gyroscope-Controlled Functional Electrical Stimulation System During Walking. Sensors 2019, 19, 2471. [CrossRef]
18. Chaikho, L.; Clark, E.; Raison, M. Transcutaneous Functional Electrical Stimulation Controlled by a System of Sensors for the

Lower Limbs: A Systematic Review. Sensors 2022, 22, 9812. [CrossRef] [PubMed]
19. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;

Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71.
[CrossRef]

20. Xu, R.; Jiang, N.; Mrachacz-Kersting, N.; Lin, C.; Prieto, G.A.; Moreno, J.C.; Pons, J.L.; Dremstrup, K.; Farina, D. A closed-loop
brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. IEEE Trans. Biomed. Eng.
2014, 61, 2092–2101. [CrossRef]

21. Meng, L.; Porr, B.; Macleod, C.A.; Gollee, H. A functional electrical stimulation system for human walking inspired by reflexive
control principles. Proc. Inst. Mech. Eng. H 2017, 231, 315–325. [CrossRef]

22. de Melo, P.L.; da Silva, M.T.; Martins, J.; Newman, D. A microcontroller platform for the rapid prototyping of functional electrical
stimulation-based gait neuroprostheses. Artif. Organs 2015, 39, E56–E66. [CrossRef]

23. Alibeji, N.; Kirsch, N.; Dicianno, B.E.; Sharma, N. A Modified Dynamic Surface Controller for Delayed Neuromuscular Electrical
Stimulation. IEEE ASME Trans. Mechatron. 2017, 22, 1755–1764. [CrossRef] [PubMed]

24. Ahmed, M.; Huq, M.S.; Ibrahim, B.S.K.K. A New Method towards Achieving FES-Induced Movement. Int. J. Integr. Eng. 2018, 10,
30–34. [CrossRef]

25. Le Guillou, R.; Schmoll, M.; Sijobert, B.; Borges, D.L.; Fachin-Martins, E.; Resende, H.; Pissard-Gibollet, R.; Fattal, C.; Coste,
C.A. A Novel Framework for Quantifying Accuracy and Precision of Event Detection Algorithms in FES-Cycling. Sensors 2021,
21, 4571. [CrossRef]

26. Coelho-Magalhães, T.; Coste, C.A.; Resende-Martins, H. A Novel Functional Electrical Stimulation-Induced Cycling Controller
Using Reinforcement Learning to Optimize Online Muscle Activation Pattern. Sensors 2022, 22, 9126. [CrossRef]

27. Braz, G.P.; Russold, M.F.; Fornusek, C.; Hamzaid, N.A.; Smith, R.M.; Davis, G.M. A novel motion sensor-driven control system
for FES-assisted walking after spinal cord injury: A pilot study. Med. Eng. Phys. 2016, 38, 1223–1231. [CrossRef] [PubMed]

28. Perumal, R.; Wexler, A.S.; Kesar, T.M.; Jancosko, A.; Laufer, Y.; Binder-Macleod, S.A. A phenomenological model that predicts
forces generated when electrical stimulation is superimposed on submaximal volitional contractions. J. Appl. Physiol. 2010, 108,
1595–1604. [CrossRef]

29. Hobbs, B.; Artemiadis, P. A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in
Gait Rehabilitation. Front. Neurorobot. 2020, 14, 19. [CrossRef]

30. Sijobert, B.; Azevedo, C.; Pontier, J.; Graf, S.; Fattal, C. A Sensor-Based Multichannel FES System to Control Knee Joint and Reduce
Stance Phase Asymmetry in Post-Stroke Gait. Sensors 2021, 21, 2134. [CrossRef]

31. Li, Y.; Yang, Q.; Fang, P.; Song, R. Adaptive Stimulation Profiles Adjustment of Functional Electrical Stimulation for Foot Drop
Based on Iterative Learning Control. In Proceedings of the 2023 International Conference on Advanced Robotics and Mechatronics
(ICARM), Sanya, China, 8–10 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 895–899. [CrossRef]

32. Li, Y.; Yang, X.; Zhou, Y.; Chen, J.; Du, M.; Yang, Y. Adaptive Stimulation Profiles Modulation for Foot Drop Correction Using
Functional Electrical Stimulation: A Proof of Concept Study. IEEE J. Biomed. Health Inform. 2021, 25, 59–68. [CrossRef]

33. Dong, H.; Hou, J.; Song, Z.; Xu, R.; Meng, L.; Ming, D. An adaptive reflexive control strategy for walking assistance system based
on functional electrical stimulation. Front. Neurosci. 2022, 16, 944291. [CrossRef]

34. Anaya-Reyes, F.; Narayan, A.; Aguirre-Ollinger, G.; Cheng, H.-J.; Yu, H. An Omnidirectional Assistive Platform Integrated With
Functional Electrical Stimulation for Gait Rehabilitation: A Case Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 710–719.
[CrossRef]

https://doi.org/10.3389/fneur.2023.1272992
https://www.ncbi.nlm.nih.gov/pubmed/38145118
https://doi.org/10.1016/j.arcontrol.2017.09.014
https://doi.org/10.3389/fnhum.2022.768575
https://doi.org/10.3390/s140406891
https://doi.org/10.2298/JAC1301007S
https://doi.org/10.1155/2014/740469
https://www.ncbi.nlm.nih.gov/pubmed/25202707
https://doi.org/10.1109/TCST.2022.3207999
https://doi.org/10.1186/s12984-020-00668-4
https://doi.org/10.3390/s19112471
https://doi.org/10.3390/s22249812
https://www.ncbi.nlm.nih.gov/pubmed/36560179
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1109/TBME.2014.2313867
https://doi.org/10.1177/0954411917693879
https://doi.org/10.1111/aor.12400
https://doi.org/10.1109/TMECH.2017.2704915
https://www.ncbi.nlm.nih.gov/pubmed/29335666
https://doi.org/10.30880/ijie.2018.10.01.005
https://doi.org/10.3390/s21134571
https://doi.org/10.3390/s22239126
https://doi.org/10.1016/j.medengphy.2016.06.007
https://www.ncbi.nlm.nih.gov/pubmed/27346492
https://doi.org/10.1152/japplphysiol.01231.2009
https://doi.org/10.3389/fnbot.2020.00019
https://doi.org/10.3390/s21062134
https://doi.org/10.1109/ICARM58088.2023.10218922
https://doi.org/10.1109/JBHI.2020.2989747
https://doi.org/10.3389/fnins.2022.944291
https://doi.org/10.1109/TNSRE.2020.2972008


J. Pers. Med. 2024, 14, 874 23 of 24

35. Zhang, Q.; Meng, Y.; Wu, L.; Xiang, X.; Xiong, C. Artificially induced joint movement control with musculoskeletal model-
integrated iterative learning algorithm. Biomed. Signal Process. Control 2020, 59, 101843. [CrossRef]

36. Hosiasson, M.; Rigotti-Thompson, M.; Appelgren-Gonzalez, J.; Covarrubias-Escudero, F.; Urzua, B.; Barría, P.; Aguilar, R.
Biomechanical Gait Effects of a Single Intervention with Wearable Closed Loop Control FES System in Chronic Stroke Patients. A
Proof-of-Concept Pilot Study. In Proceedings of the 2023 International Conference on Rehabilitation Robotics (ICORR), Singapore,
24–28 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [CrossRef]

37. Yeom, H.; Chang, Y.-H. Autogenic EMG-controlled functional electrical stimulation for ankle dorsiflexion control. J. Neurosci.
Methods 2010, 193, 118–125. [CrossRef] [PubMed]

38. Shaikh, M.F.; Salcic, Z.; Wang, K.I.-K.; Hu, A.P. Bipedal gait model for precise gait recognition and optimal triggering in foot drop
stimulator: A proof of concept. Med. Biol. Eng. Comput. 2018, 56, 1731–1746. [CrossRef] [PubMed]

39. Obuz, S.; Duenas, V.H.; Downey, R.J.; Klotz, J.R.; Dixon, W.E. Closed-Loop Neuromuscular Electrical Stimulation Method
Provides Robustness to Unknown Time-Varying Input Delay in Muscle Dynamics. IEEE Trans. Control Syst. Technol. 2020, 28,
2482–2489. [CrossRef]

40. Xu, S.; Li, C.; Wei, C.; Kang, X.; Shu, S.; Liu, G.; Xu, Z.; Han, M.; Luo, J.; Tang, W. Closed-Loop Wearable Device Network of
Intrinsically-Controlled, Bilateral Coordinated Functional Electrical Stimulation for Stroke. Adv. Sci. 2024, 11, 2304763. [CrossRef]

41. Singh, M.; Sharma, N. Data-driven Model Predictive Control for Drop Foot Correction. In Proceedings of the 2023 American
Control Conference (ACC), San Diego, CA, USA, 31 May–2 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 2615–2620. [CrossRef]

42. Watanabe, T.; Tadano, T. Design of Closed-Loop Fuzzy FES Controller and Tests in Controlling Knee Extension Movements.
IEICE Trans. Inf. Syst. 2017, E100.D, 2261–2264. [CrossRef]

43. Hayami, N.; Williams, H.E.; Shibagaki, K.; Vette, A.H.; Suzuki, Y.; Nakazawa, K.; Nomura, T.; Milosevic, M. Development
and Validation of a Closed-Loop Functional Electrical Stimulation-Based Controller for Gait Rehabilitation Using a Finite State
Machine Model. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1642–1651. [CrossRef]

44. Qian, J.; Rong, K.; Qian, Z.; Wen, C.; Zhang, S. Effects of a multichannel dynamic functional electrical stimulation system on
hemiplegic gait and muscle forces. J. Phys. Ther. Sci. 2015, 27, 3541–3544. [CrossRef]

45. Zhou, H.Y.; Huang, L.K.; Gao, Y.M.; Vasic, Z.L.; Cifrek, M.; Du, M. Estimating the Ankle Angle Induced by FES via the Neural
Network-Based Hammerstein Model. IEEE Access 2019, 7, 141277–141286. [CrossRef]

46. Zhang, Q.; Hayashibe, M.; Azevedo-Coste, C. Evoked Electromyography-Based Closed-Loop Torque Control in Functional
Electrical Stimulation. IEEE Trans. Biomed. Eng. 2013, 60, 2299–2307. [CrossRef] [PubMed]

47. Embrey, D.G.; Holtz, S.L.; Alon, G.; Brandsma, B.A.; McCoy, S.W. Functional Electrical Stimulation to Dorsiflexors and Plantar
Flexors During Gait to Improve Walking in Adults With Chronic Hemiplegia. Arch. Phys. Med. Rehabil. 2010, 91, 687–696.
[CrossRef] [PubMed]

48. Chen, W.; Li, J.; Zhu, S.; Zhang, X.; Men, Y.; Wu, H. Gait Recognition for Lower Limb Exoskeletons Based on Interactive
Information Fusion. Appl. Bionics Biomech. 2022, 2022, 9933018. [CrossRef]

49. Wiesener, C.; Seel, T.; Spieker, L.; Niedeggen, A.; Schauer, T. Inertial-Sensor-Controlled Functional Electrical Stimulation for
Swimming in Paraplegics: Enabling a Novel Hybrid Exercise Modality. IEEE Control Syst. 2020, 40, 117–135. [CrossRef]

50. Merad, M.; Downey, R.J.; Obuz, S.; Dixon, W.E. Isometric Torque Control for Neuromuscular Electrical Stimulation with
Time-Varying Input Delay. IEEE Trans. Control Syst. Technol. 2016, 24, 971–978. [CrossRef]

51. Seel, T.; Werner, C.; Raisch, J.; Schauer, T. Iterative learning control of a drop foot neuroprosthesis—Generating physiological foot
motion in paretic gait by automatic feedback control. Control Eng. Pract. 2016, 48, 87–97. [CrossRef]

52. Guan, W.; Zhou, L.; Cao, Y. Joint Motion Control for Lower Limb Rehabilitation Based on Iterative Learning Control (ILC)
Algorithm. Complexity 2021, 2021, 6651495. [CrossRef]

53. Mendes, L.A.; Lima, I.N.; Souza, T.; Nascimento, G.C.D.; Resqueti, V.R.; Fregonezi, G.A. Motor neuroprosthesis for promoting
recovery of function after stroke. Cochrane Database Syst. Rev. 2020, 2020, CD012991. [CrossRef]

54. Duenas, V.H.; Cousin, C.A.; Parikh, A.; Freeborn, P.; Fox, E.J.; Dixon, W.E. Motorized and Functional Electrical Stimulation
Induced Cycling via Switched Repetitive Learning Control. IEEE Trans. Control Syst. Technol. 2019, 27, 1468–1479. [CrossRef]

55. Beaulieu, L.-D.; Massé-Alarie, H.; Brouwer, B.; Schneider, C. Noninvasive neurostimulation in chronic stroke: A double-blind
randomized sham-controlled testing of clinical and corticomotor effects. Top. Stroke Rehabil. 2015, 22, 8–17. [CrossRef] [PubMed]

56. Jochumsen, M.; Niazi, I.K.; Signal, N.; Nedergaard, R.W.; Holt, K.; Haavik, H.; Taylor, D. Pairing Voluntary Movement and
Muscle-Located Electrical Stimulation Increases Cortical Excitability. Front. Hum. Neurosci. 2016, 10, 482. [CrossRef]

57. Li, Z.; Guiraud, D.; Andreu, D.; Gelis, A.; Fattal, C.; Hayashibe, M. Real-Time Closed-Loop Functional Electrical Stimulation
Control of Muscle Activation with Evoked Electromyography Feedback for Spinal Cord Injured Patients. Int. J. Neural Syst. 2018,
28, 1750063. [CrossRef]

58. Li, Z.; Guiraud, D.; Andreu, D.; Benoussaad, M.; Fattal, C.; Hayashibe, M. Real-time estimation of FES-induced joint torque with
evoked EMG: Application to spinal cord injured patients. J. Neuroeng. Rehabil. 2016, 13, 60. [CrossRef] [PubMed]
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