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Abstract: The main objectives of this paper are to construct a new risk model for modelling the
Hybrid-Takaful (Islamic Insurance) and to develop a computational procedure for calculating the
associated ruin probability. Ruin probability is an important study in actuarial science to measure the
level of solvency adequacy of an insurance product. The Hybrid-Takaful business model applies a
Wakalah (agent based) contract for underwriting activities and Mudharabah (profit sharing) contract
for investment activities. We consider the existence of qard-hasan facility provided by the operator
(shareholder) as a benevolent loan for the participants’ fund in case of a deficit. This facility is a
no-interest loan that will be repaid if the business generates profit in the future. For better investment
management, we propose a separate investment account of the participants’ fund. We implement
several numerical examples to analyze the impact of some key variables on the Takaful business
model. We also find that our proposed Takaful model has a better performance than the conventional
counterpart in terms of the probability of ruin.

Keywords: Hybrid-Takaful; qard-hasan; ruin analysis

MSC: 62P05

1. Introduction

Socially Responsible Investment (SRI) has been gaining popularity from investors around the
world. It incorporates non-financial concerns such as social, environmental, and moral issues as
part of the investment decision, in addition to the financial return. Religion, besides union and
green political parties, is one of the the most commonly studied in the SRI context (Yan et al. 2019).
Islamic finance is a class of SRI that complies with the principles of the Quran (Holy Book of Islam),
the Hadith (teachings and sayings of Prophet Muhammad), and Ijtihad (scholarly legal deductions).
Islamic finance is the only financial system in the world today that is based on the teaching of a
dominant religion (Hassan and Mahlknecht 2011). However, religion is not a prerequisite for the
participation in Islamic finance. For example, in Malaysia, Takaful (Islamic insurance) products
have attracted non-Muslim communities (Swartz and Coetzer 2010). Bhatti (2019, 2020) review some
legal aspects of Islamic finance and the practice of arbitration to resolve Islamic dispute to ensure
the operations in the Islamic finance industry comply with Shariah rules. Based on the GIFR (2019)
report, the Islamic finance industry had a positive annual growth of 6.58% during 2018, with a total
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asset value of 2.6 trillion USD at the end of 2018 in 75 countries from its three main sectors, namely:
Islamic banking, Shariah capital market, and Takaful. This paper focuses on the study of Takaful,
which is quite new compared to Islamic banking and capital market.

Insurance is an integral part of financial planning as efforts to keep away from potential adversities
whenever such events occur. However, most Islamic scholars agree that conventional insurance is not
acceptable under Shariah (Islamic law) due its interpretations with respect to Gharar (uncertainty),
Maisir (gambling), and Riba (interest-bearing) (Husain and Pasha 2011). Takaful is an alternative
innovative instrument that provides similar protection as the conventional insurance except that it
complies with Shariah law. The word Takaful is from Arabic that means to take care of one’s need
(Yusof et al. 2011). General (non-life) Takaful was first established in 1979 in Sudan, while family (life)
Takaful was introduced later in 1984 by the Malaysian Takaful Act (Kassim et al. 2013). According to
the IFDR (2018) report, the Takaful industry is still growing at the rate of 19% in 2018, with total
assets USD 46 billion from 324 Takaful operators in 47 countries. Moreover, it is anticipated
that Takaful will continue to grow, especially in Muslim countries. For example, in Indonesia,
with 98% Muslim population, the Indonesian Health Social Security Organising Agency (BPJS) and
the Employment Social Insurance Administration Organisation (BPJS Employment) are currently
developing Shariah-based products to attract Muslim citizens (Bappenas 2018).

The growing trend of the Takaful market requires in-depth studies of its financial stability and
actuarial modeling to make a better business decision. Al Rahahleh et al. (2019) review current
developments of risk management in Islamic finance; however, the study focus on the Islamic banking
sector only. Ruin theory is a fundamental study in actuarial science that analyses the dynamic evolution
of the capital of insurance products driven by different sources of risk. One important problem in
ruin theory is estimating the probability that surplus becomes negative at some point in the future.
This is often described as the ruin probability problem. A brief overview of some current research on
ruin probability can be found in (Bulinskaya 2017). Because Takaful products have different features
when compared with their conventional counterparts, it is conceivable that both lines of products
will have very different risk characteristics. While the risk modelling of conventional insurance has
been studied extensively, the corresponding study for the Takaful is extremely limited. For this reason,
this paper contributes to the literature by developing a risk modelling framework for quantifying
Takaful. In particular, we focus on the development of finite-time ruin probability for Takaful business,
especially for a Hybrid model. In practice, this topic is helpful for enterprise risk management to study
the probability of becoming insolvent before 10 or 20 years in a steady regime, which can be used
to assess whether the activity is sustainable in a steady regime (Gerber and Loisel 2012). The aim of
this paper is to construct a Takaful risk model and to derive a finite-time ruin probability formula
to quantify the risk associated with Hybrid-Takaful. We follow the idea of Kim and Drekic (2016)
to construct a recursive formula to calculate ruin probability. We enhance the model by allowing an
investment option with stochastic returns. We also incorporate qard-hasan facility (benevolent loan) in
our risk model, which is an essential element to maintain Takaful solvency requirement (Onagun 2011;
Rahim et al. 2017). This practice, for example, conforms with the Indonesia’s strategic plan in achieving
the Sustainable Development Goals that the Indonesian government may provide a qard-hasan facility
through Baznas (Indonesia’s national Zakat collection agency) to overcome the deficit of Shariah-based
products (Rehman 2019).

At the end of this paper, we present a numerical simulation study where we use the finite-time
ruin probability to investigate the impact of some important variables on the performance of Takaful
business. This study addresses a key concern on the optimal structure of the Takaful model that is
mentioned in the WTR (2016) report. According to this report, many shareholders expect profitability
in line with conventional insurers, while participants expect a unique product that fully embraces the
principal ideas of Takaful. The results of our study demonstrate that by providing qard-hasan facility,
Takaful product could outperform the conventional counterpart in view of its lower probability of ruin.
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Furthermore, if the operator invests the undrawn-down qard-hasan fund, then following the Shariah
rule to pay off the qard-hasan undertaking may produce better performance.

The remainder of the paper is organized as follows. Section 2 presents a literature review on the
key subjects covered in this paper, namely the insurance ruin theory and the practice of Hybrid-Takaful.
In Section 3, we introduce the surplus model and the relevant mathematical variables. The construction
of the finite-time ruin probability is explained in Section 4. Section 5 presents results of our numerical
simulations. Section 6 concludes the paper. Appendix A contains the proof to the main results of the
paper and Appendix B summarizes the notation used in the paper.

2. A Literature Review

2.1. Ruin Probability

The first theory in ruin probability was developed by Filip Lundberg in 1903 and expanded by
Harald Cramers in the 1930s (Schmidli 2017). For these reasons, the process related to the study of
risk model is often referred to as the classical Cramer–Lundberg process. The surplus of an insurance
portfolio with an initial surplus u and the premium rate b is given by

Ut = u + bt−
Nt

∑
i=1

Xi, t ≥ 0,

where Nt represents the number of claims occurred by time t and Xi is the claim severity that
representsthe size of the i-th individual claim. Under this model, the claim process is described
by a compound Poisson process with the corresponding secondary distribution of X1. The ruin time is
the first time T when the surplus level drops below 0,

T = inf{t|Ut < 0}, (1)

with inf ∅ = ∞. The ultimate or infinite ruin probability is defined as

Ψ(u) = P(T < ∞). (2)

For a finite-time τ > 0, the finite-time ruin probability is defined by

Ψ(u, τ) = P(T < τ). (3)

Andersen in 1957 generlized the assumption of Poisson distribution in the claim frequency Nt by
allowing aribtrary distribution (Schmidli 2017). Such a model is called a renewal risk model or Sparre
Anderson model. In this approach, the number of claims Nt is modeled by a renewal process, in which
claims happen at times t0, t1, t2, ..., with t0 = 0, and the interarrival times {Wi = ti − ti−1} follow a
general random variable. In this model, Xt and Nt are assumed to be independent.

The above risk models are based on continuous time, while in reality claims occur in discrete
time. For example, for automobile insurance, the claim dataset is usually presented monthly. Hence,
for investigation of insurance problems, the discrete-time models often turn out to be more realistic.
Currently, many studies of insurance risk models incorporate investment strategies. The assumption
of discrete time is closer to reality but adds complexity in modeling and computation. In particular,
analytical results for finite time ruin probabilities are much harder to achieve.

Kim and Drekic (2016) have proposed a risk model that incorporates investment, dividend,
and external financial activities (loan undertaking in a deficit case). The last two features are suitable
for Takaful risk modeling. In Takaful, we need to separate the surplus fund (also called the participants’
fund) from the shareholder fund. Our proposed framework for Takaful insurance is explained in
detail in the next section. The model by Kim and Drekic (2016) inspired Achlak (2016) to develop
a method of evaluating finite-time ruin probabilities for several types of Takaful business model.
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However, Achlak (2016) defined a qard-hasan facility as a sadaqah (charity) from the shareholder to
participants, while in this study we interpret qard-hasan as a benevolent loan that needs to be repaid
in the future, generating surplus. Our model proposes a Hybrid-type Takaful risk model with the
repayment scenario of qard-hasan facility. We also modify Kim and Drekic (2016) and Achlak (2016)
models so that the operator can invest in the risk-free or risky asset.

2.2. Hybrid (Mixed) Takaful Insurance Business Model

The main difference between Takaful and commercial insurance lies in the contract design.
In conventional insurance, the insurance company sells the contract with a promise to indemnify the
loss to the policyholder. However, this practice is forbidden in Islam, as it is not clear what is sold under
the insurance product. The Takaful contract combines agency and profit/risk sharing in their business,
instead. The role of Takaful companies is to manage the Takaful fund only, while the liability of any
claims is borne by the Takaful fund, which is owned by Takaful participants. This contract’s feature
makes Takaful quite similar to mutual insurance. However, the main difference is in the existence
of the operator in Takaful insurance. In addition, to manage the Takaful business, the operator also
provides capital. Hence, Takaful operator has some rights to a part of surplus from the Takaful fund.

Similar to the conventional counterpart, there are two types of Takaful business model, namely:
general (non-life) Takaful and family (life) Takaful. Based on business models, the operation of Takaful
can be structured as Wakalah (agent-based contract), Mudarabah (profit sharing), Hybrid (mixed),
or Waqf model. Under the Wakalah (agency) contract, the role of Takaful operator is a wakeel (agent)
that is paid by participants as a predefined fee to manage the Takaful funds. The Wakalah fee is
paid in advance as a percentage of contribution. After deducting the wakalah fee, the rest of the
contributions are credited to the participants’ fund, which are also called Tabaru funds. In the
Mudarabah (profit sharing) contract, the operator and the participants should agree on a profit-sharing
rate at the commencement of the contract. Under this contract, all participants’ contribution is credited
to the Takaful fund without any deduction. A Hybrid contract applies the Wakalah contract for
underwriting activities, while Mudarabah is adopted for investment activities.

The Hybrid, or mixed, model is the most dominant model in the Takaful market, which can be
explained by the fact that the Accounting and Auditing Organization for Islamic Financial Institutions
(AAOIFI) recommends the practice of this model. According to Khan (2015, 2019), the Hybrid-Takaful
model serves as the optimal structure for Takaful operation. In this study, we focus only on the
Hybrid-Takaful contract.

In regard to the underwriting activities, the Takaful operator acts as a Wakeel (agent) on behalf
of participants to manage the Takaful fund. As shown in Figure 1, the operator manages the Takaful
fund and pays all the incurred expenses to the participants. In exchange for these tasks, the company
charges each participant a predefined fee known as a Wakalah fee. This fee is deducted initially and
goes to the shareholders’ fund.

The Hybrid-Takaful model applies the Mudarabah contract (profit-sharing basis) for the
investment activities. The operator manages the assets and shares the income generated from the
investment based on a predetermined profit share ratio. In this contract, the operator, as a fund
manager or mudarib, will receive profit depending on the performance of the investment.
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The income generated from an investment, after the deduction by mudarib’s fee for the operator
in conjunction with the underwriting surplus, represents the surplus in Takaful (participants’) fund.
All the surplus account are property of the Takaful participants. However, a Takaful operator may
receive an additional fee, in the form of incentive or performance fee, when the Takaful fund produces
a surplus. This fee is determined as a percentage of the surplus generated in the Takaful fund.
The remaining profit is then distributed to the participants.

When the Takaful fund experiences a deficit, there are two available options to consider. The first
option is to charge the participants with additional contributions to cover the deficit value. However,
this practice is not popular as it is not commercially feasible (Tolefat and Asutay 2013). The second
option is the qard-hasan facility. This option is more popular in practice and it is not only encouraged
by the Islamic Financial Shariah Board (IFSB 2010), but is also a mandatory requirement by some
regulatory authorities. For this reason the proposed risk model focuses only on the qard-hasan option
in addressing the issue arising from the deficit.

Qard-hasan, which is often called the benevolent loan, is an interest-free loan facility that is
provided by shareholders as short term solvency resources to the participants’ fund in case of a deficit.
Qard-hasan is a part of the shareholders’ capital that is specially earmarked to maintain the solvency
of the participants’ fund. According to the IFSB (2010) regulation, any drawn down qard-hasan needs
to be repaid out of future surpluses of the participants’ fund. In the event when the borrower is unable
to settle the loan, the lender cannot force the borrower to make a repayment, and they must accept
this transaction as a charitable act. Most Islamic scholars, including Onagun (2011), Yusof et al. (2011),
Tolefat and Asutay (2013), and Rahim et al. (2017), agree with the IFSB (2010)’s rules in relation to the
treatment of qard-hasan facility.

3. Surplus Process for Hybrid-Takaful with Investment and Qard-Hassan Facility

In this section, we propose a surplus model for Hybrid-Takaful with investment activities
and qard-hasan (non-interest loan) facility. The model is motivated by Kim and Drekic (2016),
who consider a discrete-time dependent Sparre Andersen risk model in the context of conventional
insurance. The first difference between our approach and the one by Kim and Drekic (2016)
is in the loan fund feature. In our model, there is no interest in undertaking loans, as in the
conventional model. The second difference is in the loan repayment arrangement. While the borrower
in Kim and Drekic (2016) is forced to pay the loan undertaking (including interest) when it exceeds a
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certain level (i.e., loan capacity), in our model the borrower will repay the loan only if they generate a
positive surplus in the future. The assumption of the loan arrangement in our model consistent with
the IFSB’s rule. However, the lenders have a right to get a part of each shared underwriting dividend to
compensate for their effort to provide a benevolent loan. The third difference relates to the assumption
that the undrawn-down loan can be invested. The undrawn-down loan is the loan facility that is
still available in the loan fund. In case of Takaful the loan fund is the qard-hasan fund. We should
note that Achlak (2016) has also developed a Takaful risk model based on Kim and Drekic (2016) but
with the assumption that the loan facility does not need to be repaid and can not be invested. In our
study, we assume that the loan facility (i.e., qard-hasan facility) will be repaid from the future surplus,
and the undrawn-down qard-hasan facility will be invested to enhance the facility. Finally, our model
provides the option to invest in a risk-free or risky asset, and takes into account Mudharabah or fund
management fee for operator from each generating investment return. In our Hybrid-Takaful risk
model, we incorporate the following four separate financial accounts:

U: surplus fund
FI : investment fund
FQ: qard-hasan fund
FL: liability account

and three thresholds levels:

lW : the minimal requirement of Takaful surplus level
l I : trigger level for investment activities
lD: trigger level for dividend payment

where the levels are assumed to satisfy 0 ≤ lW ≤ l I ≤ lD.
As explained in Section 2.2, there are two separate financial accounts in Takaful,

namely participants’ funds and shareholders’ funds. The participants’ fund in our model is
sub-divided into two separate financial accounts, namely, the surplus fund U and the investment
fund FI . The reason for the separation of the two accounts is for better financial management,
while the underwriting activities are represented in the surplus fund U, the financial activities are in
the investment fund FI . The qard-hasan fund is a part of shareholders’ fund that is specially allocated
as a benevolent loan for participants in case of deficit occurring due to underwriting activities. In our
model, the drawn-down qard-hasan needs to be repaid from future surplus of the participants’ fund.
We introduce the liability account FL to keep track of the total of qard-hasan borrowed and refunded.
In our model we assume that all funds are in discrete monetary accounts. We adopt this assumption to
facilitate the recursive calculation of finite-time ruin probability in Section 4.3.

By Ut, FI
t , FQ

t , and FL
t we denote the values of surplus level, the investment fund, the qard-hasan

fund, and the liability account, respectively, at the end of the time interval (t− 1, t], t ∈ Z+ (where
Z+ = {1, 2, ...}). We assume that a constant contribution (premium) of b ∈ Z+ is received at (t− 1)+,
while claims are applied at t−. We also define Ut−, FI

t−, FQ
t−, and FL

t− as the participants’ surplus fund,
investment fund, qard-hasan facility, and liability, respectively, immediately after a claim instance but
before a withdrawal, borrowing, qard-hasan undertaking, and qard-hasan repayment instance.

A dividend trigger level lD is a threshold that determines the dividend payment scenario.
If Ut ≥ lD, a dividend amount of δi

t, i = {1, 2} from the underwriting surplus will be shared among
participants and shareholders. In our model, we propose two options for the dividend distribution.
In the first one, denoted by δ1

t , we assume a constant dividend, while in the second, denoted by δ2
t ,

we use a similar assumption to that adopted by Achlak (2016), namely, that the dividend is equal to
Ut − lD. We assume that the percentage of the dividends distributed to the participants and to the
shareholders are given by x and 1− x, respectively, where x ∈ (0, 1).
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We define Pt as the contribution received at time t and DS
t as the total dividend distributed to

shareholders at time t. Thus,

Pt =

{
b, if Ut < lD

b− xδi
t, if Ut ≥ lD

(4)

DS
t =

{
0, if Ut < lD

(1− x)δi
t, if Ut ≥ lD,

(5)

where δ1
t = δ ≤ b, δ ∈ Z+ and δ2

t = Ut − lD.
A threshold l I is a trigger point for investment activities. If Ut ≥ l I , a constant amount d ∈ Z+ is

re-distributed to the investment fund at time t+. We assume that investment activities during each
time interval are carried out after all of the outstanding debts and claims are paid out. We denote the
deposit amount corresponding to the time interval (t, t + 1] as DI

t , thus

DI
t =

{
0, if Ut < l I

d, if Ut ≥ l I .
(6)

Note that from Equations (5) and (6), if Ut > lD, then both DS
t and DI

t are paid.
We also assume that the operator, as a fund manager, may invest in the Shariah (permissible)

non-risky or risky assets, like sukuk (Islamic bond) or a Shariah stock. In Takaful, the operator acts as
a fund manager as well. Hence, they have the right to receive “salary” from the participants’ fund due
to this role. A Hybrid-Takaful model applies Mudarabah (profit-sharing) for an investment activity in
which the operator receives a dividend payment from investment generated profit. We assume that
the fund manager receives y ∈ (0, 1) part of an investment gain.

Threshold lW represents the minimum level of the acceptable surplus of the participants’ fund.
If Ut− drops, at some time between t − 1 and t, below lW due to claims, we withdraw from FI ,
or borrow from FQ, to bring the surplus fund up to level lW at time t. A withdrawal from the
investment account FI is utilized first. We consider undertaking a interest-free loan from qard-hasan
facility if the investment fund FI

t− is not sufficient to bring the surplus level back to lW . The maximum
qard-hasan that can be drawn down at time t is the maximum value of FQ

t or the remaining money
needed by Ut to reach lW , whichever is smaller. The process will continue as long as the surplus-value
is not negative. We assume that the un-drawn down qard-hasan fund will be invested in a risky or
non-risky asset. The un-drawn down and investment gains will remain in the qard-hasan account to
strengthen its facility. We denote the withdrawals and the qard-hasan undertaking amounts occurring
during the time interval (t − 1, t] by W I

t and WQ
t , respectively. The above descriptions imply the

following formulae:

W I
t =

{
0, if Ut− ≥ lW

min{FI
t−, (lW −Ut−)}, if Ut− < lW

(7)

WQ
t =

{
0, if Ut− ≥ lW

min{FQ
t−, max{0, (lW −Ut− − FI

t−)}}, if Ut− < lW .
(8)

Participants need to repay their total qard-hasan undertaking to the qard-hasan fund FQ in the
future period when their surplus value is greater than lW . We assume that the loan repayment will be
paid instantly after the claim is paid out at t−. If the surplus after claim payout at t− is greater than
lW , then the loan will be repaid at t−. The loan repayment amount should not make the surplus-value
drop below lW in any period. Unlike in the conventional counterpart, in the case when participants
are not able to repay the qard-hasan, the undertaking qard-hasan will be counted as charity from
shareholders to the participant. The participants are not obligated to repay the loan in case of a deficit.
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So, in our model, the loan repayment will not be the reason for ruin, but it will affect the value of
Ut and FQ

t instead. We define DQ
t as the qard-hasan repayment corresponding to the time interval

(t− 1, t]. Thus, we have

DQ
t =

{
0, if Ut− ≤ lW

min{FL
t−, (Ut− − lW)}, if Ut− > lW .

(9)

Finally, the surplus level at time t is the initial level of u plus the total cash inflows
from: contributions, withdrawal from investment fund, and loan undertaking from qard-hasan
facility, minus the total cash outflows to: deposit investment, qard-hasan repayment, and claim
payments. Thus,

Ut = u +
t−1

∑
i=0

Pi −
t−1

∑
i=0

DS
i −

t−1

∑
i=0

DI
i −

t

∑
i=1

DQ
i +

t

∑
i=1

W I
i +

t

∑
i=1

WQ
i −

Nt

∑
i=1

Xi. (10)

We assume that the claim distribution of Nt and Xt has the same structure as in Sparre Andersen
models Cheung et al. (2010). We also assume that the times between claims (i − 1) and i, i ∈ Z+,
are described by independent and identically distributed (iid) positive random variables {Wi, i ∈ Z+}
with probability mass function (pmf) ak and the corresponding survival function Ak:

ak = Pr{Wi = k}, k = 1, 2, ..., na, (11)

where na ∈ Z+ represents the upper bound for the interclaim times. Thus, for k ≤ na, we have

Ak = Pr{Wi > k} = 1−
k

∑
j=1

aj. (12)

We denote by αj(k) the conditional pmf of Xi given Wi = k:

αj(k) = Pr{Xi = j|Wi = k}, j ∈ Z+, (13)

and hence the joint pmf of (Wi, Xi) is of the form

Pr{Wi = k, Xi = j} = akαj(k). (14)

We also assume that the pairs (Wi, Xi) are iid.
In order to visualize the cash flow in our proposed Takaful risk model, Figures 2–5 present

illustrative examples of the evolution of the surplus fund, investment fund, qard-hasan facility fund,
and the liability level respectively. Appendix B summarizes the key symbols that are used in the paper.
The surplus fund starts from an initial level u, and the maximum capacity of the qard-hasan facility
that is provided by shareholders at the initial point is fQ. The investment fund and the liability level
are zero at the initial period. In each period, at time (t− 1)+ there is contribution income deducted by
deposit from investment fund and dividend payment if the corresponding trigger points are reached
at time t. If surplus drops below the level lW due to claim payments at t−, we withdraw from the
investment fund and/or qard-hasan facility. Every qard-hasan undertaking and repayment activities
is recorded in the liability fund.
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Figure 2. Example of a realization of the participants’ fund process (Ut).

Figure 3. Example of a realization of the investment fund process (FI
t ).

Figure 4. Example of a realization of the qard-hasan fund process (FQ
t ).
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Figure 5. Example of a realization of the liability account process (FL
t ).

4. Finite-Time Ruin Probability for Hybrid-Takaful

This section describes a method of calculating a finite-time ruin probability associated with the
Takaful risk model described by Equation (10). In particular, our goal is to derive the probability of
ruin occurring before time τ < ∞, which we denote by Ψ(v, gI , gQ, gL, τ):

Ψ(v, gI , gQ, gL, τ) = Pr{T ≤ τ|U0 = v, FI
0 = gI , FQ

0 = gQ, FL
0 = gL}, τ ∈ Z∗, (15)

where Z∗ = {0, 1, 2, ..} and T is defined in (1). In practice, τ represents the planning horizon of
the insurance company. Typically, for non-life insurance, the managers set τ to four or five years
(Burnecki et al. 2005).

To calculate the finite-time ruin probability, we follow Cossette et al. (2006) and
Kim and Drekic (2016) by calculating the conditional survival probability of the first claim occurrence
recursively. We define σ(u, f I , fQ, fL, n, m) as the finite-time survival probability until time n given that
the initial level of surplus, investment fund, qard-hasan facility, and liability level are u, f I , fQ and fL
respectively, and the elapsed time M0 since the most recent claim occurrence is m:

σ(u, f I , fQ, fL, n, m) = Pr{T > n|U0 = u, FI
0 = f I , FQ

0 = fQ, FL
0 = fL, M0 = m}. (16)

Then, the finite-time ruin probability (15) can be represented as:

Ψ(v, gI , gQ, gL, τ) = 1− σ(v, gI , gQ, gL, τ, 0). (17)

In Section 4.3 we develop a recursive formula for the finite-time survival probability. For this,
we construct some auxiliary variables, namely the maximum value of the fund processes in Section 4.1
and a calling point in Section 4.2.

4.1. The Maximum Value of Funds Process

The surplus fund in Equation (10) is a stochastic function whose value might be decreasing or
increasing depending on the claim payments. In this section we construct a formula to calculate
the maximum value of the surplus fund Û(t,u), investment fund F̂I

(t,u, f I)
, qard-hasan fund F̂Q

(t, fQ)
,

and liability level F̂L
(t, fL)

that represent levels of funds under the assumption of no claim, no withdrawal,
no qard-hasan undertaking, and no qard-hasan repayment at time t given that the initial levels are
U0 = u, FI

0 = f I , FQ
0 = fQ, FL

0 = fL. Notice that Û(t,u) and F̂L
(t, fL)

are non-decreasing functions of t,

while F̂I
(t,u, f I)

and F̂Q
(t, fQ)

are non-decreasing functions of t if the investment returns are always positive.
In our model, we use two different assumptions of investment returns, the first one is a constant



J. Risk Financial Manag. 2020, 13, 211 11 of 24

positive rate of return, and the second one is a stochastic return. The first assumption is similar to the
one adopted by Kim and Drekic (2016) and Achlak (2016).

To calculate the maximum value of surplus process Û(t,u) and the maximum value of the

investment return F̂I
(t,u, f I)

, we need to identify the time points when the surplus level reaches the
threshold levels lW and l I under the assumption of no claim, no withdrawal, and no qard-hasan
undertaking and repayment. Under these assumptions, the surplus fund grows at a constant rate
b (i.e., the contribution payment) from time 0 until the surplus level reaches the threshold level l I .
From the time point when the surplus level reaches l I until it reaches lD, the surplus fund grows with
a constant rate of b− d due to the deposit payment to the investment fund. Denote by zI

(u) and zD
(u)

the time points when the surplus level with the initial value u reaches the trigger points l I and lD,
respectively; i.e.,

zI
(u) =

{
0, if u ≥ l I

d l I−u
b e if u < l I

(18)

and

zD
(u) =

0, if u ≥ lD

d
lD−u−bzI

(u)
b−d e+ zI

(u) if u < lD,
(19)

where dxe represents the least integer greater than or equal to x.

4.1.1. The Maximum Value of Surplus Fund

Under the assumption of no claim, no withdrawal, no borrowing, and no loan repayment,
the surplus process in Equation (10) becomes:

Û(t,u) = u +
t−1

∑
i=0

Pi −
t−1

∑
i=0

DS
i −

t−1

∑
i=0

DI
i . (20)

By using the definition of premium Pt (Equation (4)), dividend payout to shareholders DS
t

(Equation (5)), deposit DI
t (Equation (6)), and the time points when the surplus level reaches the

threshold level lW and l I (i.e., Equations (18) and (19)), it is easy to find the maximum value of the
surplus fund Û(t,u) as

Û(t,u) = u + bt− d(t− zI
(u))+ − δ(t− zD

(u))+, t ∈ Z+, (21)

when we consider a constant dividend δ1
t = δ ∈ Z+, or

Û(t,u) =

u + bt− d(t− zI
(u))+ if t ≤ zD

(u)

lD + b− d if t > zD
(u),

(22)

when we consider dividend as δ2
t = Ut − lD with x+ = max{x, 0}.

Equations (21) and (22) can be explained as the total cash inflow and outflow to the surplus fund.
Before the time point t = zI

(u), there is only regular cash inflow, which is the constant contribution

(tabaru) of b. Between zI
(u) and zD

(u), there is a regular outflow from the surplus process (Û(t,u)) to the

investment fund (F̂I
(t,u, f I)

), which is the deposit of d, in addition to the regular contribution payment.

When the surplus reaches level lD at zD
(u), the dividend of δi

t, i = {1, 2}, will be distributed to the

participants and shareholders. In addition to that, starting from zD
(u), the surplus fund Û(t,u) will

receive the contribution of b minus deposit d afterwards.
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4.1.2. The Maximum Value of External Funds with Non-Risky Investment Return

In this section we assume that the operator, as a fund manager, invests the investment fund in
the Shariah (permissible) non-risky asset like sukuk (Islamic bond) with a constant rate of return
k1 ≥ 0. We also assume that the un-drawn down qard-hasan fund will be invested at a constant
investment gain of k2 ≥ 0. The un-drawn down qard-hasan and those investment gains will remain in
the qard-hasan fund to strengthen the qard-hasan facility. It is noted that there is no interest in the
undertaking loan from the qard-hasan account.

The initial value of the investment fund F̂I
(t,u, f I)

will grow from its initial value f I at the rate of
k1 due to investment activities. In addition to this, the investment fund will be increased by deposit
d, regularly from zI

(u) until time t. In each period, y percentage of the investment gain will be shared
with the operator as the Mudharabah fee. Therefore, the non-recursive form of the investment fund is
given by

F̂1
(t,u, f I)

= b f I(1 + k′1)
t + dk′1

zI
(u),t
c (23)

where bxc is a floor function representing the greatest integer less than or equal to x , and

k′1 = (1− y)k1 (24)

denotes the investment gain after deducting the Mudharabah fee. The total future value of deposits

made at times zI+
(u) up to time t− 1 with respect to the investment gain k′1 will be denoted by dk′1

zI
(u),t

:

dk′1
zI
(u),t

= d(1 + k′1) + d(1 + k′1)
2 + ... + d(1 + k′1)

(t−zI
(u)).

The sum on the right-hand side can be calculated explicitly as

dk′1
zI
(u),t

=


0, if zI

(u) > t

d(1 + k′1)
(1+k′1)

t−zI
(u)−1

k′1
, if zI

(u) ≤ t.
(25)

With the assumption of no qard-hasan undertaking and no qard-hasan repayment, there is no
cash inflow or outflow except investment gains accumulated at the rate of k2:

F̂Q
(t, fQ)

= b fQ(1 + k2)
tc. (26)

The investment fund and qard-hasan fund may take non-integer values due to interest
accumulation. However, we apply the floor function in the Equations (23) and (26) to round down the
value as we assume that all funds are in the discrete monetary units. Taking the lower bound value of
the investment and qard-hasan funds can be seen as conservative.

The liability level under the assumption of no loan undertaking and repayment will remain the
same as the initial liability level:

F̂L
(t, fL)

= fL (27)

for t ∈ Z∗.

4.1.3. The Maximum Values of External Funds with Risky Investment Return

In this section we assume that the investment returns are not constant. The Takaful operator
invests the funds (investment and qard-hasan) in the same risky asset, for example, in the Shariah
compliant stock or floating Sukuk (Islamic bond). In our study, we model the asset price in discrete
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time by a Markov chain that satisfies the recursive form Sn+1 = SnYn+1, where {Yi} are iid random
variables. If the initial price is S0, then expanding the recursion yields

Sn = S0

n

∏
i=1

Yi. (28)

Therefore, the maximum value of qard-hasan facility (F̂Q
(t, fQ)) with the initial value fQ is:

F̂Q
( fQ ,t) = fQ

t

∏
i=1

Yi. (29)

To calculate the maximum value of the investment fund (F̂I
(t,u, f I)

), we need to add the deposits
and share the y part of Mudharabah fee. If the investment generates a positive return, then we
need to share y part of the return with Takaful operator. Notice that the rate of return in the market
model (28) is Si−Si−1

Si−1
= Yi − 1. Then the real rate of return on the investment fund is: (1− y)(Yi − 1) =

(Yi − yYi + y)− 1 = Y∗i − 1, where we assume that Yi > 1. Thus, the rate of return is Y∗ − 1 with Y∗

defined as:

Y∗i =

{
Yi, if Yi ≤ 1,

Yi − yYi + y, if Yi > 1.
(30)

Therefore, the maximum value of the investment fund (F̂I
(t,u, fI)

) with initial value fI and deposit d is

F̂I
(t,u, f I)

= f I

t

∏
i=1

Y∗i +
t−1

∑
i=zI

(u)

d
t

∏
j=i+1

Y∗i . (31)

If we assume that {Yi} has a distribution P(Y = ju) = p, P(Y = jd) = 1− p, then the asset price
at n + 1, given the value of Sn, is

Sn+1|Sn =

{
juSn, with probability p,

jdSn, with probability 1− p.

Under this model, in each time period, the asset price will go up by a constant factor of ju with
probability p, or go down by a constant factor of jd with probability 1− p, with ju ≥ 1 ≥ jd ≥ 0. At the
time n, there are 2n possible state prices. This model is known in mathematical finance as a binomial
market model. In insurance, binomial models have been applied to the problem of pricing of equity
linked products (see, for example, Costabile 2018; Costabile et al. 2008).

Under the assumption of the binomial price model, we can calculate the maximum values of the
external funds via the following algorithms. We define the maximum value of the investment fund at
time t for state price l as

F̂I
(t,u, f 1,l) = bFI(t, u, f I , l)c, l = 1, ..., 2t, (32)

where FI(t, u, f I , l) can be calculated recursively by

FI(t, u, f I , l) =



f I , if t = 0,

FI(t− 1, u, f I , dl/2e)(ju − yju + y), if 0 < t ≤ zI
(u), l = {1, 3, 5, .., Nl(t)− 1},

FI(t− 1, u, f I , l/2)jd, if 0 < t ≤ zI
(u), l = {2, 4, 6, .., Nl(t)},

(FI(t− 1, u, f I , dl/2e) + d)(ju − yju + y), if t > zI
(u), l = {1, 3, 5, .., Nl(t)− 1},

(FI(t− 1, u, f I , l/2) + d)jd, if t > zI
(u), l = {2, 4, 6, .., Nl(t)}

(33)
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with Nl(t) representing the number of state price at time t. Before the surplus reaches the dividend
trigger level l I at zI

(u), the investment fund grows at a rate of return of Y∗ − 1 (see Equation (30)).

Starting from zI
(u), the investment fund receives a deposit d from the surplus fund, and it is also

invested at the same rate of return Y∗. The state price l ∈ {1, 3, 5, .., Nl(t)− 1} represents the upward
movements, while the state price l ∈ {2, 4, 6, .., Nl(t)} represents the downward movements.

The maximum value of qard-hasan fund at time t for state price l as

FQ
(t, fQ ,l) = bFQ(t, fQ, l)c, l = 1, .., Nl(t), (34)

where fQ(t, fQ, l]) can be calculated recursively by

FQ(t, fQ, l) =


fQ, if t = 0,

FQ(t− 1, fQ, dl/2e)ju, if t > 0, l = {1, 3, 5, .., Nl(t)− 1},
FQ(t− 1, fQ, l/2)jd, if t > 0, l = {2, 4, 6, .., Nl(t)}.

(35)

The investment fund grows at a rate of return Y− 1 with a constant upward magnitude ju and
downward magnitude jd.

If by P(t, l) we denote the probability of the state price l at time t, then these probabilities can be
calculated recursively by

P(t, l) =


1, if t = 0,

P(t− 1, dl/2e)p, if t > 0, l = {1, 3, 5, .., Nl(t)− 1},
P(t− 1, l/2)(1− p), if t > 0, l = {2, 4, 6, .., Nl(t)}.

(36)

In each time period, the probability that the asset price will go up is p, while the probability that
the asset will go down is 1− p.

One example of the most popular binomial market model is the one by Cox et al. (1979). In this
model, the magnitude of the upward jump is ju = e

√
σ2 , while the magnitude of the downward jump

is jd = 1/ju, and the probability of jump-up under the risk-neutral probability measure is p = 1+r−jd

ju−jd ,

where σ2 is the asset’s variance and r is a fixed risk-free return.

4.2. Calling Point

In this subsection we define a calling point, denoted by c(t,m,u, fL)
, which represents the earliest

time point before time t when the debt from qard-hasan facility needs to be repaid before the first claim
occurs. If the elapsed waiting time at time 0 since the most recent claim occurrence is m, and the upper
bound for the the interclaim times is na (see Equation (11)), then the next claim will occur before time
na −m. Therefore the calling point c(t,m,u, fL)

is bounded by min{na −m, t}. Qard-hasan repayment
will be paid if participants have positive liability, and the surplus fund is greater than lW . Note that
the surplus and the liability at time t under the assumption of no claim occurrence are Û(t,u) and F̂L

(t, fL)
,

respectively. Then

ct,m,u, fL =

min{na −m, t}, if (Û(i,u) ≤ lW orF̂L
(i, fL)

< 0) ∀i ∈ {1, 2, ..., min{na −m, t}}
min{i ∈ {1, 2, ..., min{na −m, t}}|Û(i,u) > lW}, otherwise.

(37)

In Equation (37), the earliest time point to make a loan repayment is the earliest time the liability level
F̂L
(i, fL)

becomes positive and the surplus value Û(i,u) is greater than lW, for i = 1, 2..., min{na −m, t}.
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4.3. Recursive Formula to Calculate the Finite-Time Survival Probability

The aim of this subsection is to develop an algorithm to calculate the finite-time survival
probability (16). Once we find this value, our goal of finding the ruin probability can be achieved
by using (17). Under the condition of no external funds scenario, Cossette et al. (2006) propose a
recursive algorithm to calculate the finite time survival probabilities as the sum of conditional finite time
survival probabilities of the first claim occurring. Let us denote by σC(u, n) and σC(u, n, k), respectively,
the finite-time survival probability and the finite time conditional survival probability given that the
first claim occurs at time k, with the absence of external funds (i.e., FI

t = FQ
t = FL

t = 0). Then

σC(u, n) =
na

∑
k=1

akσC(u, n, k) =
n

∑
k=1

akσC(u, n, k) +
na

∑
k=n+1

ak. (38)

We should note that σC(u, n, k) in Equation (38) is equal to 1 for k > n, because the claim
occurrence after time n implies that the process survives until n. Under the absence of investment
activity (d = 0) and no dividend payment (δi

t = 0), Cossette et al. (2006) define σC(u, n, k), k ∈
{1, 2, .., n} as the accumulation of weighted sum of σC(u + bk− j, n− k), which is the probability of
surviving the time interval (k, n] with the level of surplus fund at time k after the claim payment is
u + bk− j, for all possible values of claim severity j that do not cause ruin at time k. Then we have

σC(u, n) =
n

∑
k=1

ak

u+bk

∑
j=1

αj(k)σC(u + bk− j, n− k) + Ak. (39)

By following the idea of Kim and Drekic (2016) of expanding the recursive Formula (39) with the
existence of external funds, the finite time survival probability (16) can be found using the recursive
algorithm as shown in Theorem 1.

Theorem 1. Let σ(u, f I , fQ, fL, n, m) be the finite time survival probability at time n, with the initial values of
the surplus fund, investment fund, qard-hasan fund, and liability level are equal to u, f I , fQ and fL, respectively,
and the elapsed time at time 0 since the most recent claim occurrence is equal to m as defined in Equation (16).
Then σ(u, f I , fQ, fL, n, m) can be calculated recursively via

σ(u, f I , fQ, fL, n, m)

=

c(n,m,u, fL)

∑
k=1

ak+m
Am

Nl(k)

∑
l=1

P(k, l)

Û(k,u)+F̂I
(k,u, f I ,l)+F̂Q

(k, fQ ,l)

∑
j=1

αj(k + m)σ(u∗(l), f ∗I (l), f ∗Q(l), f ∗L (l), n− k, 0)

+
Ac(n,m,u, fL)

+m

Am

Nl(c(n,m,u, fL)
)

∑
l=1

P(c(n,m,u, fL)
, l)σ(u′, f ′I(l), f ′Q(l), f ′L, n− c(n,m,u, fL)

, c(n,m,u, fL)
+ m),

(40)

with the boundary condition

σ(u, f I , fQ, fL, n, m) =

{
0, if u ∈ Z−or m = na,

1, if u ∈ Z∗, n = 0, and m = 0, 1, ..., na − 1,
(41)

where u∗(l), f ∗I (l), f ∗Q(l), f ∗L (l) are described in Theorem 2 below, while u′, f ′I(l), f ′Q(l), f ′L are described in
Theorem 3. In the case of investment in a non-risky asset, we set Nl(k) = 1, P(k, l) = 1, F̂I

(k,u, f I ,l) = F̂I
k,u, f I

in

Equation (23), and F̂Q
(k, fQ ,l) = F̂Q

k, fQ
in Equation (26).
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Theorem 2. The values u∗(l), f ∗I (l), f ∗Q(l), and f ∗L (l) in Equation (40) can be calculated using the
following equations:

u∗(l) = min{max{Û(k,u) − j− F̂L
(k, fL)

, lW} , Û(k,u) − j + F̂I
(k,u, f I ,l) + F̂Q

(k, fQ ,l)}, (42)

f ∗I (l) = min{max{F̂I
(k,u, f I ,l) − lW + Û(k,u) − j , 0} , F̂I

(k,u, f I ,l)}, (43)

f ∗Q(l) = min{max{min{F̂Q
(k, fQ ,l) + F̂L

(k, fL)
, F̂Q

(k, fQ ,l) + Û(k,u) − j− lW} , F̂Q
(k, fQ ,l)} ,

max{F̂Q
(k, fQ ,l) + Û(k,u) − j− lW + F̂I

(k,u, f I ,l) , 0}}
(44)

f ∗L = max{min{max{0 , F̂L
(k, fL)

− Û(k,u) + j + lW} , F̂L
(k, fL)
} ,

min{F̂L
(k, fL)

+ F̂Q
(k, fQ ,l) , F̂L

(k, fL)
+ lW − Û(k,u) + j− F̂I

(k,u, f I ,l)}}.
(45)

Theorem 3. The values u′, f ′I(l), f ′Q(l), and f ′L(l) in Equation (40) can be calculated using the
following equations:

u′ = Û(c(n,m,u, fL)
,u) −min{(Û(c(n,m,u, fL)

,u) − lW)+, F̂L
(c(n,m,u, fL)

, fL)
}, (46)

f ′I(l) = F̂I
(c(n,m,u, fL)

,u, f I ,l), (47)

f ′Q(l) = F̂Q
(c(n,m,u, fL)

, fQ ,l) + min{(Û(c(n,m,u, fL)
,u) − lW)+, F̂L

(c(n,m,u, fL)
, fL)
}, (48)

f ′L = F̂L
(c(n,m,u, fL)

, fL)
−min{(Û(c(n,m,u, fL)

,u) − lW)+, F̂L
(c(n,m,u, fL)

, fL)
}. (49)

5. Numerical Results

In this section, we implement the algorithm from Section 4 to calculate the finite-time ruin
probabilities based on the proposed Hybrid-Takaful model (i.e., Equation (17)) through recursive
Formula (40). The objective is to study the effect some of the parameters may have on ruin probability
and to investigate the performance of the proposed Takaful model in comparison with the conventional
one. We use Wolfram-Mathematica version 9.0 to do all numerical calculations.

In our simulation study, we apply the set of input parameters as in Kim and Drekic (2016) and
Achlak (2016), which will facilitate comparisons between the existing models and the proposed one.
We assume that the interclaim time follows a truncated geometric distribution with na = 25:

ak =

{
(2/11)(9/11)(k− 1) if k = 1, 2, ..., 24,

(9/11)24 if k = 25,

while the claim size distribution follows a discretized version of the Pareto distribution with mean 10.5
and variance 120

αj(k) = αj = (1 +
j− 1
30

)−4 − (1 +
j

30
)−4, j ∈ Z+. (50)

In all simulations, we set the contribution b = 5, the initial value for the participants’ fund v = 10,
the initial value of the investment fund gI = 0, and the initial value of liability gL = 0. All these values
are in the currency unit, for example, in million of dollars. We also assume that the rate of return for
the investment fund (k1) is 1% per month.

Figure 6 shows ruin probabilities for the time horizon τ = 25, and trigger points lW = 0, l I = 20,
and lD = 50. We assume a constant dividend δ1

t = δ = 3, a deposit d = 1, and an investment rate
of return for qard-hasan fund k2 = 0.02. We calculate ruin time probabilities for several values of
the maximum loan capacity gQ. In our Takaful model, we need the percentage of Mudharabah fee
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(y), while in the conventional model, this fee is zero. We consider two different values of y, namely 0
and 50%.

For the surplus and investment fund, our proposed model has similar features as the conventional
counterpart by Kim and Drekic (2016). Hence, under the assumption of no loan facility and no
Mudharabah fee, gQ = 0 and y = 0, the ruin probabilities of our proposed Takaful model are the same
as in the the conventional one. The difference between our model and Kim and Drekic (2016) model
is in the features of the loan activities. In the conventional model, there is an interest rate charged
in each loan. In addition to that, the borrower is forced to repay the loan if the loan undertaking
(including the interest rate) exceeds the maximum loan capacity. This rule may increase the chance of
a ruin occurring. The qard-hasan facility in our proposed Takaful model has two benefits; the loan
capacity may positively grow as a result of investing the undrawn-down qard-hasan, and the loan
will be repaid if there is enough money in the surplus fund. We may see from Figure 6 that the
ruin probabilities of our proposed Takaful model with Mudharabah fee y = 0 or y = 0.5 are lower
than the conventional counterpart. Moreover, a higher loan capacity produces a greater difference in
ruin probabilities between the proposed Takaful model and the conventional one. The two different
values of the Mudharabah fee that we have chosen in our implementation do not produce significantly
different ruin probabilities.

Figure 6. Finite time ruin probabilities of the conventional and the proposed Takaful models for several
values of the maximum loan capacity 0 ≤ gQ ≤ 16.

Figure 7 compares the Takaful ruin time probabilities based on the proposed model with
probabilities based on the model proposed by Achlak (2016). In the Achlak (2016) model,
the qard-hasan fund is not invested, and there is no obligation for the participants to return the
qard-hasan undertaking. We apply the same dividend value δ2

t = Ut − lD as in Achlak (2016),
with several values of the initial qard-hasan fund, gQ. Other input parameters are the same as the
input parameters that we use in the previous simulation.
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Figure 7. Finite time ruin probabilities with lW = 0, l I = 20, lD = 50, y = 0.5 , δt = Ut − lD and k2 = 0
for Ψ[10, 0, gQ, 0, 25]1, k2 = 0.01 for Ψ[10, 0, gQ, 0, 25]2, and k2 = 0.02 for Ψ[10, 0, gQ, 0, 25]3.

We also set 3 different values of the rate of return for qard-hasan fund (k2 ∈ {0, 0.01, 0.02}). In the
case of no qard-hasan facility, we obtain the same ruin probabilities as that based on the Achlak (2016)
model for all values of k2. This is because the surplus and investment features in our proposed
model are the same as the ones in Achlak (2016). For gQ > 0, when the qard-hasan fund is not
invested (k2 = 0), the qard-hasan repayment in our proposed model causes the ruin probability to be
slightly higher than the one without loan repayment. This result can be explained by the fact that loan
repayment causes a delay in depositing the investment fund. However, if we invest in the qard-hasan
fund, the obligation of loan repayment leads to lower ruin probabilities than those without loan
repayment. The difference between finite-time ruin probabilities with and without loan repayment
becomes more visible when the initial value of the qard-hasan fund (gQ) increases.

Figure 8 represents finite-time ruin probabilities for the time horizon τ = 12 with trigger points
lW = 0, 0 ≤ l I ≤ 50, lD = 50, initial qard-hasan fund gQ = 10, Mudharabah fee y = 5%, deposit d = 1,
and dividend δ = 3. We consider four different assumptions about the asset’s return: the first one
is a non-risky asset with the rate of return of 1% per month. The other three are risky assets with
the expected rate of return of 1% per month and variances 0.0001, 0.001, and 0.01. In this study
we apply the Cox et al. (1979) model as explained in Section 4.1.3. The graph suggests that the
finite-time ruin probabilities increase as the variance of the asset is increased. In addition, we may
see that the finite-time ruin probabilities for non-risky assets (σ2 = 0) and risky assets with low
variance (σ2 = 0.0001) increase as we increase the investment trigger level l I . This phenomenon can be
explained by the fact that when l I increases then deposits in investment activities will be delayed. This,
in turn, reduces the probability of ruin, since positive returns are earned from investment activities on
the external fund only. However, the previous argument does not apply to the case of investing in the
risky asset with high volatility, which can be explained by the fact that investing in such assets may
produce large negative returns that will reduce the total reserve of Takaful fund. Thus, higher volatility
of the asset price will increase the riskiness of the Takaful product, in the sense that higher volatility of
the asset’s return produces a higher ruin probability. For both σ2 = 0.001 and 0.01, the optimal level to
invest is l I = 45 based on the ruin probability criterion.
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Figure 8. Finite time ruin probabilities corresponding to the interclaim time distribution (c) with lW = 0,
0 ≤ l I ≤ 45, lD = 50, y = 0.05 , δt = 3, d = 1, k1 = 0.01, k2 = 0.02, v = 10, gI = 0, gQ = 10, gL = 0,
and τ = 15.

6. Conclusions

In this paper, we propose a framework of Hybrid-Takaful that incorporates investment activities
and qard-hasan facility. Qard-hasan (benevolent loan) facility is the non-interest loan provided by
shareholders to Takaful participants in the case of a deficit. We assume that the qard-hasan undertaking
will be returned if the participants’ fund gains surplus in the future. We construct a surplus process of
the participants’ fund, and then derive a method of calculating finite-time ruin probabilities.

Based on our numerical simulations, we find that the qard-hasan facility improves the
performance of the fund as it decreases the finite-time ruin probabilities. This can be explained
by the fact that this facility, unlike in the conventional insurance, provides loans at no cost and no
mandatory repayment when there is a deficit. In addition, paying off the qard-hasan undertaking
not only follows the Shariah rule but also has a positive effect on the business, if we invest the
undrawn-down qard-hasan in non-risky assets. By paying off the loan undertaking to the qard-hasan
fund, we can guarantee that the fund will grow at the corresponding rate of return. If the fund remains
in the surplus account, then the investment return is delayed until the surplus account reaches the
investment trigger level.

Our study incorporates the option to invest the investment fund and qard-hasan fund in the
same risky asset under the assumption of binomial CRR market model. For future research, we will
extend the model to two correlated risky assets for the investment fund and qard-hasan fund. For this
case, we may follow the idea of Moon et al. (2008), who constructed the binomial state price for two
dependent assets.
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Appendix A. The proof of Theorems

Appendix A.1. Proof of Theorem 1

Proof. By incorporating a debt fund scenario (i.e., qard-hasan facility in Takaful), there is the possibility
to make a loan repayment before the first claim occurs. Hence, we need to reset the recursive
calculation (39) at the time the qard-hasan repayment is made (i.e., at the calling point c(n,m,u, fL)

).
In practice, we need to consider two cases when calculating σ(u, f I , fQ, fL, n, m), which correspond to
the first claim occurring either before the calling point cn,m,u, f before or after this point. The calculations
of the first case are similar to those in (39). But, the pmf of the interclaim time is now conditional on the
value of m. While, in the second case the calculations need a different approach. From the explanation
above, we get

σ(u, f I , fQ, fL, n, m) =

c(n,m,u, fL)

∑
k=1

ak+m
Am

Pr{T > n|U0 = u, FI
0 = f I , FQ

0 = fQ,

FL
0 = fL, M0 = m, W1(m) = k}+

Ac(n,m,u, fL)

Am
Pr{T > n|U0 = u, FI

0 = f I ,

FQ
0 = fQ, FL

0 = fL, M0 = m, W1(m) > c(n,m,u, fL)
}.

(A1)

The probabilities in the right hand side of Equation (A1) represent the probabilities that the
ruin does not occur until time point n, given that the first claim X1 takes place at time W1(m) = k,
where W1(m) is the duration from the initial time point until the first claim occurring, given that
the elapsed waiting time since the most recent claim is m. Next, our objective is to prove that the
right-hand side of Equation (A1) is the same as the right-hand side of Equation (40). In particular,
we will prove the following equations:

Pr{T > n|U0 = u, FI
0 = f I , FQ

0 = fQ, FL
0 = fL, M0 = m, W1(m) = k} =

Nl(k)

∑
l=1

P(k, l)

Û(k,u)+F̂I
(k,u, f I ,l)+F̂Q

(k, fQ ,l)

∑
j=1

αj(k + m)σ(u∗(l), f ∗I (l), f ∗Q(l), f ∗L (l), n− k, 0), k ∈ {1, 2, .., c(n,m,u, fL)
},

(A2)

and
Pr{T > n|U0 = u, FI

0 = f I , FQ
0 = fQ, FL

0 = fL, M0 = m, W1(m) > c(n,m,u, fL)
} =

Nl(c(n,m,u, fL)
)

∑
l=1

P(c(n,m,u, fL)
, l)σ(u′, f ′I(l), f ′Q(l), f ′L, n− c(n,m,u, fL)

, c(n,m,u, fL)
+ m).

(A3)

To prove Equation (A2) we use a similar approach as in Cossette et al. (2006). The conditional
survival probability given the first claim occur at time k ∈ {1, 2, .., c(n,m,u, fL)

} is the weighted sum of
σ(u∗, f ∗I , f ∗Q, f ∗L , n− k, 0), which is the probability of surviving the time interval (k, n] with the level
of funds’ process at time k after the claim payment is u∗, f ∗I , f ∗Q, f ∗L , for all possible values of claim
severity j that do not cause ruin. The maximum value of claim severity is bounded above by the
amount of total available funds in the surplus fund, investment fund, and qard-hasan fund at time k
before the first claim payment. This value is equal to Û(k,u) + F̂I

(k,u, f I ,l) + F̂Q
(k, fQ ,l), for all possible state

prices l ∈ {1, 2, .., Nt(k)}. Where Ûk,u, F̂I
(k,u, f I ,l), and F̂Q

(k, fQ ,l) are the maximum values of fund processes
that explained in Section 4.1. The initial surplus and external fund amounts for the next recursion,
u∗, f ∗I , f ∗Q, f ∗L , are determined by the size of contributions and the incured claim j that can be found in
Theorem 2. This explanation proves Equation (A2).
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Now, we follow the idea proposed by Kim and Drekic (2016) to prove Equation (A3). In situations
when W1(m) > c(n,m,u, fL)

, we do not consider on the claim payment, instead we consider
making the qard-hasan repayment at time c(n,m,u, fL)

. Since we are not considering the claim
occurrence at time c(n,m,u, fL)

, for the next recursion, the elapsed waiting time counter is increased
by c(n,m,u, fL)

, while n is reduced by c(n,m,u, fL)
. The initial funds’ processes for the next recursion are

u′, f ′I(l), f ′Q(l), f ′L, which represents the funds’ level after the qard-hasan repayment is made at time
c(n,m,u, fL)

. These values can be found in Theorem 3.

Appendix A.2. Proof of Theorem 2

Proof. When explaining the formulas for u∗(l), f ∗I (l), f ∗Q(l), f ∗L (l), it is convenient to split their values
into 5 cases depending on the possible positions of the surplus level after a claim payment. We define
array (u∗(l), f ∗I (l), f ∗Q(l), f ∗L (l)) in the following explanation for each case.

• case 1: Û(k,u)− j− lW ≥ F̂L
(k, fL)

. Since in this case the surplus level after the claim payment exceeds

lW and is greater than the liability level, we make full qard-hasan repayment. Therefore we have
(Û(k,u) − j− F̂L

(k, fL)
, F̂I

(k,u, f I ,l), F̂Q
(k, fQ ,l) + F̂L

(k, fL)
, 0).

• case 2: 0 ≤ Û(k,u) − j− lW < F̂L
(k, fL)

. In this case, the surplus level after the claim payment exceeds

lW but is not enough to cover all liability. Hence, we make the qard-hasan repayment equal to
the difference between the surplus and the level lW . Therefore, we have (lW , F̂I

(k,u, f I ,l), F̂Q
(k, fQ ,l) +

(Û(k,u) − j− lW), F̂L
(k, fL)

− (Û(k,u) − j− lW)).

• case 3: F̂I
(k,u, f I ,l) ≥ lW − (Û(k,u)− j) > 0. In this case, the surplus level after the claim payment is less

then lW . Therefore, we need to withdraw from the investment fund to bring the surplus value back
to the level lW . Thus, we have (lW , F̂I

(k,u, f I ,l), F̂Q
(k, fQ,l) + (Û(k,u) − j− lW), F̂L

(k, fL)
− (Û(k,u) − j− lW)).

• case 4: F̂Q
(k, fQ,l) ≥ lW − Û(k,u) + j− F̂I

(k,u, f I ,l) > 0. In this case, the surplus level after the claim

payment is less then lW , and the investment fund is not enough to cover the deficit of surplus fund,
then we need to borrow from the qard-hasan fund to bring the surplus value back to the level lW .
Therefore, we have (lW , 0, F̂Q

(k, fQ,l)+ Û(k,u)− j− lW + F̂I
(k,u, f I ,l), F̂L

(k, fL)
− (Û(k,u)− j− lW + F̂I

(k,u, f I ,l))).

• case 5: F̂Q
(k, fQ ,l) < lW − Û(k,u) + j− F̂I

k,u, f I ,l . In this case, the surplus level after the claim payment

is less then lW , however both the investment and qard-hasan funds are not enough to bring
the surplus fund back to the level lW . Thus, the maximum surplus level is equal to Û(k,u) − j +

F̂I
(k,u, f I ,l) + F̂Q

(k, fQ ,l). As long as this value is non-negative, the recursive calculation is still running.
If this value is negative, then the calculation is finished based on the boundary condition (41).
Therefore, we have (Û(k,u) − j + F̂I

(k,u, f I ,l) + F̂Q
(k, fQ ,l), 0, 0, F̂L

(k, fL)
+ F̂Q

(k, fQ ,l)).

Appendix A.3. Proof of Theorem 3

Proof. At time c(n,m,u, fL)
, we need to perform qard-hasan repayment by withdrawing from the surplus

fund and adding to the qard-hasan fund. The amount of qard-hasan that is borrowed by participants
at time c(n,m,u, fL)

is F̂L
(c(n,m,u, fL)

, fL)
, hence this is the maximum value that need to be repaid. However,

in our model, qard-hasan repayment should not bring the surplus level drop below lW . By this
assumption, the maximum value that can be paid at time c(n,m,u, fL)

is (Û(c(n,m,u, fL)
,u) − lW)+. We apply

function X+ = max{0, X} to make sure the criteria of qard-hasan repayment is Û(c(n,m,u, fL)
,u) ≥

lW . Therefore, the total amount of qard-hasan repayment at time c(n,m,u, fL)
is min{(Û(c(n,m,u, fL)

,u) −
lW)+, F̂L

(c(n,m,u, fL)
, fL)
}. After the qard-hasan fund is made, the total liability at time c(n,m,u, fL)

is reduced.

Qard-hasan repayment did not make any change to the level of investment fund.
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Appendix B. List of Symbols

Table A1. List of Symbols.

Symbol Description

ak, k = {1, .., na} probability mass function (pmf) of Wi
Ak, k ∈ {1, .., na} survival function of Wi
b contribution
c(t,m,u, fL) calling point for time horizon t with initial values m, u, fL, and M0 = m
d deposit
FI Investment fund
FL Libaility fund
FQ Qard-hasan fund
F̂s, s ∈ {I, Q, L} Maximum value of Fs

Fs
t , s ∈ {I, Q, L} Level of Fs at the end of period (t− 1, t]

Fs
t−, s ∈ {I, Q, L} Level of Fs after claim payment,

before withdraw and borrowing corresponding to time interval (t-1,t]
jd magnitude of asset price down-ward movement
ju magnitude of asset price upward movement
k1 investment gain of FI under assumption risk-free asset
k′1 real investment gain of FI

k1 investment gain of FQ under assumption risk-free asset
lD trigger level for dividend payment
l I trigger level for investment activities
lW minimal requirement of surplus fund
M0 elapsed waiting time since the most recent claim occurrence
na upper bound of Wi
Nl(t) number of asset state prices at time t
p probability of asset price upward movement
P(t, l) probability of the state price l at time t
T ruin time
U Surplus fund
Ut Level of U at the end of period (t− 1, t]
Ut− Level of U after claim payment,

before withdraw and borrowing corresponding to time interval (t− 1, t]
Û Maximum value of U
Wi time between claims (i− 1) and i
Xi i-th claim’s severity
y percentage of Mudharabah fee
zI(u) the earliest time U with initial value u reaches l I

zD(u) the earliest time U with initial value u reaches lD

αj(k) conditional pmf of Xi given Wi = k
δ1

t a constant dividend
δ2

t excess surplus dividend
Ψ(.) finite-time ruin probability
σ2 variance of asset price rate of return
σ(.) finite-time survival probability
τ time horizon of the finite-time ruin/survival probability
x+ max{x, 0}
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