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Abstract: The research purpose of this paper is to obtain an algorithm model with high prediction
accuracy for the price of Bitcoin on the next day through random forest regression and LSTM, and
to explain which variables have influence on the price of Bitcoin. There is much prior literature
on Bitcoin price prediction research, and the research methods mainly revolve around the ARMA
model of time series and the LSTM algorithm of deep learning. Although it cannot be proved by
the Diebold–Mariano test that the prediction accuracy of random forest regression is significantly
better than that of LSTM, the prediction errors RMSE and MAPE of random forest regression are
better than those of LSTM. The changes in the variables that determine the price of Bitcoin in each
period are also obtained through random forest regression. From 2015 to 2018, three US stock market
indexes, NASDAQ, DJI, and S&P500 and oil price, and ETH price have impact on Bitcoin prices.
Since 2018, the important variables have become ETH price and Japanese stock market index JP225.
The relationship between accuracy and the number of periods of explanatory variables brought into
the model shows that for predicting the price of Bitcoin for the next day, the model with only one lag
of the explanatory variables has the best prediction accuracy.
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1. Introduction

Bitcoin is a decentralized digital currency that uses cryptography for security and is
not controlled by any government or financial institution. It was created in 2008 by an
individual or group of individuals using the pseudonym Satoshi Nakamoto (2008) with
a paper titled “Bitcoin: A Peer-to-Peer (P2P) Electronic Cash System”. Transactions with
bitcoin are recorded on a public ledger called the blockchain, which allows anyone to view
the history of a specific Bitcoin. The decentralized nature of Bitcoin allows it to operate
independently of central banks and can be transferred instantly across the globe. It has
gained popularity as a means of exchange and a store of value (Baur and Dimpfl 2021). In
the past 10 years, after experiencing several ups and downs, it broke through USD 68,000
per coin in November 2021, and the total current price once exceeded USD 1.2 trillion.

However, as a commodity, Bitcoin has the problem of high volatility. During the seven
years from April 2015 to April 2022, the standard deviation of Bitcoin’s daily return rate was
3.85%, which was 2.68 times the standard deviation of gold’s return rate during the same
period and 3.36 times that of the S&P500. Due to the large price fluctuations, the function
of Bitcoin as a store of value as a commodity and as a transaction payment function as a
currency has been questioned.

While enjoying the advantages of Bitcoin’s security and decentralization, how to grasp
the trend of Bitcoin to minimize the risk of Bitcoin floating has become a difficult problem.
Many researchers try to grasp the trend of Bitcoin through the correlation between the
price of Bitcoin and the price of other commodities. But whether it is gold (Baur and Hoang
2021; Kim et al. 2020b; Blake 2019), which is often used for comparison, stock market index
(Erdas and Caglar 2018), or crude oil price (Selmi et al. 2018), past studies have shown that
the correlation between Bitcoin and them is weak.

In past studies, another type of research direction to grasp the price trend of Bitcoin is
to predict the price of Bitcoin in the future through AI algorithms and powerful computing
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power of computers. With the improvement of hardware performance in the 21st century,
machine learning technology which has become a hot field of research. Primarily, machine
learning has been used across a variety of areas such as that of stock markets (Huang and
Liu 2020; Philip 2020); crude oil markets (Fan et al. 2016); gold markets (Chen et al. 2020b);
and futures markets (Kim et al. 2020a).

Prediction of Bitcoin by AI is mainly divided into two categories. The first category is
the classification research of predicting the rise or fall of Bitcoin in the future. The error
standard is DA and F1. The other category is regression research on predicting Bitcoin
prices, while the corresponding errors are RMSE and MAPE. Due to the sharp fluctuations
in the price of Bitcoin, only grasping the rise or fall of the price of Bitcoin in the future
cannot help investors avoid risks. In contrast, getting the specific bitcoin price as a reference
price is more useful.

1.1. Motivation and Novelties

Based on the necessity of avoiding the price risk of Bitcoin as the background, this
research chooses the random forest regression algorithm of machine learning and the
LSTM model of neural network algorithm to predict the price of Bitcoin. I mainly focus on
the performance of random forest regression in Bitcoin price prediction when using the
prediction results of LSTM as a comparison. Random forest regression is a regression form
of random forest. Different from the black box technology of neural networks, random
forest regression as machine learning can deliver the importance of each explanatory
variable in predicting Bitcoin through the results of its weak-learners.

The prediction effect of random forest in predicting stock price direction has been
proven effective (Basak et al. 2019; Khan et al. 2020). However, unlike random forest
classifier, whose research goal is to classify ups or downs, there are not many papers that
use random forest regression to study the cryptocurrency market in the existing literature.
In the literature using random forest regression, the explanatory variables used by Parvez
(2022) focus on the highly correlated OHLC (Open, High, Low, Close) and transaction
volume of Bitcoin itself as explanatory variables. On this basis, I think it is of great research
value to add explanatory variables in other fields. A total of 47 explanatory variables were
collected for this study in the following 8 categories: (a) Bitcoin price variables, (b) the
specific technical features of Bitcoin, (c) other cryptocurrencies, (d) commodities, (e) market
index, (f) foreign exchange, (g) public attention, and (h) dummy variables of the week to
verify the accuracy of random forest regression for Bitcoin price prediction.

As a comparison of whether the prediction accuracy of random forest regression
is good, this paper chooses the LSTM algorithm of RNN as comparative research. The
experimental results of many studies show that the prediction accuracy of LSTM and GRU
is better when compared with other models, including the traditional time series model
ARMA.

In addition to pursuing a high-precision forecasting model, this study also conducts
(1) an in-depth analysis from the explanatory variables that determine the importance of
Bitcoin prices and (2) the relationship between the prediction accuracy and the lag of the
explanatory variables.

1.2. Contributions

The RMSE of the random forest regression model is smaller than LSTM algorithm.
Although through the DM and Clark–West test, the hypothesis that LSTM is better than
random forest regression cannot be rejected at a significant level of α = 95%. However, the
error results of multiple experiments show the higher prediction accuracy of random forest
regression.

The experimental results of random forest regression also indicate the changes in the
factors that determine the price of Bitcoin around 2018. The OHLC prices of Bitcoin itself
are proven to be most important during the full sample period. In Period 1 from April
2015 to October 2018, the U.S. stock markets NASDAQ, DJI, and S&P500, which have high
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importance, show a sharp decrease in importance in the Period 2 sample from October
2018 to April 2022. The importance of ETH and DOGE, which are both digital currency
markets, increased during Period 2.

As an LSTM model that focuses on the study of time series data, the control experi-
ments by substituting explanatory variables with different lags show that the prediction
accuracy obtained only with the latest period of data is the highest. Random forest regres-
sion also delivered the same conclusion.

1.3. Organization

Rest of the paper is organized as follows. Section 2 discusses the existing method-
ologies and models to predict the cryptocurrency prices. Section 3 discusses the setting
of model parameters and error setting. Section 4 discusses the selection analysis and
pre-processing of explanatory variables. Section 5 discusses the performance evaluation of
the proposed model. Section 6 discusses the limitations of the research and directions for
future attempts. Finally, Section 7 concludes the paper.

2. Related Works

Aggarwal et al. (2019) studied whether gold price can predict Bitcoin price through
three deep learning algorithms of CNN, LSTM, and GRU. The conclusion is that the
predicted price of the model which only uses gold price deviates from the true Bitcoin
price, and the prediction accuracy of the LSTM model is the best of three. Liu et al. (2021)
expanded the range of explanatory variables, based on the cryptocurrency market and
macro market index (stock market index, crude oil price, exchange rate, etc.) and search
index, a total of 40 explanatory variables for Bitcoin price prediction. SDAE algorism shows
better prediction performance than BPNN, PCA-SVR, and SVR.

Regarding the prediction research of Bitcoin price, the methods are divided into time
series and machine learning. Multiple studies have concluded that the prediction accuracy
of ARIMA is not as good as that of machine learning (McNally et al. 2018; Shin et al. 2021;
Chen et al. 2020a; Akyildirim et al. 2021).

LSTM, as a controlled study of random forest regression in this study, has been
studied as a target model many times in the past literature (Shin et al. 2021; Jagannath et al.
2021; Rizwan et al. 2019). Phaladisailoed and Numnonda (2018) used four deep learning
algorithms (Theil–Sen regression, Huber regression, LSTM, and GRU) to predict the price
of Bitcoin. The 52.78% accuracy of the LSTM algorithm is the highest. Based on the same
explanatory variables, Tandon et al. (2019) found that adding 10-fold cross-validation to
the LSTM training process can increase the accuracy of LSTM by 14.7%. However, the
selection of explanatory variables in Phaladisailoed’s and Tandon’s studies is limited to
OHLC, volume from top exchange and market cap. In the research done by Aggarwal
et al. (2019), in addition to the price of Bitcoin itself, gold price was added to explanatory
variables. The experimental results show that the RMSE of the LSTM algorithm is 47.91,
which is better than CNN and GRU. McNally et al. (2018) added the variables difficulty
and hash rate related to Bitcoin attributes in his research, the 52.78% prediction accuracy of
LSTM is also better than the accuracy of RNN and ARIMA. Chen et al. (2020a) used LSTM,
SVR, ANFIS, and ARIMA, four algorithms to predict the Bitcoin price. While Chen added
eight kinds of Bitcoin attribute variables, public attention variables (Google Trends and
Twitter data) and economic category variables. In the four subsample periods, LSTM all
showed better prediction accuracy than the other three. Livieris et al. (2020) introduced a
novel framework by preprocessing, which performed a series of transformations based on
first differences or returns, to make data “suitable” for fitting a deep learning model based
on the stationarity property.

In addition to predicting the price of Bitcoin, there are many studies using LSTM to
predict other digital currencies (Sebastião and Godinho 2021; Saadah and Whafa 2020;
Derbentsev et al. 2020). Politis et al. (2021) used LSTM to predict the price of Ether with
an accuracy of 84.2%. Livieris et al. (2021) used hybrid CNN-LSTM to conduct prediction
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experiments on Bitcoin (BTC), Ethereum (ETH), and Ripple (XRP) with the highest market
value at the time and obtained BTC The prediction accuracy of 55.03% is higher than ETH’s
51.51% and XRP’s 49.61%.

In McNally et al.’s (2018), García-Medina and Duc Huynh’s (2021), and Chen et al.’s
(2020a) studies, it is mentioned that adding Dropout layers between each layer of LSTM
can reduce the effect of overlearning. But there are differences in the choice of dropout
coefficients (0.1, 0.3, 0.5) among the three works of literature above.

Regarding the selection of explanatory variables, in addition to the macroeconomic
variables used in many works of literature, Jagannath et al.’s (2021) research focuses
on the core variables of the Bitcoin blockchain, including users, miners, and exchanges.
Technical indicators have proven useful for predicting Bitcoin prices (Jaquart et al. 2021;
Mudassir et al. 2020). The LSTM based on the self-adaptive technique also gets good
prediction performance, but the article lacks a comparative experiment with the model
added macroeconomic variables. Regarding the explanatory power of variables on Bitcoin
price, García-Medina and Duc Huynh (2021) innovatively studied variables such as social
media (E. Musk and D. Trump’s remarks) and Tesla stock price. During the ups and
downs in the second half of 2020, the conclusion was that the explanatory power of these
variables that were of great interest at the time was not found. Carbó and Gorjón (2022),
in their appendix, compare the effect of adding the previous period’s Bitcoin price to the
explanatory variables based on the LSTM algorithm. The RMSE accuracy of the model that
added the previous Bitcoin price as an explanatory variable improved significantly from
the original 21% to 11%.

The selection of time unit prices is also a point that has been analyzed by many
researchers. Most research use days or minutes as the sample unit. In the quarterly
research of DSVR, DNDT, and DRCNN conducted by Lamothe-Fernández et al. (2020),
each model obtained more than 60% prediction accuracy, but this high accuracy may be
related to Bitcoin’s general uptrend between 2011 and 2019 in the sample, as well as the
long quarterly units. The work of Shin et al. (2021) is based on the LSTM model, with
sample units in a minute, hour, and day. The results show that the prediction accuracy of
the day model and minute model is similar, and both better than the model with an hour
unit.

Bitcoin has a history of 15 years since its birth in 2008, although it is not long compared
to other assets. In previous studies, researchers are more willing to subdivide data samples
into small samples before conducting prediction research (Shin et al. 2021; Chen et al. 2020a;
Carbó and Gorjón 2022). In Jagannath et al.’s (2021) and Awoke et al.’s (2021) experiments,
the longest period of a single sample does not exceed 4 years.

3. Methodology

Machine learning is an important branch of artificial intelligence (AI). According to
whether there is a target variable, it can be divided into supervised learning, unsupervised
learning, and reinforcement learning. The purpose of this study is to predict future Bitcoin
prices, so a regression function with supervised learning is used. The unified execution
logic of machine learning is that after the algorithm is preset, a learner is generated, and a
high-precision learner is obtained by repeated training of the learner through training data
and the process of validation. Finally, the test data is substituted into the trained learner for
evaluation and application.

Both random forest regression and LSTM model training in this paper are implemented
through the open-source library of python’s machine learning. The library used by random
forest regression is sklearn, and LSTM uses keras for research. The pre-processing and
collation of the data are done by pandas.

3.1. Random Forest

Random forest is an ensemble form of multiple regression trees. Its advantage is high
explicability, but the predicted results are limited by the training samples. The principle
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of the regression tree is to divide the parent group into subgroups using an indicator of a
certain variable, and the classification is based on making the average of the sum of squared
residuals of each group the smallest, shown in Equation (1) below.

1
n1

n1

∑
i=1

(
yi − y(1:n1)

)
+

1
n2 − n1

n2

∑
j=n1+1

(
yj − y(n1+1:n2)

)
→ min (1)

Regarding parameter settings, the maximum depth of a single sub-regression tree is
10, and the number of sub-regression trees in the random forest is 500 (Figure 1). I tested
the maximum depth of the interval [min = 3, max = 20] and the number of sub-regression
trees of the interval [min = 200, max = 1000], respectively. My further experiments show
that after the maximum depth is greater than 10 or the number of sub-regression trees is
greater than 500, the training data and the prediction error no longer changes.
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3.2. LSTM

The RNN algorism is different from the normal DNN algorism. When data is sub-
stituted into the model, it will not only generate an output value, but also modify the
parameters of the model. RNN algorism has the function of retaining the previous input
data information in the model. This paper uses the LSTM model that makes up for the
short memory defect of RNN. Data changes are made to the RNN model and the memory
model through the paths of the three activation functions of Forget Gate, Input Gate, and
Output Gate.

Based on the characteristic that the output value of the LSTM model can be resub-
stituted into another layer of the LSTM model, and the application of the dropout layer
mentioned in the literature, the LSTM model structure of this experiment is as follows.
Regarding the parameter setting of the dropout layer, I tested [min = 10%, max = 50%] for
each dropout layer. It turns out that when the overall value of dropout is small, there is an
overlearning phenomenon in which the training data performs well but the prediction error
of validation data is large. When the overall value of dropout is set too large, the errors of
the training data and the validation data are both large. In addition, the experiment also
found that the prediction accuracy of the dropout value with descending order is worse
than ascending order. The number of layers of LSTM [min = 2, max = 6] and the parameter
setting of each layer of units in [32, 64, 128, 256, 512] are tested. After balancing the accuracy
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and the risk of overlearning. The activation function of each layer is set to “ReLU”, which
has better performance than “sigmoid” and “tanh”. The specific value and framework of
LSTM is shown by Table 1 and Figure 2 below. The last 10% of the training data is set as
validation data.

Table 1. Details of the LSTM model.

Layers Parameters

Layer_1 LSTM_1 units: 128
Activation: ReLU

Layer_2 Dropout_1 0.2

Layer_3 LSTM_2 units: 128
Activation: ReLU

Layer_4 Dropout_2 0.3

Layer_5 LSTM_3 units: 256
Activation: ReLU

Layer_6 Dropout_3 0.4

Layer_7 LSTM_4 units: 256
Activation: ReLU

Layer_8 Dropout_4 0.5

Layer_9 Dense units: 1
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In addition to the framework setting of the model, another important hyper parameter
of deep learning is epochs. The value of epochs reflects the number of passes to learn
the train data. The larger the epochs are, the smaller the prediction error of the training
data will be. However, when the epochs are too large, it leads to overlearning problems.
Therefore, through the training and validation loss diagrams of Period 1 and Period 2 in
Figure 3 below, the epochs of Period 1 are set to 250, and the epochs of Period 1 are set
to 75.
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3.3. Errors and Evaluation Criteria

As an important criterion to evaluate the prediction accuracy of machine learning,
this study quantifies the prediction performance of the model by using three errors,
MAPE (mean absolute percentage error, Equation (2)) and RMSE (root mean squared
error, Equation (3)), and DA (decision accuracy, Equation (4)). However, due to the rising
average Bitcoin price, RMSE can only be compared for model results based on the same
sample. There is no meaningful comparison between the experimental results of different
data samples.

MAPE =
1
m

m

∑
t=1

∣∣∣∣y(t)− ŷ(t)
y(t)

∣∣∣∣ (2)

RMSE =

√
1
m

m

∑
t=1

(y(t)− ŷ(t))2 (3)

DA =
1
m

m

∑
t=1

a(t)× 100% (4)

In addition to comparing the prediction accuracy of various models to obtain the
performance of each model in predicting the future price of Bitcoin, this study also expects
to compare the prediction errors under different lags of explanatory variables to analyze
the memory length characteristics of the Bitcoin market.

In addition to the MAPE, RMSE, and DA errors of each prediction result, this paper
also conducts a hypothesis test on the significant difference between the two different
algorithms through the Diebold–Mariano test and the Clark–West test. The principle of
the DM test can be simply summarized as: given two sets of prediction error sequences
{e′t}

T
t=j and {et}T

t=j, then define a loss function dt = L(et)− L(e′t), while L(e) = e2 is MSE
and L(e) = |e| is MAE.

DMt =
dt

se(dt)
(5)

Based on Diebold–Mariano’s loose assumption, DMt (Equation (5)) is asymptotically
distributed in N(0, 1), and finally a one-sided hypothesis test is performed on the statistic
DMt.

The Clark–West test adds the (et − e′t)
2 item in the loss function of the Diebold–

Mariano test of MSE as ft := (et)
2 − (e′t)

2 + (et − e′t)
2, which is also asymptotically dis-

tributed in N(0, 1), and finally performs a one-tailed hypothesis test on the statistic ft.

4. Data and Preprocessing

The sample data are the daily data from 31 March 2015 to 1 April 2022. The data of
the study were collected from yahoo finance, Coinmarketcap.com, investing.com, bitin-
focharts.com, and coinmatrics.io.
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The target variable in the experiment is the price of Bitcoin in USD. A total of 47
variables are used as explanatory variables to predict the price of Bitcoin in the future,
which are divided into eight categories: (a) Bitcoin price variables, (b) the specific technical
features of Bitcoin, (c) other cryptocurrencies, (d) commodities, (e) market index, (f) foreign
exchange, (g) public attention, and (h) dummy variables of the week.

Each explanatory variable and its corresponding definition are in Appendix A.

4.1. Explanatory Variables Analysis

Table 2 shows the statistical features for each explanatory variable used to predict
Bitcoin’s future price. It is worth noting that the standard deviations of the variables related
to the cryptocurrency market (five for Bitcoin, five for other cryptocurrencies, and Google
search volume for Bitcoin) are all large. Among them, the ratio of the standard deviation
to the mean value, except for the LTC of 0.99, all the others exceed 1. It reflects the high
volatility of the cryptocurrency market since 2015. Except for the variables mentioned
above, which are related to cryptocurrency, the value of standard deviation/mean ratio of
the traditional market is not greater than 0.4.

Table 2. Statistical features of explanatory variables.

Count Mean Std Min Max

BTC_Open 2559 12,628.14 16,689.78 210.068 67,549.73

BTC_High 2559 12,965.49 17,133.74 223.833 68,789.63

BTC_Low 2559 12,259.05 16,184.48 199.567 66,382.06

BTC_Close 2559 12,644.27 16,697.06 210.495 67,566.83

BTC_Volume 2559 1.6 × 1010 2.02 × 1010 10,600,900 3.51 × 1011

Active addr cnt 2559 715,123 235,979.6 222,628 1,366,494

Xfer cnt 2559 646,493.3 183,825.9 234,806 2,041,653

Mean Tx size (native
units) 2559 2.092273 3.50753 0.307039 126.7199

Total fees (USD) 2559 936,734.4 1,971,955 2850.355 21,397,763

Mean hash rate 2559 60,571,448 61,550,129 271,738.1 2.48 × 108

Difficulty 2559 8.37 × 1012 8.5 × 1012 4.67 × 1010 2.86 × 1013

Mean block size (in bytes) 2559 968,516.6 258,456.1 292,929.3 1,523,656

Sum block weight 2559 4.82 × 108 1.05 × 108 1.91 × 108 7.58 × 108

LTC 2559 71.87075 70.81633 1.32117 386.4508

XRP 2559 0.354487 0.38141 0.00356 2.78

DASH 2559 142.1313 182.4392 2.06 1550.85

DOGE 2559 0.035873 0.087754 8.73 × 10−5 0.6848

ETH 2430 708.8693 1107.578 0.4348 4812.09

Gold 1854 1489.887 245.8335 1070.8 2117.1

Silver 2182 19.18016 3.750716 11.978 30.135

Copper 1811 3.00615 0.697527 1.994 4.9375

Oil 1848 54.88971 14.53394 −37.63 123.7

Treasury yield 10 years 1763 1.950953 0.657184 0.499 3.234

S&P500 1766 2907.096 779.8341 1829.08 4796.56

DJI 1766 24,828.27 5703.945 15,660.18 36,799.65
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Table 2. Cont.

Count Mean Std Min Max

CBOE 1765 94.984 21.60072 55.5 137.16

NASDAQ 1765 8336.731 3308.791 4266.84 16,057.44

JP225 1740 21,972.35 3738.272 14,952.02 30,670.1

CSI300 1708 3982.53 668.6175 2853.76 5807.72

DXY 1764 95.63923 2.961022 88.59 103.29

EUR 1826 1.343444 0.088168 1.149439 1.588512

GBP 1826 0.747414 0.046768 0.62952 0.86999

JPY 1826 111.051 5.136474 99.906 125.629

CAD 1826 1.303631 0.04442 1.1954 1.4578

AUD 1826 1.367315 0.07251 1.232 1.741281

SGD 1826 1.367216 0.029435 1.30659 1.4563

CNY 1826 0.733329 0.037271 0.57429 0.811688

RUB 1826 66.58596 8.731132 0.7162 138.9651

Tweets 2559 50,500.83 43,438.57 13,294 363,566

Google 2559 495.8206 519.2102 64 6064.504

In addition, differences between the explanatory variables of the cryptocurrency
market and the traditional market were observed in terms of the ratio of the minimum
and maximum values. Except for 194 times the Russian ruble in traditional markets, the
max/min ratio is not greater than 7 (Regardless of the extremely negative price of −37.63
for crude oil on 20 April 2020). However, in the cryptocurrency market, the ratios are all
greater than 300, and the highest is 11,067 times that of ETH. Both the Bitcoin market and
the Russian ruble in the traditional market have shown high volatility.

The correlation heat map (Figure 4) shows the correlation between Bitcoin and other
explanatory variables except for the week dummy variables. Bitcoin has a positive corre-
lation with other cryptocurrencies, commodity prices, stock market indexes, and public
attention variables. The only exception is that the price of Bitcoin is inversely correlated
with the 10-year U.S. Treasury yield in the commodities category. The price of Bitcoin
and the exchange rate generally show a negative correlation. It seems understandable
that the stronger the US dollar, the lower the price of Bitcoin. Interestingly, the Russian
ruble exchange rate has a positive correlation with the Bitcoin price, and the correlation
coefficient is high.

There is a brief explanation of the relationship between Bitcoin price and weekday
variables. The extreme floats are mostly found on Wednesdays. The largest yield variance
was seen on Wednesday and the largest daily gains and daily losses over the 7 years both
occurred on Wednesday. The variance of yields is smaller on weekends than on weekdays,
and yield fluctuations are more stable. The average daily return for Bitcoin is 0.28% with
a 95% confidence interval of [0.13%, 0.43%]. The average return is highest on Mondays
and smallest on Sundays. Monday’s return is statistically greater than Sunday’s (α = 95%).
The daily probability of rising is 54.57% with a 95% confidence interval of [52.64%, 56.50%].
Saturday and Friday have the highest probability of rising. The probability of rising on
Saturday is statistically greater than on Sunday (α = 90%).

Regarding the two public attention variables (Figure 5), two conclusions can be drawn
from the comparison with the Bitcoin price. First, the spike in Google Trends and daily
Tweets came during a time when Bitcoin broke its all-time high price. Secondly, the highest
Google Trend occurred at the end of 2017. After that, even with over USD 60,000 in 2021,
the search volume did not surpass what it was at the end of 2017.
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4.2. Preprocessing

The data research sample collected data from a total of 7 natural years from 31 March
2015 to 1 April 2022. However, due to the particularity of Bitcoin having two price bubbles at
the end of 2017 and 2021, and the longest span of a single sample in past studies is no longer
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than 4 years. Based on the above two reasons, to improve the price prediction accuracy of
the model, the total sample is divided into Period 1 (from 31 March 2015 to 30 September
2018) and Period 2 (1 October 2018 with 1 October 2018). Conduct independent research
on two sub-samples, train models for their respective periods and predict respectively.
Machine learning is the process of training initial samples through training samples and
then substituting them into test samples for evaluation. Usually, training samples occupy
75% to 90% of the samples. The specific division of training and testing samples in this
study is shown in Table 3 and Figure 6. The last 10% of the training data is set as validation
data.

Table 3. Interval division of training samples and test samples.

Train Data Test Data Percentage of Train Data

Period 1 31 March 2015–31 March 2018 1 April 2018–30 September 2018 85.70%

Period 2 1 October 2018–30 September 2021 1 October 2021–1 April 2022 85.69%
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Among all the explanatory samples, only ETH has the problem of missing sample
data because it came out (7 August 2015) later than April 2015, so the training samples
used for ETH in the Period 1 model all start from 7 August 2015, not 31 March 2015.

Bitcoin is available for trading 24 h a day and 365 days a year, while the variables such
as stock market indices, exchange rates, and commodity price indices are not traded during
weekends and holidays, so there is missing data. There are two ways to deal with samples
with these missing data, one is to delete the data with missing data before training, and
the second method is to fill in the missing data. Considering that the research object of
this study is time-series in nature, direct deletion of the samples affects the analysis of the
period relationship. Therefore, filling in the missing data is chosen by replacing the value
of the missing data with the value of the previous period. For example, in the case of gold
prices, there is no price data for the weekend, and the value of the Friday gold price from
the previous day is used to define the price for both days of the weekend.

The min/max preprocessing (Equation (6)) is important for LSTM because the activa-
tion function is not sensitive to values above 1. All variables are unified to [0, 1], eliminating
the effect of metric units.

xscaled =
x− xmin

xmax − xmin
(6)

The flow of the whole experiment is shown in Figure 7.
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5. Results
5.1. Results of Random Forest Regression

The trained learner is used to predict the test samples of Period 1 and Period 2, and the
results shown in Table 4 and Figure 8 below are obtained. The red line is the Bitcoin price,
and the green dashed line is the price predicted by the random forest regression learner.

Table 4. Error results for random forest regression.

Period 1 Period 2

RMSE 321.61 2096.24

MAPE 3.39% 3.29%

DA 51.93% 52.49%

Although the RMSE of Period 1 is much smaller than that of Period 2, since the average
price of Bitcoin in Period 1 is also much smaller than that of Period 2, it is meaningless to
compare the RMSE results of different periods. The MAPE and DA indicators in the two
periods are quite close, and the prediction accuracy of Period 2 is slightly better than that
of Period 1. It is worth noting that in the early stage of the test interval of Period 2, the
random forest regression algorithm has a bad prediction on the Bitcoin price when the price
is greater than 60,000 US dollars because there are very few samples with a Bitcoin price
greater than USD 60,000 in the training samples of Period 2. This result accurately reflects
the disability of the random forest algorithm to predict results outside the training samples.
However, whether it is Period 1 or Period 2, the random forest regression algorithm shows
excellent performance in predicting prices below USD 60,000, and the trend of the predicted
price is consistent with the real price trend.

In addition to predictive analysis, the random forest algorithm also provides the
importance of each explanatory variable when predicting the price of Bitcoin, through the
statistics of the number of occurrences of boundary variables in all 500 sub-regression trees.
The result is shown in Figure 9.
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Whether it is Period 1 or Period 2, the importance of OHLC price of Bitcoin in the
previous period is ranked high. However, what is interesting is that the relative order of
open, high, low, and close in the two periods is not the same. According to the random walk
theory of sequential prices, the price at each time point reflects the market’s expectation of
the future price now, so the closing price closest in time should be the most important item
among the four prices. The variable importance results for Period 1 accurately reflect this.
However, in the ranking of Period 2, the lowest price of the previous period is considered
the most important explanatory variable, and the closing price of the previous period is the
last of these four prices. I think the possible reason that the lowest price in the previous
period in Period 2 is important is related to the fact that there are more days of Bitcoin price
decline in the later period of the Period 2 training sample, and the closing price is not at
the highest level also implies that random forest regression delivers different results from
random walk theory.

In addition to the variables of Bitcoin’s price, there are several other variables that are
evaluated to be important when determining the price of Bitcoin. In Period 1, the NASDAQ
index and crude oil prices in the United States are of high importance, even more important
than the opening price of Bitcoin. From 7th to 10th places of importance are the American
stock market index DJI, S&P500, ETH price, and the difficulty index of mining BTC. Among
the top six explanatory variables other than Bitcoin price, the U.S. stock market index
accounts for half of the three seats, which reflects the relationship between the U.S. stock
market index and Bitcoin price from April 2015 to October 2018.

In Period 2, as shown in the Figure 9, since the importance of GBP in the 7th place is
almost negligible, only the first six explanatory variables are considered. Except for the first
four Bitcoin price variables, the remaining two are ETH, which is also a cryptocurrency,
and Japan’s stock market index JP225.

Regarding the explanatory variables that determine the importance of Bitcoin prices,
it can be summarized that the OHLC prices of Bitcoin itself in the previous period are the
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most important. The importance of the remaining variables changes over time. The stock
market index has the highest importance among all major categories. The feature of the
high importance of the US stock market index in Period 1 has not been continued in Period
2. The importance of the Japanese stock market increased in Period 2. ETH is the only
non-Bitcoin price variable that is considered important for Bitcoin price predictions in both
Period 1 and Period 2.

In addition to obtaining the order of importance, to further study the impact of the
presence or absence of explanatory variables on the prediction error, two additional tests
were performed, which took turns taking out the least important and most important
explanatory variable sets, respectively. The results are shown in Tables 5 and 6 below.
The normal column is the importance ranking of all explanatory variables in Figure 9.
The ascending column is to extract the most important explanatory variables and repeat
the experiment. The descending column is to extract the least important explanatory
variables and repeat the experiment. The results show that among the top variables in
Period 1, except for BTC_Close, BTC_High, NASDAQ, and BTC_Low, all other variables
have changed by more than two ranks. In contrast, the ranking of Period 2 is more stable,
and the variables from 1 to 6 have not changed except for BTC_Open and BTC_Close.

Table 5. Summary of explanatory variables importance of Period 1.

Ranking
(Period 1) Normal Ascending Descending

1 BTC_Close BTC_Close BTC_Close
2 BTC_High BTC_High BTC_High
3 NASDAQ NASDAQ NASDAQ
4 Oil BTC_Low BTC_Low
5 BTC_Low BTC_Open BTC_Open
6 S&P500 Oil DJI
7 BTC_Open Difficulty Oil
8 DJI S&P500 S&P500
9 ETH DJI ETH
10 Difficulty JP225 Difficulty

Table 6. Summary of explanatory variables importance of Period 2.

Ranking
(Period 2) Normal Ascending Descending

1 BTC_Low BTC_Low BTC_Low
2 BTC_High BTC_High BTC_High
3 BTC_Close BTC_Close BTC_Open
4 BTC_Open BTC_Open BTC_Close
5 ETH ETH ETH
6 JP225 JP225 JP225
7 S&P500 S&P500 CSI300
8 DOGE DOGE AUD
9 CSI300 GBP NASDAQ
10 DXY EUR DXY

In addition to the ranking results, I analyzed the change in RMSE after taking out the
most important variables in turn. The RMSE corresponding to the variable name on the
abscissa refers to the RMSE error after removing it and the upper variables in Figure 10.
Therefore, a large range of RMSE changes can show the importance of this variable relative
to the remaining variables.
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The significant increase in RMSE in Period 1 occurs when BTC_Open is removed.
Removing BTC_Open corresponds to removing all OHLC from the previous day data,
which shows that when predicting the next Bitcoin price, at least one of the current OHLC
Bitcoin price needed. In Period 2, three large changes in RMSE occurred when BTC_Open,
ETH, and DOGE were removed separately. Although the result of random forest shows that
DOGE appears less often than JP225 and S&P500 in the nodes of all sub- regression trees, the
sharp rise in RMSE after removing DOGE shows the effect of DOGE on prediction accuracy.
The three large changes in Period 2 are all related to the price variables of cryptocurrency,
indicating that the correlation between Bitcoin price and the cryptocurrency market has
increased after 2018.

Based on the results about the importance of predicting the price of Bitcoin, I compared
the prediction performance between the model with all variables and the model only
with important variables (BTC_Close, BTC_High, NASDAQ, and BTC_Low for Period 1;
BTC_Close, BTC_High, BTC_Low, BTC_Open, ETH, and JP225 for Period 2). The results
show that the prediction accuracy of the model with all explanatory variables is better
while the RMSE is 3% smaller than the results using only important variables (Figure 11).
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5.2. Results of LSTM

I found that bringing redundant explanatory variables into the model for training leads
to a decrease in model accuracy. The accuracy of the model obtained after all 47 explanatory
variables are brought in is lower than that of the model using part of the variables, such
as the lightweight model using only four Bitcoin price variables. On the contrary, if too
few explanatory variables are used, the prediction accuracy of the model also reduces. For
example, after adding some other variables to the lightweight model with four Bitcoin price
OHLC variables, the prediction accuracy becomes better. Therefore, I have conducted a lot
of experiments and attempts on what set of explanatory variables should be substituted
in each period. Since there is no such problem in random forest due to it is ensemble
algorithm, there is no need to discuss it in random forest regression.

Since the combination of explanatory variables brought in directly affects the predic-
tion accuracy of the model, by referring to the importance rank of the explanatory variables
using random forest regression, the respective explanatory variable sets of Period 1 and
Period 2 are set in Table 7.

As the learning results of deep learning are related to the combination of randomly
selected learning samples from the sample, randomness was present in the experimental
results. Therefore, when comparing the model results, instead of comparing the accuracy of
a single model, the average of the results of 30 experiments for various models is compared.
The method of comparing the average of multiple experimental results was also applied in
the experiments done by Liu et al. (2021).
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Table 7. Explanatory variables used in Period 1 and Period 2.

Period 1 Period 2

Variables

BTC_Open BTC_Open
BTC_High BTC_High
BTC_Low BTC_Low
BTC_Close BTC_Close

ETH ETH
Oil JP225

S&P500
NASDAQ

DJI
Difficulty

The one-lagged accuracies of the models for two periods are shown in Table 8 and
Figure 12.

Table 8. Errors of the LSTM models.

Period 1 Period 2

RMSE 330.26 3045.87

MAPE 3.57% 4.68%
Note: the results are the average of 30 runs.
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Figure 12. 

Table 8. Errors of the LSTM models. 

 Period 1 Period 2 
RMSE 330.26 3045.87 
MAPE 3.57% 4.68% 
Note: the results are the average of 30 runs. 
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When the Bitcoin price is greater than USD 60,000 in the early period of Period 2, the
prediction results of the LSTM algorithm met the same problem of underrating as that
in random forest regression. By comparing the MAPE of the two periods, the prediction
accuracy of Bitcoin price in Period 1 is better than that in Period 2. This reflects that the
correlation between Bitcoin and traditional markets has decreased in recent years, and the
randomness of prices has increased. This result also echoes the conclusion that the price
correlation is more and more determined by the previous period’s own price, as reflected
in the importance ranking of random forest regression in Period 2.

5.3. Relationship between Precision and Number of Variable Periods

Regarding the relationship between model accuracy and the number of lags of ex-
planatory variables, I compared the results of five models with lags from 1 to 5. Whether
it is Period 1 or Period 2, the conclusion is that the MAPE of random forest regression
increase with the number of periods added as shown in Figure 13. Models trained by only
explanatory variable data from the previous period had the best accuracy. This feature of
the lagged relationship supports the efficient market hypothesis.

J. Risk Financial Manag. 2023, 16, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 12. Comparison of the true price of Bitcoin and predicted price based on different models. 
(LSTM). 

When the Bitcoin price is greater than USD 60,000 in the early period of Period 2, the 
prediction results of the LSTM algorithm met the same problem of underrating as that in 
random forest regression. By comparing the MAPE of the two periods, the prediction ac-
curacy of Bitcoin price in Period 1 is better than that in Period 2. This reflects that the 
correlation between Bitcoin and traditional markets has decreased in recent years, and the 
randomness of prices has increased. This result also echoes the conclusion that the price 
correlation is more and more determined by the previous period’s own price, as reflected 
in the importance ranking of random forest regression in Period 2. 

5.3. Relationship between Precision and Number of Variable Periods 
Regarding the relationship between model accuracy and the number of lags of ex-

planatory variables, I compared the results of five models with lags from 1 to 5. Whether 
it is Period 1 or Period 2, the conclusion is that the MAPE of random forest regression 
increase with the number of periods added as shown in Figure 13. Models trained by only 
explanatory variable data from the previous period had the best accuracy. This feature of 
the lagged relationship supports the efficient market hypothesis. 

 
Figure 13. Relationship between MAPE and the number of lags (random forest regression). 

LSTM is a deep learning algorithm with good predictive performance for time series 
data. The conclusion on whether it is necessary to refer to the data of multiple periods 
before when predicting the price of Bitcoin is that the prediction accuracy of the model 
that only needs the previous period is the best. As shown in the results of Period 1 (ten-
variable model) and Period 2 (six-variable model) in Figure 14 below, although the price 

Figure 13. Relationship between MAPE and the number of lags (random forest regression).

LSTM is a deep learning algorithm with good predictive performance for time series
data. The conclusion on whether it is necessary to refer to the data of multiple periods
before when predicting the price of Bitcoin is that the prediction accuracy of the model that
only needs the previous period is the best. As shown in the results of Period 1 (ten-variable
model) and Period 2 (six-variable model) in Figure 14 below, although the price trends of
each model are close to real price, the more periods of data substituted into the model, the
smoother and smoother the curve of the forecast data becomes, deviating from the real
price.

The conclusion on the number of data periods required when training the model is
that only using the most recent period of data is sufficient. This conclusion is close to the
efficient market hypothesis. The current price reflects the market’s expectation of the future
price of the asset, and the price of the previous period has no reference value.

According to summary Table 9, it can be found that whether it is Period 1 or Period 2,
the price prediction accuracy of the random forest regression model with a lag of 1 is better
than that of the LSTM algorithm.
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Table 9. Model evaluation using the accuracy and error.

RMSE MAPE DA

Period 1

Random forest
regression

321.61
(1.67%) 3.39% 51.93%

LSTM 330.26
(1.71%) 3.57% 49.98%

Period 2

Random forest
regression

2096.24
(3.48%) 3.29% 52.49%

LSTM 3045.87
(5.05%) 4.68% 48.09%

Note: 1. The results are an average of 30 runs. 2. The model of LSTM is the Period 1 ten-variable model and the
Period 2 six-variable model. 3. The brackets in the RMSE column are the values that have not been post-processed
(min/max).

Except for the MAPE index of random forest regression, the other three groups (RMSE
of random forest regression, RMSE and MAPE of LSTM) all showed that the prediction
error of Period 2 is greater than that of Period 1. This result reflects that the Bitcoin price
after October 2018 has become less predictable for the same algorithm. I think this result
is related to the fact that the test data of Period 2 is in the bubble period, since machine
learning is mainly based on the data of the training model when making predictions.
Because the price of the bubble period is too high, the data of historical training are slightly
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similar, causing the final accuracy declines. This phenomenon is obvious when random
forest regression predicts the price of Bitcoin over USD 60,000.

Moreover, the comparison of error values does not reflect the results of hypothesis
testing. I used the Diebold–Mariano test and the Clark–West test to further compare the
significance of the prediction errors of the random forest regression and LSTM algorithms.
The result is that no matter Period 1 or Period 2, the value is not greater than 1.64 required
in the case of α = 95%. Thus, it cannot be denied that the prediction accuracy of LSTM is
better than that of random forest regression.

Although random forest regression is not significantly better than LSTM, as an algo-
rithm that has not been widely mentioned in the past literature, random forest regression
has proven to be equivalent to or even better than LSTM in predicting the price of Bitcoin,
as shown in Table 10.

Table 10. D–M test and C–W test results on the significant difference between random forest regres-
sion and LSTM.

DM Test (MSE) DM Test (MAE) Clark and West Test

Period_1 0.36 0.52 0.84

Period_2 0.47 0.47 0.63
Note: when α = 95%, the statistical value of one-tailed test is 1.64.

6. Discussion

As a derivative comparison of experimental accuracy, Table 11 shows the DM Test and
Clark–West test of random forest regression and LSTM relative to the prediction results of
random walk. The results of the test show that the prediction accuracy of random walk is
worse than that of random forest regression or LSTM and cannot be denied.

Table 11. D–M test and C–W test results on the significant difference between random walk and
random forest regression or LSTM.

RFR/Random Walk DM Test (MSE) DM Test (MAE) Clark and West Test

Period_1 0.33 0.39 0.58

Period_2 0.55 0.68 0.93

LSTM/random walk DM test (MSE) DM test (MAE) Clark and West test

Period_1 0.34 0.41 0.47

Period_2 0.84 1.15 1.00
Note: when α = 95%, the statistical value of one-tailed test is 1.64.

There are two directions about future research, shortening the time interval of sam-
ples and automation. First, subject to the acquisition of historical data, the unit of the
experimental sample this time is daily data, which leads to the prediction of the price
has a problem of long interval. Moreover, within 24 h, the possibility of price forecast
deviation due to unpredictable problems increases. To avoid the problems caused by the
time units discussed above, in the future, I am going to collect the date with intervals of 1 h
or 5 min only for the variables with high importance indicators in this experiment. Then,
predictive analysis is performed on the new data through random forest regression and
LSTM. The second direction of expansion is automation, which can be subdivided into
automation of data acquisition and automation of prediction. Regarding the feasibility of
Bitcoin predictions, Guarino et al. (2022) have conducted many experiments and believed
that the high performance of neural networks in cryptocurrency prediction can be used
for transactions. To obtain the predicted price provided by the model at any time, it is
necessary to provide the latest data of explanatory variables to the model. A server can be
set up on AWS (Amazon Web Services) to collect data prices of various trading websites
in real time, and at the same time provide users with the future predicted price of Bitcoin



J. Risk Financial Manag. 2023, 16, 51 22 of 25

processed by LSTM and random forest regression in the form of an API interface. Moreover,
the increase in the number of data collections can also solve the problem of long-time
interval.

7. Conclusions

In this paper, to predict the price of Bitcoin on the next day, (a) Bitcoin price variables,
(b) the specific technical features of Bitcoin, (c) other cryptocurrencies, (d) commodities,
(e) market index, (f) foreign exchange, (g) public attention, and (h) dummy variables of
the week, a total of eight categories (47 variables) were used as explanatory variables.
Random forest regression has the better price prediction accuracy than LSTM. In previous
research, LSTM was widely used and recognized as an algorithm with high accuracy when
predicting Bitcoin prices. This paper uses the random forest regression machine learning
algorithm, which has not been widely used by other researchers in the previous literature
and obtains a result with higher prediction accuracy than LSTM. Although random forest
regression has the disadvantage of being unable to predict the results that did not appear in
the training samples. For example, when the price of Bitcoin broke the record high, random
forest regression could not provide a higher price result than the previous historical high.
But with the increase in Bitcoin transaction history, I think random forest regression will
perform better when Bitcoin price stabilizes.

As a horizontal comparison with the research that also used daily as the time unit
to predict Bitcoin, the RMSE error of random forest regression in this experiment (0.017
in Period 1 and 0.035 in Period 2) is better than is better than 0.045 of LSTM and 0.051 of
GRU in Awoke et al.’s (2021) experiment, but worse than 0.009 for SDAE in Liu et al.’s
(2021) experiment. I think it is difficult to compare prediction accuracy between different
Bitcoin price prediction experiments. First, Bitcoin has many prices bubble periods, and
whether the test data is in a bubble period has a great impact. For example, the RMSE error
of random forest regression in Period 2 of this study is twice that of Period 1. Secondly, the
samples of different unit time cannot be judged by the size of the test error. Interestingly,
the models with the best accuracy in Awoke et al.’s (2021) experiments are the models with
a lag of seven periods. This result is different from the conclusion in this paper that the
optimal model only needs the latest explanatory variables.

The results of random forest regression also show the explanatory variables that
determine the price of Bitcoin in various periods. In the first price bubble interval from
April 2015 to October 2018, when predicting price on the next day, in addition to the price of
the previous period of Bitcoin, the US stock market index (NASDAQ, DJI, and S&P500), the
price of oil, ETH price, and the difficulty of finding blocks of Bitcoin, these six variables of
mining difficulty also play an important role. During the second price bubble from October
2018 to April 2022, in addition to the OHLC prices of Bitcoin in the previous day, the price
of ETH and Japan’s JP225 index act a big role. When predicting the price of Bitcoin greater
than USD 60,000 per coin at the end of 2021, random forest regression exposed the problem
that it cannot predict values which is not in the training samples. However, the prediction
accuracy for the price range below USD 60,000 is good.

In addition to the accuracy conclusion of a single model, the research results also
found that whether it is random forest regression or LSTM algorithm, as the number of
past periods of the substituted explanatory variables increases, the prediction accuracy of
the model decreases. The model with the highest accuracy is the one that only substitutes
explanatory variables in the past period. This conclusion is close to the classic efficient
market hypothesis.
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Appendix A

Table A1. Definition of explanatory variables.

Variables Description Variables Description

(a) Bitcoin Oil WTI crude oil price

BTC_Open Bitcoin’s opening price Treasury Yield 10 years Treasury Yield 10 years

BTC_Close Bitcoin’s closing price (e) Market Index

BTC_High Bitcoin’s highest price of the day S&P500 The Standard and Poor’s 500

BTC_Low Bitcoin’s lowest price of the day DJI Dow Jones Industrial Average

BTC_Volume Bitcoin transaction volume CBOE Chicago Board Options
Exchange

(b) The specific
technology features of

Bitcoin
NASDAQ

National Association of
Securities Dealers Automated

Quotations

Active addr cnt

The sum count of unique addresses
that were active in the network

(either as a recipient or originator of a
ledger change) on a given day.

JP225 The Nikkei 225

Xfer cnt

The sum count of transfers on a given
day. Transfers represent movements
of native units from one ledger entity
to another distinct ledger entity. Only
transfers that are the result of result

from a transaction and(non-zero)
value are counted.

CSI300 China Securities Index 300

Mean Tx size (native
units)

The sum value of native units
transferred is divided by the count of

transfers (i.e., the mean size of a
transfer) between distinct addresses

at that interval.

(f) Foreign Exchange

Total fees (USD)

The sum USD value of all fees paid by
the user that makes the transactions
on a given day. Fees do not include

new issuance.

DXY U.S. Dollar Index

Mean hash rate

The mean rate at which miners are
solving hashes at a given rate. Hash

rate is the speed at which
computations are being completed
across all miners in the network.

EUR The number of Euros it takes
to buy one dollar

Difficulty

The mean difficulty on a given day of
finding a hash that meets the

protocol-designated requirement (i.e.,
the difficulty of finding a new block).

GBP The number of British pounds
it takes to buy one dollar

Mean block size (in bytes) The mean size (in bytes) of all blocks
created on a given day. JYP The number of Japanese yen it

takes to buy one dollar

Sum block weight
The sum count of blocks created that

interval that was included in the
main (base) chain on a given day.

CAD
The number of Canadian
dollars it takes to buy one

dollar
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Table A1. Cont.

Variables Description Variables Description

(c) Other
cryptocurrencies AUD

The number of Australian
dollars it takes to buy one

dollar

LTC Price of one Litecoin in USD SGD
The number of Singapore
dollars it takes to buy one

dollar

XRP Price of one Ripple in USD CNY The number of Chinese yuan
it takes to buy one dollar

DASH Price of one Dash in USD RUB The number of Russian rubles
it takes to buy one dollar

DOGE Price of one Dogecoin in USD (g) Public Attention

ETH Price of one Ethereum in USD Google Google Trend

(d) Commodities Tweets Number of daily Tweets

Gold Gold price per ounce (h) Week

Silver Silver price per ounce Monday–Sunday Dummy variable

Copper Copper price per ounce
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