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Abstract: In this study, we predicted the log returns of the top 10 cryptocurrencies based on market
cap, using univariate and multivariate machine learning methods such as recurrent neural networks,
deep learning neural networks, Holt’s exponential smoothing, autoregressive integrated moving
average, ForecastX, and long short-term memory networks. The multivariate long short-term memory
networks performed better than the univariate machine learning methods in terms of the prediction
error measures.

Keywords: cryptocurrencies; deep learning networks; recurrent neural networks; long short-term
memory networks

1. Introduction

Cryptocurrencies are virtual currencies used to buy goods and services; there is no
need for financial institutions such as central authorities or clearing houses in transactions
involving cryptocurrency. Bitcoin was the first cryptocurrency, created back in 2009, and
since Nakamoto (2008), there have been over several thousand alternative cryptocurrencies.
Prior research extensively studied Bitcoin for hedging and diversification benefits. Shahzad
et al. (2021) found that Bitcoin is appealing for diversification purposes for hedge assets in
BRICS (Brazil, Russia, India, China, and South Africa) stock markets. Wang et al. (2019)
also found that cryptocurrency is a hedge or a safe haven for international indices. Kim et al.
(2020) also studied the relationship of cryptocurrency prices with US stock and gold prices
using copula models. The value of cryptocurrencies has also skyrocketed over the years,
making it an emerging market for investors wanting to capitalize on the daily fluctuations
of cryptocurrencies. There have been numerous studies on understanding the volatility of
cryptocurrencies. Katsiampa (2017) studied volatility estimation for Bitcoin by comparing
generalized autoregressive conditional heteroskedasticity (GARCH) models. Katsiampa
(2019) also conducted an empirical investigation of volatility dynamics in the cryptocur-
rency market. Phillip et al. (2019) studied long memory effects in the volatility measure of
cryptocurrencies. Mostafa et al. (2021) implemented GJR-GARCH over the GARCH model
to estimate the volatility of 10 popular cryptocurrencies based on market capitalization:
Bitcoin, Bitcoin Cash, Bitcoin SV, Chainlink, EOS, Ethereum, Litecoin, TETHER, Tezos, and
XRP. Kim et al. (2021) used stochastic volatility and GARCH models on cryptocurrencies
that they selected for the study, and learned that the stochastic volatility method has better
forecasting results compared to the GARCH method.

To accurately forecast future cryptocurrency prices, Akyildirim et al. (2021) predicted
the 12 most liquid cryptocurrencies by using machine learning classification algorithms
such as support vector machines, logistic regression, artificial neural networks, and random
forests. Plakandaras et al. (2021) applied different methodologies—such as ordinary least
squares (OLS) regression, support vector regression (SVR), and least absolute shrinkage and
selection operator (LASSO) techniques—from the field of machine learning to predict the
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price of cryptocurrency. Hyun et al. (2019) invested the directional dependence structure
among top volume cryptocurrencies by using copula and neural networks models.

In this study, we apply univariate and multivariate machine learning methods such
as recurrent neural networks (RNNs), deep learning networks (DNNs), long short-term
memory networks (LSTMs), Holt’s exponential smoothing, autoregressive integrated
moving average, and ForecastX to predict the log returns of cryptocurrencies. We selected
the top 10 cryptocurrencies based on a measure known as market capitalization, which refers
to the total value of a cryptocurrency. This paper is organized as follows: Section 2 presents
the summary and graphical data analysis for the top 10 cryptocurrencies. Section 3 gives an
overview of the machine learning models used in this study. The illustrated comparison
study for the proposed methods will be performed in terms of the measures of errors in
Section 4, and the conclusion in Section 5.

2. Study Design and Data Collection

The cryptocurrency data used in this study were attained from an API known as
CryptoCompare—a package in Python. The variables for each of the cryptocurrency
datasets before manipulation were low, open, time, high, volume from, volume to, conver-
sion type, conversion symbol, and close. The end date for each of the 10 cryptocurrencies
was 14 July 2021. Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Tether (UDST), and Do-
gecoin (DOGE) had a start date of 1 January 2017. Binance Coin (BNB) had a start date
of 15 August 2017. Cardano (ADA) had a start date of 10 October 2017. FLOW (FLOW)
had a start date of 29 January 2021. USD Coin (USDC) had a start date of 11 October 2018.
Uniswap (UNI) had a start date of 18 September 2020. Let St be a price time series at time
t; for a log return series, rt = log

(
St

St−1

)
. Each of the cryptocurrency datasets was given a

new variable, known as log returns. We summarized descriptive statistics of log return data of
cryptocurrency, such as mean, skewness, and kurtosis, as well as five summary statistics, as
shown in Table 1. Table 1 shows the summary statistics for each of the cryptocurrency datasets.

Table 1. Summary statistics of the top 10 cryptocurrencies.

Size Mean SD Min Q1 Median Q3 Max Kurtosis Skewness

BTC 1654 0.002 0.044 −0.480 −0.016 0.003 0.022 0.228 11.016 −0.811

ETH 1654 0.003 0.058 −0.570 −0.023 0.002 0.031 0.260 8.165 −0.483

USDT 1654 0.000 0.046 −0.693 −0.001 0.000 0.001 0.454 77.596 −2.135

XRP 1654 0.003 0.079 −0.653 −0.027 −0.001 0.024 1.028 28.286 1.868

BNB 1423 0.004 0.072 −0.566 −0.026 0.001 0.032 0.533 11.162 0.325

ADA 1382 0.003 0.076 −0.539 −0.032 0.001 0.034 0.862 20.509 1.734

FLOW 167 0.006 0.092 −0.362 −0.042 −0.003 0.043 0.367 3.057 0.464

USDC 1008 0.000 0.002 −0.011 −0.001 0.000 0.001 0.020 17.396 1.571

DOGE 1654 0.004 0.088 −0.601 −0.025 −0.001 0.023 1.594 71.995 4.226

UNI 300 0.005 0.092 −0.408 −0.047 −0.002 0.050 0.501 5.082 0.730
Note: Size is the sample size, SD is the standard deviation, Min is the minimum, Q1 is the first quartile, Q3 is the
third quartile, and Max is the maximum.

In Table 1, it is recognized that the standard deviation of BTC is smaller than those of
ETH, USDT, XRP, BNB, ADA, FLOW, DOGE, and UNI (all of the listed cryptocurrencies
except for the stable cryptocurrency USDC), which means that BTC has a lower risk than
other cryptocurrencies in terms of investment. In addition, the values of kurtosis in the log
returns of all cryptocurrencies in Table 1 are greater than 3, meaning heavy tails compared
to normal distribution. The BTC, ETH, and USDT are left-skewed, while XRP, BNB, ADA,
FLOW, USDC, DOGE, and UNI are right-skewed. UNI and FLOW have the lowest counts
due to how new they are compared to BTC, ETH, USDT, XRP, and DOGE, which have the
highest counts. In terms of the median for log returns, BTC, ETH, BNB, and ADA have
positive values.
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Figure 1 visualizes the boxplot of price log returns for each of the cryptocurrencies.
The value for USDC seems to be around zero because USDC is a stable cryptocurrency,
whereas the values of price log returns for XRP, BNB, USDT, ADA, and DOGE are more
scattered around the zero because most of the Altcoins have a high volatility. The values of
price log returns for BTC, ETH, and FLOW are less volatile than those of XRP and DOGE
in Table 1.

1 
 

 
  Figure 1. Boxplot of 10 cryptocurrencies based on market cap.

Figure 2 visualizes each of the cryptocurrency price log returns over time. This allows
us to understand the volatility of the cryptocurrencies. The cryptocurrency price log returns
are shown to be volatile due to their frequent fluctuations over time. The cryptocurrency
price log returns show a similar pattern of hitting at least one all-time high or low. FLOW
is the only cryptocurrency that has a date value of just 2021. When looking at how the log
returns of FLOW compare to the log returns of other cryptocurrencies in the predictions,
the lack of data may affect the performances of models predicting cryptocurrencies’ price
log returns.
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Figure 2. Time-series plot of price log returns of 10 cryptocurrencies.

Figure 3 shows a heat map of the relationships between the price log returns of
cryptocurrencies. BTC and USDT are the only cryptocurrencies that have mostly negative
correlations with the other cryptocurrencies in terms of price log returns. This may be
due to USDT being a stable cryptocurrency, so when the prices of BTC or other Altcoins
collapsed, investors moved to the stable cryptocurrency to hedge their investment in the
cryptocurrencies. The other cryptocurrencies have moderate correlation with one another.
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This may suggest that the multivariate machine learning model known as long short-term
memory networks may be useful in predicting the price returns of cryptocurrencies.
 

3 

 
Figure 3. Correlation plot of price returns of 10 cryptocurrencies based on market cap.

3. Statistical Methods

In this paper, we compare the forecasting prediction accuracy for the price log returns
of cryptocurrencies by employing both conventional univariate time-series models and
machine learning time-series models. We also used Python to forecast the price log returns
of cryptocurrencies and find whether the univariate and multivariate machine learning
methods such as RNN, DNN, Holt’s exponential smoothing, ARIMA, ForecastX, and
LSTM are useful in predicting the price log returns of cryptocurrencies. Python is a
programming language used through an integrated development environment known
as Spyder. An RNN is an artificial neural network with multiple layers that depend on
prior elements in the sequence between the input and output layers. A DNN is an artificial
neural network with multiple layers between the input and output layers. An LSTM is a
type of RNN that can account for learning long-term temporal dependencies.

3.1. Univariate Machine Learning Methods

Autoregressive integrated moving average (ARIMA) and exponential smoothing
models are the most widely used forecasting time-series models for analyzing univariate
time-series data. ARIMA models aim to describe the autocorrelations in the data, while
exponential smoothing models are based on a description of the trend and seasonality in
the data (Hyndman and Athanasopoulos 2021). Holt’s exponential smoothing model is a
popular smoothing model for forecasting data with trends. Swamidass (2000) explained
that Holt’s model has three separate equations that work together to generate a final
forecast: The first is a basic smoothing equation that directly adjusts the last smoothed
value for last period’s trend. The trend itself is updated over time through the second
equation, where the trend is expressed as the difference between the last two smoothed
values. Finally, the third equation is used to generate the final forecast. Holt’s model uses
two parameters: one for the overall smoothing, and the other for the trend smoothing
equation. The method is also called double exponential smoothing or trend-enhanced
exponential smoothing. Since exponential smoothing models can capture a variety of trends
and seasonal forecasting patterns (such as additive or multiplicative), and combinations of
the two, Petropoulos and Makridakis (2020) forecast confirmed cases of COVID-19 by using
the exponential smoothing family, which has shown good forecast accuracy over several
forecasting competitions, and is especially suitable for short series. Holt’s exponential
smoothing, as shown by Hyndman and Athanasopoulos (2021), fits a time-series model
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using smoothing level and smoothing slope. Furthermore, we used a Python package
known as Forecast_x, which provides different naïve models (Naive, Seas Naive, Mean Two
Periods, Mean Three Periods, Half Seas Mean, Seas Period Mean, Double Seas Mean, Seas
Growth, Expo Weighted, Threefith Mean, Multi Seas Mean, Seas Double Mean Growth,
Grand Mean, Smooth Grand Mean, Last Seas Mean, Current Mean Seas, Smooth Double
Seas Naive, Truncated Mean, Harmonic Mean, Heronian Mean) for fitting multiple time
series due to its powerful flexibility and easy usage.

The conventional univariate time-series model known as ARIMA was employed to
compare the univariate and multivariate machine learning time-series models. We used the
Auto ARIMA package in Python for the data analysis. Each of the cryptocurrency datasets
were split into different training (70%, 80%, and 90%) and test sets so that the accuracy of
the model could be measured.

The univariate machine learning models known as DLN, RNN, and LSTM create
a function that makes their respective models and future predictions. We proceed to
normalize and reshape the training sets (70%, 80%, and 90%) into a 3D array with five
time stamps and one feature at each step. The test set was also rescaled and used to make
predictions on it. Figures 4 and 5 show the outline of DNN, RNN, and LSTM.
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3.2. Multivariate Machine Learning Method

We employed a multivariate LSTM machine learning model for forecasting the price
log returns of all of the cryptocurrencies. The idea for this paper came from the compu-
tational problem of vector autoregressive (VAR) models with many covariate time-series
variables. The VAR is a classical multivariate forecasting time-series model, but faces
difficulties in computing the covariance matrix with many covariate time-series variables
(usually more than five time-series covariates). Therefore, we considered an alternative
multivariate time-series model by using a multivariate LSTM machine learning model.
Before applying the multivariate LSTM method to the data, we scaled the data by using
two functions: MinMaxScaler(feature_range=(−1, 1))—a scaler between −1 and 1—and
scaler.fit_transform(values), a Python package that transforms the values. Afterwards,
a ‘for’ loop was created based on three training sets (70%, 80%, and 90% of the data). In this
‘for’ loop, the model was created based on the training and testing sets, and was then used
to predict each of the cryptocurrencies for both the training and testing sets. The testing,
training, and prediction sets were then renormalized. The outline of the LSTM multivariate
machine learning model for price log returns of each cryptocurrency is:

BTC(t) = BTC(t − 1) + ETH(t − 1) + USDT(t − 1) + XRP(t − 1) + BNB(t − 1)
+ ADA(t − 1) + FLOW(t − 1)+USDC(t − 1) + DOGE(t − 1) + UNI(t − 1) + ε(t)

ETH(t) = BTC(t − 1) + ETH(t − 1) + USDT(t − 1) + XRP(t − 1) + BNB(t − 1)
+ ADA(t − 1) + FLOW(t − 1) + USDC(t − 1) + DOGE(t − 1) + UNI(t − 1) + ε(t)

USDT(t) = BTC(t − 1) + ETH(t − 1) + USDT(t − 1) + XRP(t − 1) + BNB(t − 1)
+ ADA(t − 1) + FLOW(t − 1) + USDC(t − 1) + DOGE(t − 1) + UNI(t − 1) + ε(t)

XRP(t) = BTC(t − 1) + ETH(t − 1) + USDT(t − 1) + XRP(t − 1) + BNB(t − 1)
+ ADA(t − 1) + FLOW(t − 1) + USDC(t − 1) + DOGE(t − 1) + UNI(t − 1) + ε(t)
BNB(t) = BTC(t − 1) + ETH(t − 1) + USDT(t − 1) + XRP(t − 1) + BNB(t − 1) +
ADA(t − 1) + FLOW(t − 1) + USDC(t − 1) + DOGE(t − 1) + UNI(t − 1) + ε(t)
ADA(t) = BTC(t − 1) + ETH(t − 1) + USDT(t − 1) + XRP(t − 1) + BNB(t − 1)

+ ADA(t − 1) + FLOW(t − 1) + USDC(t − 1) + DOGE(t − 1) + UNI(t − 1) + ε(t)
FLOW(t) = BTC(t − 1) + ETH(t − 1) + USDT(t − 1) + XRP(t − 1) + BNB(t − 1)

+ ADA(t − 1) + FLOW(t − 1) + USDC(t − 1) + DOGE(t − 1) + UNI(t − 1) + ε(t)
USDC(t) = BTC(t − 1) + ETH(t − 1) + USDT(t − 1) + XRP(t − 1) + BNB(t − 1)

+ ADA(t − 1) + FLOW(t − 1) + USDC(t − 1) + DOGE(t − 1) + UNI(t − 1) + ε(t)
DOGE(t) = BTC(t − 1) + ETH(t − 1) + USDT(t − 1) + XRP(t − 1) + BNB(t − 1)

+ ADA(t − 1) + FLOW(t − 1) + USDC(t − 1) + DOGE(t − 1) + UNI(t − 1) + ε(t)
UNI(t) = BTC(t − 1) + ETH(t − 1) + USDT(t − 1) + XRP(t − 1) + BNB(t − 1)

+ ADA(t − 1) + FLOW(t − 1) + USDC(t − 1) + DOGE(t − 1) + UNI(t − 1) + ε(t)

(1)

where ε(t) is error term of time point t, and we set the multivariate LSTM with 128 epochs
by using the function model.add(LSTM(128, input_shape = (10, 10))).

3.3. Forecast Evaluation

For this subsection, we measured the predictive accuracy of our machine learning
models. The models used three different training sets (70%, 80%, and 90% of each cryp-
tocurrency’s data). We compared the predicted values and actual values (yt and ŷt). where
t = 1, 2, . . . , n. (n = the total number of test dataset). We employed two measures for
predictive accuracy:

Root-mean-square (prediction) error (RMSE):

RMSE =

√
∑n

t=1(yt − ŷt)
2

n
(2)

and the mean absolute error deviation (MAD):
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MAD =
∑n

t=1|yt − ŷt|
n

. (3)

The error metrics such as the MAD and RMSE were used to analyze the performance of
the methods. Mean absolute error is not sensitive to outliers, as they are weighted less than
the other observations when comparing actual and predicted values. Root-mean-square
error takes bias and variance into account, but normalizes the units. Each method also
produces plots based on the actual and predicted price returns for visualization purposes.

4. Data Analysis

Low results for the metric measures can be interpreted as the model being a good fit
for the data, and the future price log returns are accurate to a point. When looking at the
prediction error measures such as RMSE in Table 2 and MAD in Table 3, the multivariate
LSTM time-series model seems to have consistently lower numbers for the price log returns
of cryptocurrencies compared to the univariate machine learning methods, except for the
case of BTC, because BTC is a major cryptocurrency that influences the prices of all other
Altcoins. For the prediction for the log returns of BTC, a univariate LSTM time-series model
can be a good prediction model. With the log returns of nine Altcoins, we can conclude that
the multivariate machine learning method has a better fit and forecast ability compared to
the univariate machine learning methods.

Table 2. Measuring predictions using RMSE.

70% RMSE

DNN RNN LSTM ARIMA FORECASTX HOLTS Multivariate LSTM

BTC 0.120 0.107 0.045 0.049 0.046 0.046 0.046

ETH 0.153 0.080 0.087 0.066 0.061 0.061 0.055

XRP 0.003 0.011 0.012 0.002 0.002 0.003 0.001

USDT 0.146 0.140 0.092 0.086 0.079 0.080 0.068

BNB 0.079 0.100 0.069 0.075 0.069 0.070 0.060

ADA 0.094 0.125 0.215 0.074 0.068 0.068 0.053

DOGE 0.167 0.185 0.001 0.001 0.093 0.090 0.093

USDC 0.008 0.045 0.122 0.132 0.001 0.001 0.001

FLOW 0.347 0.127 0.095 0.097 0.120 0.119 0.103

UNI 0.381 0.111 0.104 0.104 0.095 0.096 0.072

80% RMSE

DNN RNN LSTM ARIMA FORECASTX HOLTS Multivariate LSTM

BTC 0.042 0.067 0.041 0.045 0.042 0.043 0.044

ETH 0.085 0.084 0.088 0.065 0.059 0.059 0.064

XRP 0.001 0.005 0.008 0.001 0.001 0.001 0.001

USDT 0.164 0.143 0.116 0.099 0.090 0.090 0.080

BNB 0.087 0.083 0.079 0.086 0.079 0.079 0.070

ADA 0.086 0.142 0.212 0.081 0.074 0.073 0.061

DOGE 0.123 0.148 0.001 0.001 0.107 0.102 0.117

USDC 0.008 0.050 0.146 0.154 0.001 0.001 0.001

FLOW 0.566 0.194 0.107 0.110 0.139 0.139 0.124

UNI 0.387 0.212 0.111 0.118 0.107 0.107 0.081
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Table 2. Cont.

90% RMSE

DNN RNN LSTM ARIMA FORECASTX HOLTS Multivariate LSTM

BTC 0.070 0.077 0.047 0.050 0.046 0.048 0.031

ETH 0.117 0.083 0.075 0.069 0.063 0.063 0.056

XRP 0.001 0.010 0.010 0.001 0.001 0.001 0.001

USDT 0.250 0.143 0.130 0.109 0.098 0.102 0.030

BNB 0.196 0.080 0.081 0.093 0.122 0.092 0.046

ADA 0.092 0.259 0.165 0.081 0.072 0.072 0.034

DOGE 0.119 0.119 0.001 0.001 0.117 0.111 0.050

USDC 0.004 0.052 0.136 0.159 0.001 0.001 0.001

FLOW 0.242 0.136 0.120 0.117 0.138 0.231 0.130

UNI 0.097 0.107 0.441 0.082 0.077 0.074 0.055

Table 3. Measuring predictions using MAD.

70% MAD

DNN RNN LSTM ARIMA FORECASTX HOLTS Multivariate LSTM

BTC 0.061 0.063 0.029 0.031 0.029 0.030 0.036

ETH 0.096 0.071 0.056 0.042 0.041 0.041 0.045

XRP 0.066 0.065 0.056 0.050 0.047 0.049 0.048

USDT 0.001 0.008 0.006 0.001 0.001 0.003 0.001

BNB 0.045 0.044 0.043 0.047 0.043 0.045 0.044

ADA 0.055 0.106 0.161 0.053 0.048 0.049 0.039

DOGE 0.143 0.125 0.064 0.062 0.056 0.058 0.055

USDC 0.005 0.030 0.001 0.001 0.000 0.006 0.001

FLOW 0.106 0.121 0.079 0.081 0.067 0.065 0.076

UNI 0.270 0.134 0.067 0.066 0.066 0.066 0.059

80% MAD

DNN RNN LSTM ARIMA FORECASTX HOLTS Multivariate LSTM

BTC 0.388 0.056 0.030 0.034 0.030 0.031 0.034

ETH 0.063 0.068 0.066 0.046 0.043 0.043 0.049

XRP 0.086 0.122 0.073 0.061 0.056 0.057 0.055

USDT 0.001 0.009 0.004 0.001 0.001 0.001 0.001

BNB 0.053 0.064 0.051 0.055 0.050 0.051 0.047

ADA 0.064 0.124 0.146 0.059 0.053 0.053 0.043

DOGE 0.137 0.070 0.072 0.077 0.067 0.067 0.069

USDC 0.005 0.054 0.001 0.001 0.001 0.001 0.001

FLOW 0.091 0.108 0.077 0.089 0.079 0.073 0.094

UNI 0.400 0.110 0.076 0.052 0.076 0.075 0.062
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Table 3. Cont.

90% MAD

DNN RNN LSTM ARIMA FORECASTX HOLTS Multivariate LSTM

BTC 0.039 0.068 0.034 0.036 0.034 0.036 0.028

ETH 0.067 0.059 0.056 0.048 0.047 0.048 0.044

XRP 0.096 0.098 0.090 0.064 0.066 0.071 0.028

USDT 0.002 0.005 0.005 0.001 0.001 0.001 0.001

BNB 0.136 0.081 0.058 0.056 0.100 0.069 0.038

ADA 0.075 0.075 0.098 0.051 0.052 0.053 0.029

DOGE 0.125 0.097 0.090 0.081 0.089 0.203 0.046

USDC 0.008 0.057 0.001 0.001 0.001 0.001 0.001

FLOW 0.093 0.107 0.091 0.071 0.089 0.080 0.109

UNI 0.096 0.128 0.543 0.039 0.059 0.058 0.050

After analyzing the results from the visualizations and metric measure tables on the
prediction accuracy of the univariate and multivariate machine learning methods for the
price returns of cryptocurrencies, it should be noted that the performance of the univariate
machine learning methods changed greatly for the different training sets compared to the
multivariate machine learning method. In order to compare predictive accuracy across
models, the differences in forecasting abilities across models can be tested as described by
Diebold and Mariano (1995).

5. Conclusions

We compared the univariate machine learning time-series methods with the multivari-
ate LSTM machine learning method in terms of prediction measure errors. The classical
time series VAR model cannot handle many covariate time-series data because of the
difficulty of computing the covariance matrix. However, we proved from this research that
the multivariate LSTM machine learning method can handle covariate time-series data for
10 cryptocurrencies without experiencing computational difficulties. We concluded that
the multivariate LSTM machine learning method generated better performance compared
to the univariate machine learning time-series methods in terms of the prediction measures
errors for the top 10 cryptocurrencies. Our future research question is whether the perfor-
mance of the multivariate machine learning method known as long short-term memory
networks is dependent on more vast amounts of data—such as dates and cryptocurrencies—
than were used in this study. There is also a possibility that the machine learning methods
known as GARCH or multivariate GARCH may produce better results, because they may
be able to account for the high volatility in cryptocurrencies. By using univariate and
multivariate machine learning methods to predict the price log returns of cryptocurrencies
based on their previous values and relationships with one another, a better understanding
can be reached as to whether they can be used to predict things such as the stock market,
cryptocurrency market, and weather. Improvements can also be made to the univariate
and multivariate machine learning models used in this study by adjusting the parameters
of the models.
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