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Abstract: We investigate any similarity and dependence based on the full distributions of cryptocur-
rency assets, stock indices and industry groups. We characterize full distributions with entropies
to account for higher moments and non-Gaussianity of returns. Divergence and distance between
distributions are measured by metric entropies, and are rigorously tested for statistical significance.
We assess the stationarity and normality of assets, as well as the basic statistics of cryptocurrencies
and traditional asset indices, before and after the COVID-19 pandemic outbreak. These assessments
are not subjected to possible misspecifications of conditional time series models which are also
examined for their own interests. We find that the NASDAQ daily return has the most similar density
and co-dependence with Bitcoin daily return, generally, but after the COVID-19 outbreak in early
2020, even S&P500 daily return distribution is statistically closely dependent on, and indifferent
from Bitcoin daily return. All asset distances have declined by 75% or more after the COVID-19
outbreak. We also find that the highest similarity before the COVID-19 outbreak is between Bitcoin
and Coal, Steel and Mining industries, and after the COVID-19 outbreak is between Bitcoin and
Business Supplies, Utilities, Tobacco Products and Restaurants, Hotels, Motels industries, compared
to several others. This study shed light on examining distribution similarity and co-dependence
between cryptocurrencies and other asset classes.

Keywords: cryptocurrency; bitcoin; entropy; co-dependence; COVID-19

1. Introduction

Since the emergence of Bitcoin based on blockchain technology in 2018, global financial
markets have witnessed the birth and rapid rise of cryptocurrencies (cryptos) as a new
asset class. Cryptos are based on fundamentally new technologies, the potential of which
highly anticipated but not fully understood. In their current form, however, cryptos are
also behaving like high growth assets. The cryptocurrency market is an important part of
the global assets markets. As of September 2020, there were over 18.53 million Bitcoins in
circulation with a total market value of around USD 199.62 billion.

With the rapid development of the cryptocurrency market, the literature has focused
on statistical properties and risk behavior of cryptocurrency in comparison with classical
assets, like equities and exchange rates. In the setting of time series models, Pichl and
Kaizoji (2017) found that cryptocurrency markets are even more volatile than foreign ex-
change markets. Bouri et al. (2017), (Katsiampa 2017), (Bariviera 2017) and ( Stavroyiannis
2018) observed the phenomenon of volatility clustering in cryptocurrency market. Regime-
switching behaviors are detected by (Bariviera et al. 2017), (Balcombe and Fraser 2017),
(Thies and Molnar 2018) have identified structural breaks in the volatility process of Bit-
coin via a Bayesian framework. Lahmiri et al. (2019) and (Lahmiri and Bekiros 2018) have
pointed out that Bitcoin markets are characterized by long memory and multifractality.
Recent studies also examined the performance of cryptos under the COVID-19 pandemic.
Vukovic et al. (2021) developed a unique COVID-19 global composite index that measures
COVID-19 pandemic time-variant movements on each day. Sarkodie et al. (2021) investi-
gated the implication of COVID-19 outcomes on market prices of several leading cryptos.
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Naeem et al. (2021) quantified the spillover effects among seven cryptos to explore the
spillover characteristics cryptos, and discovered that Bitcoin, Litecoin, and Ripple are the
dominant transmitters to return spillover. These studies inspired us to investigate how the
density similarities between cryptos, stocks and industry groups will be affected by the
COVID-19 outbreak.

Statistical similarity and co-dependence are central to the analysis of market efficiency
and allocation. Most existing studies focus on Bitcoin returns and “correlation” analysis.
For example, (Baur et al. 2018) show that Bitcoin returns are essentially uncorrelated with
traditional asset classes such as stocks and bonds, which points to diversification possibilities.
Other studies investigate the determinants of Bitcoin returns. Li and Wang (2017) suggest
that measures of financial and macroeconomic activity are drivers of Bitcoin returns.
Kristoufek (2015) considers financial uncertainty, Bitcoin trading volume in Chinese Yuan
and Google trends as potential drivers of Bitcoin returns. Recently, many studies examine
whether Bitcoin belongs to any existing asset classes, with many comparing it to gold, others
to precious metals or to speculative assets (Baur et al. 2018). Some have classified Bitcoin as
a new asset class within currency and commodity groups (Dyhrberg 2016).

Another area of interest is forecasting Bitcoin volatility, since such forecasts represent
an important ingredient in risk assessment and allocation, and derivatives pricing theory.
Balcilar et al. (2017) analyze the causal relation between trading volume and Bitcoin returns
and volatility. They find that volume cannot help to predict the volatility of Bitcoin returns.
Bouri et al. (2017) find no evidence for asymmetry in the conditional volatility of Bitcoins
when considering the post December 2013 period and investigate the relation between the
VIX index and Bitcoin volatility.Al-Khazali et al. (2018) consider a model for daily Bitcoin
returns and show that Bitcoin volatility tends to decrease in response to positive news
about the US economy.

Scant attention has been paid to the full distributions of these assets. An exception is
(Osterrieder and Lorenz 2017) and (Begusic et al. 2018) who have studied the unconditional
distribution of Bitcoin returns and found that it has more probability mass in the tails than
that of foreign exchange and stock market returns. Findings that are based on models of
return and volatility, possibly with conditional covariates, are in effect assessing if similar
mechanisms apply to different asset class returns. While this is an aspect of similarity,
it does not respond, and indeed may impinge on the assessment of similarity of return
outcomes/distributions. Similar distributions may arise from different evolutions and
mechanisms over time.

Our objective in this paper is to revisit some stylized facts of cryptocurrency markets
and employ econometrics models for accurate volatility forecasts. In contrast to previous
studies that use time series models to forecast crypto returns, in this paper we use entropy
profiles of different asset classes and indices, as well as the cryptos. We test for similarity
between cryptocurrency and stock returns in a manner that captures nonlinearities and
higher moments, nonparametrically. We consider both Bitcoin and Ethereum as leading
crypto which have large volume and relatively long histories. We use nonparametric en-
tropy metrics to test equality between crypto density and stock market index returns. Time
series models (ARIMA and GARCH), in contrast, impose a (traditionally) restrictive linear
structure on the return data. This may produce non robust inferences and conclusions.

Efficient market analysis is based on (typically) linear relation between a given asset
and market returns. In this paper, we examine the general definition of dependence
between crypto return and stock market returns. Stochastic independence is tested and
degree of dependence is measured with entropy metrics.

The rest of the paper is organized as follows: Section 2 presents the data analysis
and some stylized facts. In Section 3, we calculate nonparametric entropy metrics to
test the density equality between two cryptos (Bitcoin and Ethereum), two stock market
indexes (S&P500 and NASDAQ) and 30 commodity industry groups. We conduct equality
tests on both marginal distributions and conditional distributions for two periods (pre-
COVID and COVID era) and compare the results. In Section 4, we consider a Diff-in-diff
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analogy to identify any impact of COVID-19. It is found to be large and significant,
producing far greater convergence between asset classes and cryptos. Section 5 provides
the concluding remarks.

2. Data and Basic Characteristics

The cryptocurrency data and stock market index data set consists of daily spot ex-
change rates in units of US dollars are from Yahoo Finance1. The price observations of
Bitcoin (BTC-USD), Ethereum (ETH-USD), S&P500 stock market index (ˆGSPC) and NAS-
DAQ stock market index (ˆIXIC) range from 6 August 2015 to 1 September 2020. We
divided the time period into two parts: pre-COVID (6 August 2015–31 January 2020) and
COVID era (1 February 2020–1 September 2020). In each data set of crypto market and
stock market indices, we have open price, intraday high price, intraday low price, close
price (adjusted for splits), adjusted close price (adjusted for both dividends and splits) and
volume. To better illustrate the relationship between crypto market data and stock market
indexes, we calculate the daily log return using adjusted close price:

Returnt = 100 ∗ [ln(Pt)− ln(Pt−1)], (1)

where Pt denotes the adjusted close price in USD at a time t.
We now document main statistical properties of time series for the returns of S&P500

stock market index, NASDAQ stock market index, Bitcoin and Ethereum. Figure 1 illus-
trates the time evolution of prices, volumes and daily log-returns for S&P500, NASDAQ,
Bitcoin and Ethereum. We notice that both Bitcoin and Ethereum arrive their period spe-
cific highest price in December 2017 within our analysis period. After this period price
peak, the crypro price dropped dramatically. The descriptive statistics of daily log-returns
are reported in Table 1. The daily returns of crypto markets exhibit high variability and
excess kurtosis, both during pre-COVID and COVID era periods. The deviations from the
Normal distribution are confirmed by the Jarque–Bera test that rejects the null hypothesis
of normality.

We applied the Augmented Dicker–Fuller (ADF) unit-root test, which suggests sta-
tionarity of the log-returns. An ADF test tests the null hypothesis that a unit root is present
in a time series sample. The alternative hypothesis is different depending on which version
of the test is used, but is usually stationary or trend-stationary. In our case, we use the
alternative hypothesis of stationary. This shows that the null hypothesis is rejected, and
the time series of returns in each markets is stationary. These observations suggest that
the crypto market is not as efficient as stock or foreign exchange markets, which display a
complete lack of predictability (Lahmiri and Bekiros 2018).

Since early 2020, the COVID-19 wreaked unprecedented havoc on the world economies.
Educational institutions, travel industry to public events, almost everything is either post-
poned or in limbo, which is inevitably going to affect businesses at every turn. Thousands
of cases and deaths have already been recorded globally, and with the uncertainty on
development of vaccines, the stock markets began to take many hits in terms of new lows.
The S&P 500 index hit a period low since 2008 when the world plunged into a financial
crisis. The cryptocurrency market has even become more volatile and has also experienced
one of the worst sudden declines. We also noticed from Figure 1 that both cryptos and
stock market indexes became more uncertain since the COVID-19 outbreak in early 2020.
The return prices and volumes of Bitcoin and Ethereum also surged since early 2020.
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Table 1. Descriptive statistics.

Pre-COVID (Aug. 2015–Jan. 2020) COVID Era (Feb. 2020.–Sep. 2020

Daily Log-Return S&P500 Nasdaq Bitcoin Ethereum S&P500 Nasdaq Bitcoin Ethereum

Observations 1129 1129 1640 1639 147 147 213 213
Mean 0.04 0.05 0.21 0.25 0.05 0.16 0.11 0.45
Standard deviation 0.86 1.04 3.89 7.09 2.72 2.71 4.61 5.92
Skewness −0.57 −0.51 −0.18 −3.44 −0.73 −0.92 −4.49 −3.68
Kurtosis 4.12 3.15 4.72 72.46 5.13 5.27 48.02 35.51
Augmented Dickey-Fuller (ADF) −10.98 ** −11.26 ** −10.93 ** −10.93 ** −5.64 ** −5.48 ** −5.16 ** −4.98 **
Jarque–Bera 862.50 *** 518.27 *** 1538.80 *** 362,486 *** 180.51 *** 197.22 *** 21,507 *** 11,855 ***

Note: Entries marked with *** have empirical p-values < 0.01 and ** 0.01 ≤ p < 0.05 under the null of non-stationary data for ADF test and
the null of normally distributed data for Jarque–Bera test.

Figure 1. Cont.
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Figure 1. Plot of price, volume and daily log-returns.

3. Entropy Profiles Method
3.1. Brief Introduction to Information Theory and Entropy

Consider two variables X and Y. Correlation between them may be ill defined when
they are discrete, and may be a poor measure of ”relation" when nonlinearity and/or
non-Gaussianity is involved.

Let < = {a1, a2, ..., aM} be a finite set and p be a proper probability mass function
(PDF) on <. The amount of information needed to fully characterize all of the elements of
this set consisting of M discrete elements is defined by I(<M) = log2M and is known as
Hartley’s formula. Shannon (1948) built on Hartley’s formula in the context of digitization
and communications, to develop Shannon’s entropy:

H(p) = −
M

∑
i=1

pilog(pi), (2)

with xlog(x) tending to zero as x tends to zero. This information criterion measures the
uncertainty or informational content that is implied by p. The entropy-uncertainty measure
H(p) reaches a maximum when p1 = p2 = ... = pM = 1/M (and is equal to Hartley’s
formula) and a minimum with a point mass function. It is emphasized here that H(p)
is a function of the probability distribution. For example, if η is a random variable with
possible distinct realizations x1, x2, ..., xM with probabilities p1, p2, ..., pM, the entropy H(p)
does not depend on the values x1, x2, ..., xM of η. If, on the other hand, η is a continuous
random variable, then the entropy of a continuous density is

H(x) = −
∫

p(x)log(p(x))dx, (3)

a differential entropy.
Renyi (1961) showed that, for a (sufficiently often) repeated experiment, one needs

on average the amount H(p) + ε of zero-one symbols (for any positive ε) in order to
characterize an outcome of that experiment. Thus, it seems logical to “expect” that the
outcome of an experiment contains H(p) information.

Similarly, H(p) is a measure of uncertainty about a specific possible outcome before
observing it, which is equivalent to the amount of randomness represented by p. It is pro-
portional to “variance” in the case of a Normal distribution. Thus, entropy is a far superior
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and robust measure of volatility/risk than variance for non Gaussian phenomena. It is
indeed unique for any distribution, much as the characteristic function is, both representing
all the moments of a distribution, which could be merely the mean and variance in the case
of a Normal variable. Asset returns are not Gaussian!

Given a prior or competing distribution q, defined on <, the cross-entropy (Kullback
and Leibler 1951) measure is

I(p; q) =
M

∑
i=1

pilog(pi/qi), (4)

where a uniform q reduces I(p; q) to H(p). This measure reflects the gain in information
with respect to < resulting from the additional knowledge in p relative to q. Like with
H(p), I(p; q) is an information theoretic distance of p from q. It can be symmetrized by
averaging I(p; q) and I(q; p).

Facing the fundamental question of drawing inferences from limited and insuffi-
cient data, Jaynes proposed the maximum entropy (ME) principle, which he viewed as a
generalization of Bernoulli and Laplace’s Principle of Insufficient Reason.

Given T constraints, perhaps in the form of moments, Jaynes proposed the ME method,
which is to maximize H(p) subject to the T structural constraints. Thus, given moment
conditions, Xt (t = 1, 2, ..., T), where T < M, the ME principle prescribes choosing the
p(ai) that maximizes H(p) subject to the given constraints (moments) of the problem. The
solution to this underdetermined problem is

p̂(ai) ∝ exp{−∑
t

λ̂tXt(ai)}, (5)

where λ are the T Lagrange multipliers, and λ̂ are the values of the optimal solution
(estimated values) of λ. Naturally, if no constraints are imposed, H(p) reaches its maximum
value and the p are distributed uniformly.

Building on Shannon’s work, a number of generalized entropies and information
measures were developed. Starting with the idea of describing the gain of information,
(Renyi 1970) developed the entropy of order α for incomplete random variables. The
relevant generalized entropy measure of a proper probability distribution is

HR
α (p) =

1
1− α

log ∑
k

pα
k . (6)

Shannon measure is a special case of this measure where α→ 1. Similarly, the Renyi
cross-entropy of order α is

IR
α (x|y) = IR

α (p, q) =
1

1− α
log ∑

k

pα
k

qα−1
k

, (7)

which is equal to the traditional cross-entropy measure as α → 1. Only one member of
these “divergence” measures is a metric, which we define below.

Entropy has been actively considered in finance theory since at least 1999. According
to (Gulko 1999), “entropy pricing theory” suggests that in information efficient markets,
perfectly uncertain market beliefs must prevail. Using entropy to measure market uncer-
tainty, entropy-maximizing market beliefs must prevail. One can derive (entropy) optimal
asset pricing models that are similar to the Black–Scholes model (with the log-normal
distribution replaced by other probability distributions).

3.2. Using Entropy to Test Equality of Univariate Densities

Maasoumi and Racine (2002) considered a metric entropy that is useful for testing
for equality of densities for two univariate random variables X and Y. The function
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computes the nonparametric metric entropy (normalized Hellinger, or (Granger et al. 2004)
for testing the null of equality of two univariate density (or probability) functions. For
continuous variables,

Sρ =
1
2

∫
( f 1/2

1 − f 1/2
2 )2dx

=
1
2

∫
(1−

f 1/2
2

f 1/2
1

)2dF1(x),
(8)

where f1 = f (x) and f2 = f (y) are the marginal densities of the random variables X and
Y. The second expression is in a moment from which is often replaced with a sample
average, especially for theoritical developments. If the density of X and the density of
Y are equal, this metric will yield the value zero, and is otherwise positive and less than
one. We use Sρ to test the distance between crypto density and stock market index density.
Some properties this entropy measure Sρ are given in (Granger et al. 2000) and (Giannerini
et al. 2015). In particular, the modulus of Sρ is between 0 and unity; Sρ is equal to or has a
simple relationship with the (linear) correlation coefficient in the case of a bivariate normal
distribution; Sρ is metric, that is, it is a true measure of distance and not just of ”divergence".
This is especially important in our applications where triangularity property is required in
meaningful comparative assessments of several distances and asset classes.

Software for nonparametric kernel smoothing implementation of this metric is made
available in R (NP package) among others. For the kernel function, we employ the widely
used nonparametric second-order Gaussian kernel, while bandwidths are selected via
likelihood cross-validation (Nakayama and Silverman 1986). Bootstrap is conducted via
resampling with replacement from the pooled empirical distributions of X and Y under
the null hypothesis of equality.

We estimate the metric Sρ for the daily returns data for x = Returncrypto and
y = Returnstock. Table 2 shows the Sρ values and the corresponding p-values. As was noted
in (Granger et al. 2000) and (Skaug and Tjostheim 1996), the asymptotic distribution of
Sρ is unreliable for practical inference. We therefore compute p-values by resampling the
statistic under the null of equality.

Examining Table 2, we see that Sρ is smallest between x = Bitcoin and y = NASDAQ,
both during the pre-COVID and COVID era periods, which indicates that the distance
between the densities of Bitcoin daily returns and NASDAQ daily returns is smaller than
other combinations. The p-value shows that the result is significant. By visualizing the
result in Figures 2–5, we can also see the Bitcoin daily returns density and the NASDAQ
stock market index daily returns density have similar shapes. While during COVID era,
also S&P500 returns distribution is statistically closely dependent on, and indifferent
from Bitcoin’s.

Comparing Sρ before and after the COVID-19 outbreak, we conclude that the values of
Sρ decrease generally in all cases, sometimes dramatically. This suggests that the densities
of crypto and stock index returns became more similar with the advent of COVID-19. This
mostly due to a large change in the distribution of major stock indices, but also party due
to a smaller movement in crypto distributions.

Table 3 reveals the entropy metric Sρ of the assets themselves pre-COVID and COVID
era. By doing so, we can see if the difference between the cryptos and stocks is partly
due to specific asset change caused by the effect of COVID-19. The results show that the
distributions of S&P500 and NASDAQ changed dramatically and significantly before and
after the COVID-19 outbreak, which indicates that the changes of Sρ between cryptos and
stocks may mainly caused by the changes of stocks’ distributions. We will dive deeper on
this part in Section 4.
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Table 2. Test equality of univariate densities: cryptos and stocks.

Pre-COVID (Aug. 2015–Jan. 2020) COVID Era (Feb. 2020–Sep. 2020) Difference

Daily Log-Return S_rho p-Value S_rho p-Value

S&P500 and Bitcoin 0.20 2.22 × 10−16 *** 0.04 0.1010 −0.16
S&P500 and Ethereum 0.33 2.22 × 10−16 *** 0.08 2.22 × 10−16 *** −0.25
NASDAQ and Bitcoin 0.16 2.22 × 10−16 *** 0.04 0.0404 * −0.12
NASDAQ and Ethereum 0.28 2.22 × 10−16 *** 0.08 2.22 × 10−16 *** −0.20

Note: Entries marked with *** have empirical p-values < 0.01 and * 0.05 ≤ p < 0.10 under the null of independence of returns.

Table 3. Test equality of univariate densities: assets with themselves pre-COVID and COVID era.

Daily Log-Return S_rho p-Value

S&P500 with itself pre-COVID and COVID era 0.13 <2.22 × 10−16 ***
NASDAQ with itself pre-COVID and COVID era 0.10 <2.22 × 10−16 ***
Bitcoin with itself pre-COVID and COVID era 0.02 0.3737
Ethereum with itself pre-COVID and COVID era 0.02 0.0303 *
Note: Entries marked with *** have empirical p-values < 0.01 and * 0.05 ≤ p < 0.10 under the null of
independence of returns.

Figure 2. Density of NASDAQ: pre-COVID.
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Figure 3. Density of Bitcoin: pre-COVID.

Figure 4. Density of NASDAQ: COVID era.
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Figure 5. Density of Bitcoin: COVID era.

3.3. Similarity with Select Asset Classes

In this part, we apply the same method to test the equality of densities for daily
returns of Bitcoin and stocks in different industry groups. The data for daily stock returns
in different industries comes from Kenneth R. French 30 Industry Portfolios2. We use
the daily average value weighted returns for 30 industry portfolios data. The 30 indus-
try portfolios include: Food Products (Food), Beer and Liquor (Beer), Tobacco Products
(Smoke), Recreation (Games), Printing and Publishing (Books), Consumer Goods (Hshld),
Apparel (Clths), Healthcare (Hlth), Medical Equipment, Pharmaceutical Products, Chemi-
cals (Chems), Textiles (Txtls), Construction and Construction Materials (Cnstr), Steel Works
Etc (Steel), Fabricated Products and Machinery (Fabpr), Electrical Equipment (Elceq), Au-
tomobiles and Trucks (Autos), Aircraft, ships, and railroad equipment (Carry), Precious
Metals, Non-Metallic, and Industrial Metal Mining (Mines), Coal (Coal), Petroleum and
Natural Gas (Oil), Utilities (Util), Communication (Telcm), Personal and Business Services
(Servs), Business Equipment (Buseq), Business Supplies and Shipping Containers (Pa-
per), Transportation (Trans), Wholesale (Whlsl), Retail (Rtail), Restaraunts, Hotels, Motels
(Meals), Banking, Insurance, Real Estate, Trading (Fin), Everything Else (Other). We apply
the nonparametric entropy metrics test of equality of densities proposed in (Renyi 1961),
described above, where f1 = f (x) and f2 = f (y) are the marginal densities of daily returns
of Bitcoin and stocks in different industries, respectively.

From Table 4, we calculated the entropy measures between Bitcoin and select asset
classes. During pre-COVID period, the density of Bitcoin daily return has smallest distance
with the density of Coal industry daily return. The Sρ between these two densities is 0.02
and statistically significant. The density of Bitcoin daily return also has small distances
with densities of Steel Works Etc, as well as Precious Metals, Non-Metallic, and Industrial
Metal Mining industries, with Sρ values of 0.07 and 0.09, respectively. During COVID
era, the density of Bitcoin daily return has smallest distance with the density of Business
Supplies and Shipping Containers, Utilities, Tobacco Products and Restaraunts, Hotels,
Motels industries daily returns, with Sρ values of 0.03. Comparing Sρ before and after the
COVID-19 outbreak, we conclude that the values of Sρ decrease generally in all cases. This
is consistent with our findings with stock indexes in the previous section, which indicates
that forecasting cryptos’ performance could be more feasible during COVID era.
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We also calculated the Sρ with select asset classes with themselves before and after
the COVID-19 outbreak (see column 2 in Table 4). It is clear that for all industry groups
during COVID era, the asset distributions diverge from their own pre-COVID distributions,
and the distribution divergence of industry groups are more significant comparing with
cryptos’ (shown in Table 3).

Table 4. Entropy measure between Bitcoin and different Industries.

Pre-COVID and COVID Era with Itself Pre-COVID with Bitcoin COVID Era with Bitcoin Difference

Daily Log-Return S_rho p-Value S_rho p-Value S_rho p-Value

Food 0.16 <2.22 × 10−16 *** 0.22 <2.22 × 10−16 *** 0.04 0.0808 −0.18
Beer 0.14 <2.22 × 10−16 *** 0.21 <2.22 × 10−16 *** 0.07 0.1010 −0.14
Smoke 0.14 <2.22 × 10−16 *** 0.14 <2.22 × 10−16 *** 0.03 0.2121 −0.11
Games 0.09 <2.22 × 10−16 *** 0.10 <2.22 × 10−16 *** 0.05 0.0202 * −0.05
Books 0.19 <2.22 × 10−16 *** 0.15 <2.22 × 10−16 *** 0.04 0.0909 −0.11
Hshld 0.14 <2.22 × 10−16 *** 0.21 <2.22 × 10−16 *** 0.04 0.4040 −0.17
Clths 0.20 <2.22 × 10−16 *** 0.12 <2.22 × 10−16 *** 0.04 0.1212 −0.08
Hlth 0.12 <2.22 × 10−16 *** 0.17 <2.22 × 10−16 *** 0.04 0.1717 −0.13
Chems 0.21 <2.22 × 10−16 *** 0.15 <2.22 × 10−16 *** 0.04 0.1414 −0.11
Txtls 0.26 <2.22 × 10−16 *** 0.11 <2.22 × 10−16 *** 0.07 0.0101 * −0.04
Cnstr 0.23 <2.22 × 10−16 *** 0.14 <2.22 × 10−16 *** 0.04 0.2020 −0.10
Steel 0.14 <2.22 × 10−16 *** 0.07 <2.22 × 10−16 *** 0.05 0.0202 * −0.02
Fabpr 0.19 <2.22 × 10−16 *** 0.13 <2.22 × 10−16 *** 0.04 0.0808 −0.09
Elceq 0.22 <2.22 × 10−16 *** 0.14 <2.22 × 10−16 *** 0.04 0.1111 −0.10
Autos 0.21 <2.22 × 10−16 *** 0.12 <2.22 × 10−16 *** 0.04 0.1212 −0.08
Carry 0.27 <2.22 × 10−16 *** 0.15 <2.22 × 10−16 *** 0.06 0.0202 * −0.08
Mines 0.09 <2.22 × 10−16 *** 0.09 <2.22 × 10−16 *** 0.05 0.0505 −0.05
Coal 0.09 <2.22 × 10−16 *** 0.02 <2.22 × 10−16 *** 0.09 <2.22 × 10−16 *** 0.07
Oil 0.22 <2.22 × 10−16 *** 0.11 <2.22 × 10−16 *** 0.05 0.0101 * −0.05
Util 0.22 <2.22 × 10−16 *** 0.22 <2.22 × 10−16 *** 0.03 0.3939 −0.18
Telcm 0.19 <2.22 × 10−16 *** 0.20 <2.22 × 10−16 *** 0.04 0.1313 −0.16
Servs 0.14 <2.22 × 10−16 *** 0.16 <2.22 × 10−16 *** 0.05 0.1111 −0.11
Buseq 0.13 <2.22 × 10−16 *** 0.14 <2.22 × 10−16 *** 0.04 0.1717 −0.10
Paper 0.17 <2.22 × 10−16 *** 0.18 <2.22 × 10−16 *** 0.03 0.3535 −0.15
Trans 0.18 <2.22 × 10−16 *** 0.15 <2.22 × 10−16 *** 0.04 0.1515 −0.11
Whlsl 0.24 <2.22 × 10−16 *** 0.19 <2.22 × 10−16 *** 0.04 0.2020 −0.15
Rtail 0.10 <2.22 × 10−16 *** 0.18 <2.22 × 10−16 *** 0.08 <2.22 × 10−16 *** −0.10
Meals 0.24 <2.22 × 10−16 *** 0.20 <2.22 × 10−16 *** 0.03 0.2626 −0.17
Fin 0.25 <2.22 × 10−16 *** 0.16 <2.22 × 10−16 *** 0.05 0.1010 −0.11
Other 0.20 <2.22 × 10−16 *** 0.20 <2.22 × 10−16 *** 0.04 0.1010 −0.16

Note: Entries marked with *** have empirical p-values < 0.01 and * 0.05 ≤ p < 0.10 under the null of independence of returns.

3.4. Testing General Nonlinear Co-Dependence

The above test of (Renyi 1961) may be employed for testing stochastic indepen-
dence of any two random variables X and Y. Let f1 = f (xi, yi) be the joint density and
f2 = g(xi) ∗ h(yi) be the product of the marginal densities. The unknown density functions
are replaced with nonparametric kernel estimates. The methodology is as before, with
the null of independence imposed in the bootstrap resampling implementation of the test.
Bandwidths are obtained via likelihood cross-validation by default for the marginal and
joint densities.

The results are in Table 5. There is significant dependence only between Bitcoin and
NASDAQ before the COVID-19 outbreak. During COVID era, independence is comfortably
rejected for all pairings. The two situations represent very radical changes in the status of
cryptos for portfolio diversification.
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Table 5. Independence test.

Pre-COVID (Aug. 2015–Jan. 2020) COVID Era (Feb. 2020–Sep. 2020) Difference

Daily Log-Return S_rho p-Value S_rho p-Value

S&P500 and Bitcoin 0.0085 0.0303 * 0.0148 2.22 × 10−16 *** 0.0063
S&P500 and Ethereum 0.0076 0.5758 0.0172 2.22 × 10−16 *** 0.0096
NASDAQ and Bitcoin 0.0072 0.0101 * 0.0163 2.22 × 10−16 *** 0.0091
NASDAQ and Ethereum 0.0061 0.6061 0.0178 2.22 × 10−16 *** 0.0117

Note: Entries marked with *** have empirical p-values < 0.01 and * 0.05 ≤ p < 0.10 under the null of independence of returns.

4. Difference-in-Differences Analysis

Difference in differences (Diff-in-diff) is a statistical technique used in econometrics
and quantitative research that attempts to mimic an experimental research design using
observational study data, by studying the differential effect of a treatment on a “treatment
group” versus a “control group” in a natural experiment. It calculates the effect of a treat-
ment on an outcome by comparing the average change over time in the outcome variable
for the treatment group, compared to the average change over time for the control group
(Card and Krueger 1993).

Before we construct our Diff-in-diff model, we would like to emphasize that the
entropy metrics exhibit linear decomposition property. The reason why we can decompose
Sρ is that it is a metric, which means it satisfies the triangularity property of distances.
Therefore, we can write the entropy metric between stock and crypto during COVID era as
the summation of the entropy metric between them during pre-COVID period plus a time
trend λt and plus the COVID effect.

Sρ( fsi ,t2 , fcj ,t2) = Sρ( fsi ,t1 , fcj ,t1) + λt + COVID + εi,j, (9)

where Sρ( fsi ,t2 , fcj ,t2) stands for the entropy metric between stock i and crypto j dur-
ing COVID era, and Sρ( fsi ,t1 , fcj ,t1) stands for the entropy metric between stock i and
crypto j during pre-COVID period. λt is the time trend defined by λt = Sρ( fsi ,t2 , fsi ,t1) +
Sρ( fcj ,t2 , fcj ,t1), which measures the entropy metric of both stock i and crypto j from pre-
COVID period to COVID era with itself. COVID is the effect of exogenous shock provided
by COVID-19 to the entropy metrics. εi,j is the residual term.

Since we have already calculated the distribution distances between assets in the pre-
vious sections, from Equation (9), we can easily estimate the COVID effect on the entropy
metrics, say ĈOVID. Using entropy metrics Sρ between Bitcoin and other assets (including
S&P500, NASDAQ, the the 30 industry portfolios), we can estimate the COVID effect
ĈOVID = −0.30. This indicates that after the broke out of COVID-19 pandemic, the distri-
butions of stocks and cryptos became more similar and less independent, quantitatively,
the entropy metrics decrease by −0.30 in average.

Next, we follow Card and Krueger (1994) to construct our Diff-in-diff model:

Sρ( fAi ,tj , f0) = β0 + β1 ∗ Covid + β2 ∗ Crypto + βDID ∗ (Covid ∗ Crypto) + ε, (10)

where the dependent variable Sρ( fAi ,tj , f0) is our variable of interest, it stands for the
entropy metric between asset i’s distribution at time j, fAi ,tj , and a benchmark distribution
f0. Crypto and Covid are dummy variables. Crypto equals to 1 if the asset is a crypto,
while it equals 0 if the asset is stock. Covid equals to 1 if during the COVID era and
it equals to 0 if during the pre-COVID period. The coefficient for the interaction term,
Covid ∗Crypto, is the Diff-in-diff estimator. In this way, we construct our Diff-in-diff model
for entropy metric.

We come up with a new method to use our nonparametric entropy metric to estimate
the Diff-in-diff estimator. In Table 6, we show the decomposition of the Diff-in-diff analysis.
The reason why we can decompose Sρ is that it is a metric, which means it satisfies
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the triangularity property of distances. If you take three points, A, B and C, the distance
between any of those points is smaller than the total of the other two distances. Furthermore,
note that Sρ is a ”squared integral". The second line in Equation (8) also tells us that it is a
simple expectation of 1− ( f2/ f1)

1/2. This is equal to metric developed by Bhathacharya as
a measure of relations between two variables. By algebra, we can derive the Diff-in-diff
estimator as the entropy metrics between stocks and crytos during the COVID era subtract
the entropy metric between them during pre-COVID period: β̂DID = Sρ( fsi ,t2 , fcj ,t2) −
Sρ( fsi ,t1 , fcj ,t1).

Table 6. DID decomposition.

Distribution Stock Crypto Difference

pre-COVID Sρ( fsi ,t1 , f0) Sρ( fcj ,t1 , f0) Sρ( fsi ,t1 , fcj ,t1)

COVID era Sρ( fsi ,t2 , f0) Sρ( fcj ,t2 , f0) Sρ( fsi ,t2 , fcj ,t2)

Change Sρ( fsi ,t2 , fsi ,t1) Sρ( fcj ,t2 , fcj ,t1) Sρ( fsi ,t2 , fcj ,t2)− Sρ( fsi ,t1 , fcj ,t1)

5. Conclusions

This paper investigates the similarity and co-dependence between cryptocurrencies,
daily returns and stock daily returns, before and after the COVID-19 outbreak in early 2020.

Data exhibited different features before and after the COVID-19 outbreak. There is a
similarity between the Bitcoin and NASDAQ stock market index with or without COVID-
19. The similarity and dependence between cryptos and stock market indexes has become
stronger after the COVID-19 outbreak. Our findings are robust to model misspecification,
and avoid linear measures of dependence and correlation. The entropy profiles method and
time series models play different roles in forecasting the cryptocurrency return volatility,
and these approaches are complimentary. The time series models elaborate the dynamic
movement of returns, on average (conditional mean models). The entropy profiles method
is a nonparametric approach which reveals the evolution of the entire distributions and
their quantiles. In this paper, we have several findings: Firstly, we found that during
the pre-COVID period, NASDAQ and Bitcoin return’s distributions are the most similar.
Secondly, we can see during the COVID era, the distances between all asset returns have
declined by 75% or more, and most of these changes are caused by changes of stock
return distributions. We also found that the asset group with the closest similarity with
Bitcoin are Coal, Steel and Mining industries during pre-COVID period, and Business
Supplies, Utilities, Tobacco Products and Restaurants, Hotels, Motels industries, compared
to several others during COVID era. Finally, through non-linear co-dependence test, we
found that during the COVID era, the densities of stocks and cryptos became more similar
and less independent. These results are meaningful because we revealed the similarity
and dependence structure between crypto and stock distributions. This can be useful in
applying existing theories on stocks to cryptos.

As for future directions of this study, we plan to examine newer data as we have
observe the effective vaccines rollout, stock market volatility and the crypto prices peak
to a new high in 2021. We believe that the examination of newer data will drive more
promising and effective policy implications.
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